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We study a generalized fractional quadratic functional-integral equation of Erdélyi-Kober type in the Banach space 𝐵𝐶(R
+
). We

show that this equation has at least one asymptotically stable solution.

1. Introduction
Quadratic integral equations with nonsingular kernels have
received a lot of attention because of their useful applications
in describing numerous events and problems of the real
world. For example, quadratic integral equations are often
applicable in kinetic theory of gases, in the theory of neutron
transport, and in the traffic theory; see [1–8]. The existence
of solutions for several classes of nonlinear quadratic integral
equations with nonsingular kernels has been studied by
several authors, for example, Argyros [9], Banaś et al. [10–
12], Benchohra and Darwish [13, 14], Caballero et al. [15–
17], Darwish et al. [18, 19], Leggett [20], and Stuart [21].
There is a great interest in studying singular quadratic integral
equations by many authors, after the appearance of Darwish’s
paper [22], for example, Banaś and O’Regan [23], Banaś and
Rzepka [24, 25], Darwish [26, 27], Darwish and Sadarangani
[28], Darwish and Ntouyas [29], Darwish et al. [30], and
Wang et al. [31, 32].

In this paper, we will study the quadratic functional-
integral equation of fractional order
𝑥 (𝑡) = 𝑎 (𝑡)

+𝑓(𝑡,
𝛽𝑔 (𝑡, 𝑥 (𝑡))

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑢 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠) ,

𝑡 ∈ R
+
,

(1)
where 𝛼 ∈ (0, 1) and 𝛽 > 0.

If 𝛽 = 1 and 𝑓(𝑡, 𝑢) = 𝑢, we obtain a quadratic Urysohn-
Volterra integral equation of fractional order studied by
Banas’ and O’Regan in [23] while in the case where 𝛽 = 1,
𝑓(𝑡, 𝑢) = 𝑢, and 𝑢(𝑡, 𝑠, 𝑥) = V(𝑡, 𝑥), we get a fractional
quadratic integral equation of Hammerstein-Volterra type
studied by Darwish in [22]. Moreover, in the case where
𝛽 = 1, we obtain the quadratic functional-integral equation of
fractional order studied by Darwish and Sadarangani in [28].

The aim of this paper is to prove the existence of solutions
of (1) in the space of real functions, defined, continuous,
and bounded on an unbounded interval. Moreover, we will
obtain some asymptotic characterization of solutions of (1).
Our proof depends on suitable combination of the technique
of measures of noncompactness and the Schauder fixed point
principle.

2. Notation and Auxiliary Facts

This section is devoted to collecting some definitions and
results which will be needed further on. First, we recall
from [33–35] that the Erdélyi-Kober fractional integral of a
continuous function 𝑓 is defined as

𝐼
𝛾

𝛽
𝑓 (𝑡) =

𝛽

Γ (𝛾)
∫

𝑡

0

𝑠
𝛽−1

𝑓 (𝑠)

(𝑡𝛽 − 𝑠𝛽)
1−𝛾

𝑑𝑠, 𝛽 > 0, 0 < 𝛾 < 1. (2)
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When 𝛽 = 1, we obtain Riemann-Liouville fractional inte-
gral; that is,

𝐼
𝛾

𝑓 (𝑡) =
1

Γ (𝛾)
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝛾

𝑑𝑠, 0 < 𝛾 < 1. (3)

Now, let (𝐸, ‖ ⋅ ‖) be an infinite dimensional Banach
space with zero element 𝜃. Let 𝐵(𝑥, 𝑟) denote the closed ball
centered at 𝑥 with radius 𝑟. The symbol 𝐵

𝑟
stands for the ball

𝐵(𝜃, 𝑟).
If𝑋 is a subset of𝐸, then𝑋 andConv𝑋 denote the closure

and convex closure of 𝑋, respectively. Moreover, we denote
byM

𝐸
the family of all nonempty and bounded subsets of 𝐸

and by N
𝐸
its subfamily consisting of all relatively compact

subsets.
Next we give the definition of the concept of a measure of

noncompactness [36].

Definition 1. Amapping 𝜇 : M
𝐸
→ R
+
= [0,∞) is said to be

a measure of noncompactness in 𝐸 if it satisfies the following
conditions.

(1) The family ker 𝜇 = {𝑋 ∈ M
𝐸
: 𝜇(𝑋) = 0} is nonempty

and ker 𝜇 ⊂ N
𝐸
.

(2) 𝑋 ⊂ 𝑌 ⇒ 𝜇(𝑋) ≤ 𝜇(𝑌).
(3) 𝜇(𝑋) = 𝜇(Conv𝑋) = 𝜇(𝑋).
(4) 𝜇(𝜆𝑋+(1−𝜆)𝑌) ≤ 𝜆𝜇(𝑋)+(1−𝜆)𝜇(𝑌) for 0 ≤ 𝜆 ≤ 1.
(5) If 𝑋

𝑛
∈ M
𝐸
, 𝑋
𝑛
= 𝑋
𝑛
, 𝑋
𝑛+1

⊂ 𝑋
𝑛
for 𝑛 = 1, 2, 3, . . .

and lim
𝑛→∞

𝜇(𝑋
𝑛
) = 0, then𝑋

∞
= ⋂
∞

𝑛=1
𝑋
𝑛
̸= 0.

The family ker 𝜇 described above is called the kernel of
the measure of noncompactness 𝜇. Let us observe that the
intersection set 𝑋

∞
from (5) belongs to ker 𝜇. In fact, since

𝜇(𝑋
∞
) ≤ 𝜇(𝑋

𝑛
) for every, then we have that 𝜇(𝑋

∞
) = 0.

In what follows we will work in the Banach space
𝐵𝐶(R

+
) consisting of all real functions defined, bounded, and

continuous on R
+
. This space is equipped with the standard

norm

‖𝑥‖ = sup {|𝑥 (𝑡)| : 𝑡 ≥ 0} . (4)

Next, we give the construction of themeasure of noncom-
pactness in 𝐵𝐶(R

+
) which will be used as main tool of the

proof of our main result; see [37, 38] and references therein.
Let us fix a nonempty and bounded subset 𝑋 of 𝐵𝐶(R

+
)

and numbers 𝜀 > 0 and 𝑇 > 0. For arbitrary function 𝑥 ∈

𝑋 let us denote by 𝜔𝑇(𝑥, 𝜀) the modulus of continuity of the
function 𝑥 on the interval [0, 𝑇]; that is,

𝜔
𝑇

(𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ∈ [0, 𝑇] , |𝑡 − 𝑠| ≤ 𝜀} .
(5)

Further, let us put

𝜔
𝑇

(𝑋, 𝜀) = sup {𝜔𝑇 (𝑥, 𝜀) : 𝑥 ∈ 𝑋} ,

𝜔
𝑇

0
(𝑋) = lim

𝜀→0

𝜔
𝑇

(𝑋, 𝜀) ,

𝜔
∞

0
(𝑋) = lim

𝑇→∞

𝜔
𝑇

0
(𝑋) .

(6)

Moreover, for a fixed number 𝑡 ∈ R
+
let us define

𝑋 (𝑡) = {𝑥 (𝑡) : 𝑥 ∈ 𝑋} ,

diam𝑋 (𝑡) = sup {󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 : 𝑥, 𝑦 ∈ 𝑋} ,

𝑐 (𝑋) = lim sup
𝑡→∞

diam𝑋 (𝑡) .

(7)

Let us mention that the kernel ker𝜔∞
0

consists of all
nonempty and bounded sets𝑋 such that functions belonging
to 𝑋 are locally equicontinuous on R

+
. On the other hand,

the kernel ker 𝑐 is the family containing all nonempty and
bounded sets 𝑋 in the space 𝐵𝐶(R

+
) such that the thickness

of the bundle formed by the graphs of functions belonging to
𝑋 tends to zero at infinity.

Finally, with the help of the above quantities we can define
a measure of noncompactness as

𝜇 (𝑋) = 𝜔
∞

0
(𝑋) + 𝑐 (𝑋) . (8)

The function 𝜇 is a measure of noncompactness in the space
𝐵𝐶(R

+
) [36, 37].

In the end of this section, we recall the definition of
the asymptotic stability solutions which will be used in the
proof of our main result. To this end we assume that Ω is a
nonempty subset of the space𝐵𝐶(R

+
). Let𝑄 : Ω → 𝐵𝐶(R

+
)

be a given operator. We consider the following operator
equation:

𝑥 (𝑡) = (𝑄𝑥) (𝑡) , 𝑡 ∈ R
+
. (9)

Definition 2. One says that solutions of (9) are asymptotically
stable if there exists a ball 𝐵(𝑥

0
, 𝑟) such that Ω ∩ 𝐵(𝑥

0
, 𝑟) ̸= 0

and such that for each 𝜀 > 0 there exists 𝑇 > 0 such that
for arbitrary solutions 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) of this equation
belonging to Ω ∩ 𝐵(𝑥

0
, 𝑟) the inequality |𝑥(𝑡) − 𝑦(𝑡)| ≤ 𝜀 is

satisfied for any 𝑡 ≥ 𝑇.

3. The Existence and Asymptotic
Stability of Solutions

In this section we will study (1) assuming that the following
hypotheses are satisfied.

(ℎ
1
) 𝑎 : R

+
→ R is a continuous and bounded function

on R
+
.

(ℎ
2
) 𝑓 : R

+
×R → R is continuous and the function 𝑡 →

𝑓(𝑡, 0) is bounded on R
+
with 𝑓

∗
= sup{|𝑓(𝑡, 0)| :

𝑡 ∈ R
+
}. Moreover, there exists a continuous function

𝑚(𝑡) = 𝑚 : R
+
→ R
+
such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑚 (𝑡)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 (10)

for all 𝑥, 𝑦 ∈ R and for any 𝑡 ∈ R
+
.

(ℎ
3
) 𝑔 : R

+
× R → R is continuous and there exists a

continuous function 𝑛(𝑡) = 𝑛 : R
+
→ R
+
such that

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥) − 𝑔 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 (11)

for all 𝑥, 𝑦 ∈ R and for any 𝑡 ∈ R
+
.
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(ℎ
4
) 𝑢 : R

+
× R
+
× R → R is a continuous function.

Moreover, there exist a function 𝑙(𝑡) = 𝑙 : R
+
→ R
+

being continuous on R
+
and a function Φ : R

+
→

R
+
being continuous and nondecreasing on R

+
with

Φ(0) = 0 such that
󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑠, 𝑥) − 𝑢 (𝑡, 𝑠, 𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑙 (𝑡) Φ (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) (12)

for all 𝑡, 𝑠 ∈ R
+
such that 𝑡 ≥ 𝑠 and for all 𝑥 ∈ R.

For further purpose let us define the function 𝑢
∗
:

R
+
→ R
+
by 𝑢∗(𝑡) = max{|𝑢(𝑡, 𝑠, 0)| : 0 ≤ 𝑠 ≤ 𝑡}.

(ℎ
5
) The functions 𝜙, 𝜓, 𝜉, 𝜂 : R

+
→ R

+
defined by

𝜙(𝑡) = 𝑚(𝑡)𝑛(𝑡)𝑙(𝑡)𝑡
𝛼𝛽, 𝜓(𝑡) = 𝑚(𝑡)𝑛(𝑡)𝑢

∗
(𝑡)𝑡
𝛼𝛽,

𝜉(𝑡) = 𝑚(𝑡)𝑙(𝑡)|𝑔(𝑡, 0)|𝑡
𝛼𝛽, and 𝜂(𝑡) = 𝑚(𝑡)𝑢

∗
(𝑡)|𝑔(𝑡,

0)|𝑡
𝛼𝛽 are bounded on R

+
and the functions 𝜙

and 𝜉 vanish at infinity; that is, lim
𝑡→∞

𝜙(𝑡) =

lim
𝑡→∞

𝜉(𝑡) = 0.
(ℎ
6
) There exists a positive solution 𝑟

0
of the inequality

(‖𝑎‖ + 𝑓
∗

) Γ (𝛼 + 1)

+ [𝜙
∗

𝑟Φ (𝑟) + 𝜓
∗

𝑟 + 𝜉
∗

Φ (𝑟) + 𝜂
∗

]

≤ 𝑟Γ (𝛼 + 1)

(13)

and 𝜙∗Φ(𝑟
0
) + 𝜓
∗
< Γ(𝛼 + 1), where 𝜙∗ = sup{𝜙(𝑡) :

𝑡 ∈ R
+
}, 𝜓∗ = sup{𝜓(𝑡) : 𝑡 ∈ R

+
}, 𝜉∗ = sup{𝜉(𝑡) : 𝑡 ∈

R
+
}, and 𝜂∗ = sup{𝜂(𝑡) : 𝑡 ∈ R

+
}.

Now, we are in a position to state and prove our main
result.

Theorem3. Let the hypotheses (ℎ
1
)−(ℎ
6
) be satisfied.Then (1)

has at least one solution 𝑥 ∈ 𝐵𝐶(R
+
) and all solutions of this

equation belonging to the ball 𝐵
𝑟0
are asymptotically stable.

Proof. Denote by F the operator associated with the right-
hand side of (1). Then, (1) takes the form

𝑥 = F𝑥, (14)

where

F𝑥 = 𝑎 + 𝐹H𝑥,

(H𝑥) (𝑡) = (𝐺𝑥) (𝑡) ⋅ (U𝑥) (𝑡) ,

(U𝑥) (𝑡) =
𝛽

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

𝑢 (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠, 𝑡 ∈ R
+
.

(15)

Here, 𝐹 and 𝐺 are the superposition operators, generated by
the functions 𝑓 = 𝑓(𝑡, 𝑥) and 𝑔 = 𝑔(𝑡, 𝑥) involved in (1),
defined by

(𝐹𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , (16)

(𝐺𝑥) (𝑡) = 𝑔 (𝑡, 𝑥 (𝑡)) , (17)

respectively, where 𝑥 = 𝑥(𝑡) is an arbitrary function defined
on R
+
(see [39]).

Solving (1) is equivalent to finding a fixed point of the
operatorF defined on the space 𝐵𝐶(R

+
).

For convenience, we divide the proof into several steps.

Step 1 (F𝑥 is continuous on R
+
). To prove the continuity of

the functionF𝑥 onR
+
it suffices to show that if 𝑥 ∈ 𝐵𝐶(R

+
),

then U𝑥 is continuous function on R
+
, thanks to (ℎ

1
), (ℎ
2
),

and (ℎ
3
). For this purpose, take an arbitrary 𝑥 ∈ 𝐵𝐶(R

+
) and

fix 𝜀 > 0 and 𝑇 > 0. Assume that 𝑡
1
, 𝑡
2
∈ [0, 𝑇] are such that

|𝑡
2
− 𝑡
1
| ≤ 𝜀. Without loss of generality we can assume that

𝑡
2
> 𝑡
1
. Then we get

󵄨󵄨󵄨󵄨(U𝑥) (𝑡2) − (U𝑥) (𝑡1)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽

Γ (𝛼)
∫

𝑡2

0

𝑠
𝛽−1

𝑢 (𝑡
2
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

−
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

1
− 𝑠𝛽)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽

Γ (𝛼)
∫

𝑡2

0

𝑠
𝛽−1

𝑢 (𝑡
2
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

−
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝑢 (𝑡
2
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝑢 (𝑡
2
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

−
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

−
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

1
− 𝑠𝛽)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝛽

Γ (𝛼)
∫

𝑡2

𝑡1

𝑠
𝛽−1 󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

[
󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡1, 𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨]

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1 󵄨󵄨󵄨󵄨𝑢 (𝑡1, 𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨

× [(𝑡
𝛽

1
− 𝑠
𝛽

)
𝛼−1

− (𝑡
𝛽

2
− 𝑠
𝛽

)
𝛼−1

] 𝑑𝑠.

(18)
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Let us denote

𝜔
𝑇

𝑑
(𝑢, 𝜀)

= sup {󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 𝑦) − 𝑢 (𝑡1, 𝑠, 𝑦)
󵄨󵄨󵄨󵄨 : 𝑠, 𝑡1, 𝑡2 ∈ [0, 𝑇] ,

𝑡
1
≥ 𝑠, 𝑡

2
≥ 𝑠,

󵄨󵄨󵄨󵄨𝑡2 − 𝑡1
󵄨󵄨󵄨󵄨 ≤ 𝜀,

𝑦 ∈ [−𝑑, 𝑑] ; 𝑑 ≥ 0} ;

(19)

then we obtain

󵄨󵄨󵄨󵄨(U𝑥) (𝑡2) − (U𝑥) (𝑡1)
󵄨󵄨󵄨󵄨

≤
𝛽

Γ (𝛼)

× ∫

𝑡2

𝑡1

𝑠
𝛽−1

[
󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡2, 𝑠, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 0)

󵄨󵄨󵄨󵄨]

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽

Γ (𝛼)

× ∫

𝑡1

0

𝑠
𝛽−1

[
󵄨󵄨󵄨󵄨𝑢 (𝑡1, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡1, 𝑠, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢 (𝑡1, 𝑠, 0)

󵄨󵄨󵄨󵄨]

× [(𝑡
𝛽

1
− 𝑠
𝛽

)
𝛼−1

− (𝑡
𝛽

2
− 𝑠
𝛽

)
𝛼−1

] 𝑑𝑠

≤
𝛽

Γ (𝛼)
∫

𝑡2

𝑡1

𝑠
𝛽−1

[𝑙 (𝑡
2
)Φ (|𝑥 (𝑠)|) + 𝑢

∗
(𝑡
2
)]

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)

Γ (𝛼 + 1)
[𝑡
𝛼𝛽

2
− (𝑡
𝛽

2
− 𝑡
𝛽

1
)
𝛼

]

+
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

[𝑙 (𝑡
1
)Φ (|𝑥 (𝑠)|) + 𝑢

∗

(𝑡
1
)]

× [(𝑡
𝛽

1
− 𝑠
𝛽

)
𝛼−1

− (𝑡
𝛽

2
− 𝑠
𝛽

)
𝛼−1

] 𝑑𝑠

≤
[𝑙 (𝑡
2
)Φ (‖𝑥‖) + 𝑢

∗
(𝑡
2
)]

Γ (𝛼 + 1)
(𝑡
𝛽

2
− 𝑡
𝛽

1
)
𝛼

+

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)

Γ (𝛼 + 1)
𝑡
𝛼𝛽

2

+
𝑙 (𝑡
1
)Φ (‖𝑥‖) + 𝑢

∗
(𝑡
1
)

Γ (𝛼 + 1)
[𝑡
𝛼𝛽

1
− 𝑡
𝛼𝛽

2
+ (𝑡
𝛽

2
− 𝑡
𝛽

1
)
𝛼

] .

(20)

Thus

𝜔
𝑇

(U𝑥, 𝜀)

≤
1

Γ (𝛼 + 1)
{2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (‖𝑥‖) + 𝑢̂ (𝑇)] + 𝑇
𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)} ,

(21)

where

𝑙̂ (𝑇) = max {𝑙 (𝑡) : 𝑡 ∈ [0, 𝑇]} ,

𝑢̂ (𝑇) = max {𝑢∗ (𝑡) : 𝑡 ∈ [0, 𝑇]} .
(22)

In view of the uniform continuity of the function 𝑢 on
[0, 𝑇]×[0, 𝑇]×[−‖𝑥‖, ‖𝑥‖]wehave that𝜔𝑇

‖𝑥‖
(𝑢, 𝜀) → 0 as 𝜀 →

0. From the above inequality we infer that the functionU𝑥 is
continuous on the interval [0, 𝑇] for any 𝑇 > 0. This yields
the continuity of U𝑥 on R

+
and, consequently, the function

F𝑥 is continuous on R
+
.

Step 2 (F𝑥 is bounded onR
+
). In view of our hypotheses for

arbitrary 𝑥 ∈ 𝐵𝐶(R
+
) and for a fixed 𝑡 ∈ R

+
we have

|(F𝑥) (𝑡)|

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎 (𝑡) + 𝑓(𝑡,
𝛽𝑔 (𝑡, 𝑥 (𝑡))

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

𝑢 (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ‖𝑎‖ +
𝛽

Γ (𝛼)
𝑚 (𝑡) [

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥 (𝑡)) − 𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨]

× ∫

𝑡

0

𝑠
𝛽−1

[|𝑢 (𝑡, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡, 𝑠, 0)| + |𝑢 (𝑡, 𝑠, 0)|]

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨

≤ ‖𝑎‖ + 𝑓
∗

+
𝛽𝑚 (𝑡) [𝑛 (𝑡) ‖𝑥‖ +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨]

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

[𝑙 (𝑡) Φ (|𝑥 (𝑠)|) + 𝑢
∗

(𝑡)]

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤ ‖𝑎‖ + 𝑓
∗

+
𝑚 (𝑡) [𝑛 (𝑡) ‖𝑥‖ +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨]

Γ (𝛼 + 1)

× [𝑙 (𝑡) Φ (‖𝑥‖) + 𝑢
∗

(𝑡)] 𝑡
𝛼𝛽

= ‖𝑎‖ + 𝑓
∗

+
1

Γ (𝛼 + 1)
[𝜙 (𝑡) ‖𝑥‖Φ (‖𝑥‖)

+ 𝜓 (𝑡) ‖𝑥‖ + 𝜉 (𝑡)Φ (‖𝑥‖) + 𝜂 (𝑡)] .

(23)

Hence,F𝑥 is bounded on R
+
, thanks to hypothesis (ℎ

5
).
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Step 3 (F maps the ball 𝐵
𝑟0
into itself). Steps 2 and 3 allow

us to conclude that the operator F transforms 𝐵𝐶(R
+
) into

itself. Moreover, from the last estimate we have

‖F𝑥‖

≤ ‖𝑎‖ + 𝑓
∗

+
1

Γ (𝛼 + 1)
[𝜙
∗

‖𝑥‖Φ (‖𝑥‖) + 𝜓
∗

‖𝑥‖ + 𝜉
∗

Φ (‖𝑥‖) + 𝜂
∗

] .

(24)

From the last estimate with hypothesis (ℎ
6
) we deduce that

there exists 𝑟
0
> 0 such that the operator F maps 𝐵

𝑟0
into

itself.

Step 4 (an estimate of F with respect to the quantity 𝑐). Let
us take a nonempty set 𝑋 ⊂ 𝐵

𝑟0
. Then, for arbitrary 𝑥, 𝑦 ∈ 𝑋

and for a fixed 𝑡 ∈ R
+
, we obtain

󵄨󵄨󵄨󵄨(F𝑥) (𝑡) − (F𝑦) (𝑡)
󵄨󵄨󵄨󵄨

≤
𝛽𝑚 (𝑡)

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝑠
𝛽−1

𝑢 (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

−𝑔 (𝑡, 𝑦 (𝑡)) ∫

𝑡

0

𝑠
𝛽−1

𝑢 (𝑡, 𝑠, 𝑦 (𝑠))

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝛽𝑚 (𝑡)

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥 (𝑡)) − 𝑔 (𝑡, 𝑦 (𝑡))
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

|𝑢 (𝑡, 𝑠, 𝑥 (𝑠))|

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡)

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑦 (𝑡))
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1 󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡, 𝑠, 𝑦 (𝑠))

󵄨󵄨󵄨󵄨

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
𝛽𝑚 (𝑡) 𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

[|𝑢 (𝑡, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡, 𝑠, 0)| + |𝑢 (𝑡, 𝑠, 0)|]

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) [𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨]

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

𝑙 (𝑡) Φ (
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨)

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
𝛽𝑚 (𝑡) 𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

[𝑙 (𝑡) Φ (|𝑥 (𝑠)|) + 𝑢
∗

(𝑡)]

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) [𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨]

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

𝑙 (𝑡) Φ (|𝑥 (𝑠)| +
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨)

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
𝛽𝑚 (𝑡) 𝑛 (𝑡) 𝑙 (𝑡) (|𝑥 (𝑡)| +

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨)

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

Φ (|𝑥 (𝑠)|)

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) 𝑛 (𝑡) 𝑢

∗

(𝑡)
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) 𝑛 (𝑡) 𝑙 (𝑡)

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

Φ(|𝑥 (𝑠)| +
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨)

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) 𝑙 (𝑡)

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

Φ(|𝑥 (𝑠)| +
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨)

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
2𝛽𝑚 (𝑡) 𝑛 (𝑡) 𝑙 (𝑡) 𝑟

0
Φ(𝑟
0
)

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) 𝑛 (𝑡) 𝑢

∗

(𝑡) diam𝑋 (𝑡)

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) 𝑛 (𝑡) 𝑙 (𝑡) 𝑟

0
Φ(2𝑟
0
)

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) 𝑙 (𝑡)

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨 Φ (2𝑟

0
)

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
2𝜙 (𝑡) 𝑟

0
Φ(𝑟
0
)

Γ (𝛼 + 1)
+

𝜓 (𝑡)

Γ (𝛼 + 1)
diam𝑋 (𝑡)

+
𝜙 (𝑡) 𝑟

0
Φ(2𝑟
0
)

Γ (𝛼 + 1)
+
𝜉 (𝑡)Φ (2𝑟

0
)

Γ (𝛼 + 1)
.

(25)

Hence, we can easily deduce the following inequality:

diam (F𝑋) (𝑡) ≤
2𝜙 (𝑡) 𝑟

0
Φ(𝑟
0
)

Γ (𝛼 + 1)
+

𝜓 (𝑡)

Γ (𝛼 + 1)
diam𝑋 (𝑡)

+
𝜙 (𝑡) 𝑟

0
Φ(2𝑟
0
)

Γ (𝛼 + 1)
+
𝜉 (𝑡) Φ (2𝑟

0
)

Γ (𝛼 + 1)
.

(26)
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Now, taking into account hypothesis (ℎ
5
) we obtain

𝑐 (F𝑋) ≤ 𝑞𝑐 (𝑋) , (27)

where 𝑞 = (𝜙∗Φ(𝑟
0
)+𝜓
∗
)/Γ(𝛼+1) ≥ 𝜓

∗
/Γ(𝛼+1). Obviously,

in view of hypothesis (ℎ
6
) we have that 𝑞 < 1.

Step 5 (an estimate of F with respect to the modulus of
continuity 𝜔∞

0
). Take arbitrary numbers 𝜀 > 0 and 𝑇 > 0.

Choose a function 𝑥 ∈ 𝑋 and take 𝑡
1
, 𝑡
2
∈ [0, 𝑇] such that

|𝑡
2
− 𝑡
1
| ≤ 𝜀. Without loss of generality we can assume that

𝑡
2
> 𝑡
1
. Then, taking into account our hypotheses and (21),

we have

󵄨󵄨󵄨󵄨(F𝑥) (𝑡
2
) − (F𝑥) (𝑡

1
)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑎 (𝑡2) − 𝑎 (𝑡1)

󵄨󵄨󵄨󵄨

+ 𝑚 (𝑡
2
)
󵄨󵄨󵄨󵄨(𝐺𝑥) (𝑡2) (U𝑥) (𝑡2) − (𝐺𝑥) (𝑡1) (U𝑥) (𝑡2)

󵄨󵄨󵄨󵄨

+ 𝑚 (𝑡
2
)
󵄨󵄨󵄨󵄨(𝐺𝑥) (𝑡1) (U𝑥) (𝑡2) − (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨

≤ 𝜔
𝑇

(𝑎, 𝜀)

+
𝛽𝑚 (𝑡

2
)
󵄨󵄨󵄨󵄨𝑔 (𝑡2, 𝑥 (𝑡2)) − 𝑔 (𝑡1, 𝑥 (𝑡1))

󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡2

0

𝑠
𝛽−1

[
󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡2, 𝑠, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 0)

󵄨󵄨󵄨󵄨]

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝑚 (𝑡
2
) [
󵄨󵄨󵄨󵄨𝑔 (𝑡1, 𝑥 (𝑡1)) − 𝑔 (𝑡1, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑔 (𝑡1, 0)

󵄨󵄨󵄨󵄨]

Γ (𝛼 + 1)

× {2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (‖𝑥‖) + 𝑢̂ (𝑇)] + 𝑇
𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)}

+
󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨

≤ 𝜔
𝑇

(𝑎, 𝜀) +

𝛽𝑚 (𝑡
2
) [𝑛 (𝑡

2
)
󵄨󵄨󵄨󵄨𝑥 (𝑡2) − 𝑥 (𝑡1)

󵄨󵄨󵄨󵄨 + 𝜔
𝑇

𝑔
(𝜀)]

Γ (𝛼)

× ∫

𝑡2

0

𝑠
𝛽−1

[𝑙 (𝑡
2
)Φ (|𝑥 (𝑠)|) + 𝑢

∗
(𝑡
2
)]

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝑚 (𝑡
2
) [𝑛 (𝑡

1
)
󵄨󵄨󵄨󵄨𝑥 (𝑡1)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑔 (𝑡1, 0)

󵄨󵄨󵄨󵄨]

Γ (𝛼 + 1)

× {2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (‖𝑥‖) + 𝑢̂ (𝑇)] + 𝑇
𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)}

+
󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨

≤ 𝜔
𝑇

(𝑎, 𝜀) +
𝑡
𝛼𝛽

2

Γ (𝛼 + 1)
𝑚 (𝑡
2
)

× [𝑛 (𝑡
2
) 𝜔
𝑇

(𝑥, 𝜀) + 𝜔
𝑇

𝑔
(𝜀)] [𝑙 (𝑡

2
)Φ (𝑟
0
) + 𝑢
∗

(𝑡
2
)]

+
𝑚̂ (𝑇) [𝑛 (𝑡

1
) 𝑟
0
+ 𝑔 (𝑇)]

Γ (𝛼 + 1)

× {2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (𝑟
0
) + 𝑢̂ (𝑇)] + 𝑇

𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)}

+
󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨

≤ 𝜔
𝑇

(𝑎, 𝜀) +
[𝜙 (𝑡
2
)Φ (𝑟
0
) + 𝜓 (𝑡

2
)]

Γ (𝛼 + 1)
𝜔
𝑇

(𝑥, 𝜀)

+

𝑇
𝛼𝛽
𝜔
𝑇

𝑔
(𝜀)

Γ (𝛼 + 1)
𝑚̂ (𝑇) [𝑙̂ (𝑇)Φ (𝑟

0
) + 𝑢̂ (𝑇)]

+
𝑚̂ (𝑇) [𝑛 (𝑇) 𝑟

0
+ 𝑔 (𝑇)]

Γ (𝛼 + 1)

× {2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (𝑟
0
) + 𝑢̂ (𝑇)] + 𝑇

𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)}

+
󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨

≤ 𝜔
𝑇

(𝑎, 𝜀) +
[𝜙
∗
Φ(𝑟
0
) + 𝜓
∗
]

Γ (𝛼 + 1)
𝜔
𝑇

(𝑥, 𝜀)

+

𝑇
𝛼𝛽
𝜔
𝑇

𝑔
(𝜀)

Γ (𝛼 + 1)
𝑚̂ (𝑇) [𝑙̂ (𝑇)Φ (𝑟

0
) + 𝑢̂ (𝑇)]

+
𝑚̂ (𝑇) [𝑛 (𝑇) 𝑟

0
+ 𝑔 (𝑇)]

Γ (𝛼 + 1)

× {2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (𝑟
0
) + 𝑢̂ (𝑇)] + 𝑇

𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)}

+
󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨 .

(28)

In the last estimates, we have denoted by

𝜔
𝑇

𝑔
(𝜀) = sup {󵄨󵄨󵄨󵄨𝑔 (𝑡2, 𝑥) − 𝑔 (𝑡1, 𝑥)

󵄨󵄨󵄨󵄨 : 𝑡1, 𝑡2 ∈ [0, 𝑇] ,

󵄨󵄨󵄨󵄨𝑡2 − 𝑡1
󵄨󵄨󵄨󵄨 ≤ 𝜀, 𝑥 ∈ [−𝑟0, 𝑟0]} ,

𝑛 (𝑇) = max {𝑛 (𝑡) : 𝑡 ∈ [0, 𝑇]} ,

𝑚̂ (𝑇) = max {𝑚 (𝑡) : 𝑡 ∈ [0, 𝑇]} ,

𝑔 (𝑇) = max {󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨 : 𝑡 ∈ [0, 𝑇]} .

(29)
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Hence,

𝜔
𝑇

(F𝑥, 𝜀)

≤ 𝜔
𝑇

(𝑎, 𝜀) +
[𝜙
∗
Φ(𝑟
0
) + 𝜓
∗
]

Γ (𝛼 + 1)
𝜔
𝑇

(𝑥, 𝜀)

+

𝑇
𝛼𝛽
𝜔
𝑇

𝑔
(𝜀)

Γ (𝛼 + 1)
𝑚̂ (𝑇) [𝑙̂ (𝑇)Φ (𝑟

0
) + 𝑢̂ (𝑇)]

+
𝑚̂ (𝑇) [𝑛 (𝑇) 𝑟

0
+ 𝑔 (𝑇)]

Γ (𝛼 + 1)

× {2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (𝑟
0
) + 𝑢̂ (𝑇)] + 𝑇

𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)}

+ sup
𝑡1,𝑡2∈[0,𝑇], ‖𝑥‖≤𝑟0

󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨 .

(30)

Since the function 𝑓(𝑡, 𝑦) is uniformly continuous on the set
[0, 𝑇]×[−𝐻,𝐻], the function 𝑔(𝑡, 𝑥) is uniformly continuous
on the set [0, 𝑇] × [−𝑟

0
, 𝑟
0
] and the function 𝑢(𝑡, 𝑠, 𝑥) is

uniformly continuous on the set [0, 𝑇] × [0, 𝑇] × [−𝑟
0
, 𝑟
0
],

where

𝐻 = sup
{

{

{

𝛽
󵄨󵄨󵄨󵄨𝑔 (𝑡1, 𝑥 (𝑡1))

󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡1

0

𝑠
𝛽−1 󵄨󵄨󵄨󵄨𝑢 (𝑡1, 𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨

(𝑡
𝛽

1
− 𝑠𝛽)
1−𝛼

𝑑𝑠 : 𝑡
1
∈ [0, 𝑇] ,

‖𝑥‖ ≤ 𝑟
0

}

}

}

;

(31)

we have
sup {󵄨󵄨󵄨󵄨𝑓 (𝑡2, 𝑦) − 𝑓 (𝑡1, 𝑦)

󵄨󵄨󵄨󵄨 : 𝑡1, 𝑡2 ∈ [0, 𝑇] ,
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨 ≤ 𝜀,

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 ≤ 𝐻} 󳨀→ 0 as 𝜀 󳨀→ 0.

(32)

It is easy to see that𝐻 < ∞ because 𝑢(𝑡, 𝑠, 𝑥) is bounded on
[0, 𝑇]×[0, 𝑇]×[−𝑟

0
, 𝑟
0
],𝑔(𝑡, 𝑥) is bounded on [0, 𝑇]×[−𝑟

0
, 𝑟
0
],

and (𝛽/Γ(𝛼)) ∫𝑡1
0
(𝑠
𝛽−1

/(𝑡
𝛽

1
− 𝑠
𝛽
)
1−𝛼

)𝑑𝑠 ≤ 𝑇
𝛼𝛽
/Γ(𝛼 + 1).

Therefore, from the last estimate we derive the following
one:

𝜔
𝑇

0
(F𝑋) ≤ 𝑞𝜔

𝑇

0
(𝑋) . (33)

Hence we have

𝜔
∞

0
(F𝑋) ≤ 𝑞𝜔

∞

0
(𝑋) . (34)

Step 6 (F is contraction with respect to the measure of
noncompactness 𝜇). From (27) and (34) and the definition of
the measure of noncompactness 𝜇 given by formula (8), we
obtain

𝜇 (F𝑋) ≤ 𝑞𝜇 (𝑋) . (35)

Step 7. We construct a nonempty, bounded, closed, and
convex set 𝑌 on which we will apply a fixed point theorem.

In the sequel let us put 𝐵1
𝑟0

= ConvF(𝐵
𝑟0
), 𝐵2
𝑟0

=

ConvF(𝐵
1

𝑟0

), and so on. In this way we have constructed
a decreasing sequence of nonempty, bounded, closed, and
convex subsets (𝐵𝑛

𝑟0

) of 𝐵
𝑟0
such that F(𝐵

𝑛

𝑟0

) ⊂ 𝐵
𝑛

𝑟0

for 𝑛 =

1, 2, . . .. Hence, in view of (35) we obtain

𝜇 (𝐵
𝑛

𝑟0

) ≤ 𝑞
𝑛

𝜇 (𝐵
𝑟0
) , for any 𝑛 = 1, 2, 3, . . . . (36)

This implies that lim
𝑛→∞

𝜇(𝐵
𝑛

𝑟0

) = 0. Hence, taking into
account Definition 1 we infer that the set 𝑌 = ⋂

∞

𝑛=1
𝐵
𝑛

𝑟0

is nonempty, bounded, closed, and convex subset of 𝐵
𝑟0
.

Moreover, 𝑌 ∈ ker 𝜇. Also, the operatorFmaps 𝑌 into itself.

Step 8 (F is continuous on the set 𝑌). Let us fix a number
𝜀 > 0 and take arbitrary functions 𝑥, 𝑦 ∈ 𝑌 such that ‖𝑥 −
𝑦‖ ≤ 𝜀. Using the fact that 𝑌 ∈ ker 𝜇 and keeping in mind the
structure of sets belonging to ker 𝜇we can find a number 𝑇 >

0 such that for each 𝑧 ∈ 𝑌 and 𝑡 ≥ 𝑇 we have that |𝑧(𝑡)| ≤ 𝜀.
SinceFmaps 𝑌 into itself, we have thatF𝑥,F𝑦 ∈ 𝑌. Thus,
for 𝑡 ≥ 𝑇 we get
󵄨󵄨󵄨󵄨(F𝑥) (𝑡) − (F𝑦) (𝑡)

󵄨󵄨󵄨󵄨 ≤ |(F𝑥) (𝑡)| +
󵄨󵄨󵄨󵄨(F𝑦) (𝑡)

󵄨󵄨󵄨󵄨 ≤ 2𝜀. (37)

On the other hand, let us assume 𝑡 ∈ [0, 𝑇]. Then we obtain
󵄨󵄨󵄨󵄨(F𝑥) (𝑡) − (F𝑦) (𝑡)

󵄨󵄨󵄨󵄨

≤
𝛽𝑚 (𝑡) 𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

[𝑙 (𝑡) Φ (|𝑥 (𝑠)|) + 𝑢
∗

(𝑡)]

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) [𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨]

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

𝑙 (𝑡) Φ (
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨)

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
[𝑚 (𝑡) 𝑛 (𝑡) 𝑙 (𝑡) Φ (𝑟

0
) + 𝑚 (𝑡) 𝑛 (𝑡) 𝑢

∗

(𝑡)] 𝜀𝛽

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
[𝑚 (𝑡) 𝑛 (𝑡) 𝑙 (𝑡) 𝑟

0
+ 𝑚 (𝑡) 𝑙 (𝑡)

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨] Φ (𝜀) 𝛽

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
𝜙 (𝑡)Φ (𝑟

0
) + 𝜓 (𝑡)

Γ (𝛼 + 1)
𝜀 +

𝜙 (𝑡) 𝑟
0
+ 𝜉 (𝑡)

Γ (𝛼 + 1)
Φ (𝜀)

≤
𝜙
∗
Φ(𝑟
0
) + 𝜓
∗

Γ (𝛼 + 1)
𝜀 +

𝜙
∗
𝑟
0
+ 𝜉
∗

Γ (𝛼 + 1)
Φ (𝜀) .

(38)
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Now, taking into account (37) and (38) and hypothesis (ℎ
5
)

we conclude that the operatorF is continuous on the set 𝑌.

Step 9 (application of Schauder fixed point principle). Link-
ing all above-obtained facts about the set 𝑌 and the operator
F : 𝑌 → 𝑌 and using the classical Schauder fixed point
principle we deduce that the operatorF has at least one fixed
point 𝑥 in the set 𝑌. Obviously the function 𝑥 = 𝑥(𝑡) is
a solution of the quadratic integral equation (1). Moreover,
since 𝑌 ∈ ker 𝜇 we have that all solutions of (1) belonging to
𝐵
𝑟0
are asymptotically stable in the sense of Definition 2.This

completes the proof.

4. Example

In this section, we present an example as an application of
Theorem 3.

Consider the following integral equation of fractional
order:

𝑥 (𝑡) = 𝑡𝑒
−𝑡

+
1

1 + 𝑡3

+ arctan[[

[

1

𝑡2 + 1
⋅
sin (𝑥𝑡)
2Γ (1/2)

∫

𝑡

0

√1 + 𝛿 |𝑥 (𝑠)|

√𝑠√√𝑡 − √𝑠

𝑑𝑠
]
]

]

,

𝑡 ∈ R
+
.

(39)

Equation (39) is a special case of (1), where 𝛼 = 1/2, 𝛽 = 1/2,
𝛿 is a positive constant, and

𝑎 (𝑡) = 𝑡𝑒
−𝑡

,

𝑓 (𝑡, 𝑥) =
1

1 + 𝑡3
+ arctan( 1

𝑡2 + 1
⋅ 𝑥) ,

𝑔 (𝑡, 𝑥) = sin (𝑥𝑡) ,

𝑢 (𝑡, 𝑠, 𝑥) = √1 + 𝛿 |𝑥|.

(40)

It is easy to check that the assumptions of Theorem 3 are
satisfied. In fact we have that the function 𝑎(𝑡) = 𝑡𝑒

−𝑡 is
continuous and bounded on R

+
and ‖𝑎‖ = 1/𝑒.

The function𝑓(𝑡, 𝑥) = (1/(1+𝑡3))+arctan((1/(𝑡2+1)) ⋅𝑥)
satisfies assumption (ℎ

2
)with𝑚(𝑡) = 1/(𝑡2+1) and |𝑓(𝑡, 0)| =

𝑓(𝑡, 0) = 1/(1 + 𝑡
3
), being 𝑓∗ = 1.

Moreover, the function 𝑔(𝑡, 𝑥) = sin(𝑥𝑡) satisfies assump-
tion (ℎ

3
) with 𝑛(𝑡) = 𝑡.

The function 𝑢(𝑡, 𝑠, 𝑥) = √1 + 𝛿|𝑥| satisfies assumption
(ℎ
4
) with 𝑙(𝑡) = 1, Φ(𝑟) = √𝛿𝑟, 𝑢(𝑡, 𝑠, 0) = 1, and 𝑢∗ = 1.
Next, we are going to check that assumption (ℎ

5
) is

satisfied.The functions𝜙,𝜓, 𝜉, and 𝜂 appearing in assumption
(ℎ
5
) take the form

𝜙 (𝑡) =
𝑡
5/4

𝑡2 + 1
; 𝜓 (𝑡) =

𝑡
5/4

𝑡2 + 1
;

𝜉 (𝑡) = 0; 𝜂 (𝑡) = 0.

(41)

It is easy to see that lim
𝑡→∞

𝜙(𝑡) = lim
𝑡→∞

𝜉(𝑡) = 0.

Moreover we have 𝜙∗ = 𝜓∗ = (3/8)⋅(5/3)5/8, 𝜉∗ = 𝜂∗ = 0,
and Γ(3/2) = (1/2)√𝜋.

Therefore the inequality in assumption (ℎ
6
)

‖𝑎‖ + 𝑓
∗

+
1

Γ (𝛼 + 1)

× [𝜙
∗

𝑟Φ (𝑟) + 𝜓
∗

𝑟 + 𝜉
∗

Φ (𝑟) + 𝜂
∗

] ≤ 𝑟

(42)

has the form

1

𝑒
+ 1 +

2

√𝜋
[𝜙
∗√𝛿𝑟
3/2

+ 𝜓
∗

𝑟] ≤ 𝑟. (43)

We can easily check that the number 𝑟
0
= 7 is a solution of the

inequality (43) for 𝛿 ≤ 0, 02. Now, byTheorem 3, we infer that
our equation has a solution in 𝐵

𝑟0
⊂ 𝐵𝐶(R

+
) and all solutions

of (39) which belongs to 𝐵
𝑟0
are asymptotically stable in the

sense of the Definition 2.
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[16] J. Caballero, B. López, and K. Sadarangani, “Existence of non-
decreasing and continuous solutions for a nonlinear integral
equation with supremum in the kernel,” Zeitschrift für Analysis
und ihre Anwendungen, vol. 26, no. 2, pp. 195–205, 2007.

[17] J. Caballero, J. Rocha, and K. Sadarangani, “On monotonic
solutions of an integral equation of Volterra type,” Journal of
Computational and AppliedMathematics, vol. 174, no. 1, pp. 119–
133, 2005.

[18] M. A. Darwish, “On solvability of some quadratic functional-
integral equation in Banach algebra,” Communications in
Applied Analysis, vol. 11, no. 3-4, pp. 441–450, 2007.
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[38] J. Banaś, “Measures of noncompactness in the study of solutions
of nonlinear differential and integral equations,” Central Euro-
pean Journal of Mathematics, vol. 10, no. 6, pp. 2003–2011, 2012.

[39] J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators,
vol. 95 ofCambridge Tracts inMathematics, Cambridge Univer-
sity Press, Cambridge, UK, 1990.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


