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Sparsity regularization method plays an important role in reconstructing parameters. Compared with traditional regularization
methods, sparsity regularization method has the ability to obtain better performance for reconstructing sparse parameters.
However, sparsity regularizationmethod does not have the ability to reconstruct smooth parameters. For overcoming this difficulty,
we combine a sparsity regularization method with a wavelet method in order to transform smooth parameters into sparse
parameters. We use a sparsity-homotopy perturbation inversion method to improve the accuracy and stability and apply the
proposedmethod to reconstruct parameters for a Black-Scholes option pricingmodel and a Todaromodel. Numerical experiments
show that the proposed method is convergent and stable.

1. Introduction

The reconstruction of parameters plays an important role
in financial mathematics, such as the reconstructions of a
volatility and a policy parameter [1, 2] and, in other fields,
imaging enhancement techniques [3, 4], seismic signals [5,
6], and electrocardiogram signals (ECG) [7, 8]. With the
development of economy and financial mathematics, the
reconstructions of a volatility and a policy parameter have
been widely used in many real applications. In general, the
reconstruction of parameters is ill-posed. In other words,
the small noisy level of measurement data can lead to the
large error of reconstruction [9]. In order to overcome the ill-
posedness, some regularization methods are developed. The
most popular method is Tikhonov regularization method,
which is composed of a fitting term and a penalty term in 𝐿

2

norm.The aims of those two terms are tomatchmeasurement
data and to suppress noises, respectively.

The numerical methods for Tikhonov regularization
method have been conducted, such as a well-known Landwe-
ber method [10], a Gauss-Newtonmethod [11], a regularizing

Newton-Kaczmarz method [12], and a multiscale smoothing
method [13]. These methods have the ability to reconstruct
smooth parameters in the case of sufficient measurement
data. When measurement data are limited, smooth parame-
ters are very difficult to be reconstructed. In the fields of econ-
omy and finance, reconstructed parameters are smooth and
measurement data are limited. Hence, we need to use wavelet
and curvelet transformations from smooth parameters to
sparse parameters (i.e., the number of nonzero elements
of parameter is very limited). Sparsity regularization meth-
ods are used to reconstruct sparse parameters. Compared
with Tikhonov regularizationmethod, sparsity regularization
methods are not differentiable, and hence some specific
techniqueswere developed to overcome this difficulty, such as
Bregman iterations [14–17]. For reducing the computational
time, a homotopy perturbation inversion method has been
widely used in real applications, such as nonlinear systems,
optimal control, and heat transfer equation [18–20].

In this paper, we combine a homotopy perturbation
inversion method with a sparsity regularization method, in
order to improve the accuracy and stability. After introducing
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the proposed method, we reconstruct two economic param-
eters based on a Black-Scholes option pricing model and a
Todaro model. From the numerical experiments, a sparsity-
homotopy perturbation inversion method with wavelets is
convergent and stable.

2. Sparsity Regularization Method

The reconstruction of parameters is ill-posed, and hence we
should employ the regularization method to reconstruct
parameters. The Tikhonov regularization method can recon-
struct smooth parameters while measurement data are suffi-
cient. However, measurement data are limited in real appli-
cations. We combine a sparsity regularization method with
a wavelet method, in order to improve the performance of
reconstructing smooth parameters for limited measurement
data.

2.1. TikhonovRegularizationMethod. Many inverse problems
can be formulated as a nonlinear operator equation

𝐹 (𝑥) = 𝑦, (1)

where 𝐹, 𝑥, and 𝑦 denote a nonlinear operator, recon-
structed parameter, and measurement data, respectively. We
assume measurement data contaminated by noise


𝑦
𝛿
− 𝑦
2
≤ 𝛿, (2)

where 𝑦𝛿, 𝛿 stand for the real measurement data and noisy
level in the 𝐿

2
norm.

Ill-posedness means that the small noisy level included
in measurement data may lead to the large error of recon-
struction. We apply the regularization method in order
to overcome ill-posedness. It is very important to balance
a fitting term and a penalty term. Next, we introduce a
Tikhonov regularization functional as follows:

𝐽 (𝑥) =

𝐹 (𝑥) − 𝑦

𝛿

2

2
+ 𝛼 ‖𝑥‖

2

2
, (3)

where ‖𝐹(𝑥)−𝑦𝛿‖
2
is a fitting term, ‖𝑥‖

2
is a penalty term, and

𝛼 is a regularized parameter balancing the fitting term and
the penalty term. For reconstruction, we shouldminimize the
functional (3):

𝑥 = argmin 𝐽 (𝑥) . (4)

The minimizer satisfies the Euler equation:

𝐹

(𝑥)
∗
(𝐹 (𝑥) − 𝑦

𝛿
) + 𝛼𝑥 = 0, (5)

where𝐹(𝑥) is the Fréchet derivative.The Landwebermethod
is widely used for solving (5). The Landweber method can be
written as follows:

𝑥
𝑛+1
= 𝑥
𝑛
− [𝐹

(𝑥
𝑛
)
∗

(𝐹 (𝑥
𝑛
) − 𝑦
𝛿
) + 𝛼𝑥

𝑛
] , (6)

where 𝑛 denotes the iteration number. Equation (6) is a
well-known Landweber method that is stable; however, the
convergent rate is slow and the accuracy is low.

2.2. Sparsity Regularization Method with Wavelets. The Tik-
honov regularization method can obtain better reconstruc-
tion for smoothing parameters; however, its performance
for reconstructing sparse parameters is worse. Hence, the
classical Tikhonov regularization method is modified as the
following sparsity regularization method:

𝐽 (𝑥) =

𝐹 (𝑥) − 𝑦

𝛿

2

2
+ 𝛼 ‖𝑥‖0 ,

(7)

where the norm of ‖ ⋅ ‖
0
means the number of nonzeros in

𝑥. The minimization problem (7) has the ability to obtain
the best reconstruction for sparse parameters. However, the
penalty term of (7) is nondifferentiable and minimization
problem (7) is a NP problem. For speeding up minimization
problem (7), we rewrite (7) as

𝐽 (𝑥) =

𝐹 (𝑥) − 𝑦

𝛿

2

2
+ 𝛼 ‖𝑥‖1 ,

(8)

where the norm of ‖ ⋅ ‖
1
means ∫ |𝑥|𝑑𝜎. In functional (8), the

𝐿
1
norm replaces the 𝐿

0
norm in order to overcome a NP

problem. This improvement can reduce the cost time of (7)
dramatically.

Because the penalty term of (8) is nondifferentiable, we
modify problem (8) as follows:

𝐽 (𝑥) =

𝐹 (𝑥) − 𝑦

𝛿

2

2
+ 𝛼 ‖𝑥‖2,𝜀 ,

(9)

where ‖𝑥‖
2,𝜀
= √𝑥2 + 𝜀2 replaces ‖𝑥‖

1
, and the auxiliary

parameter 𝜀 is a positive real number. As the Tikhonov reg-
ularization method, we can apply the Landweber method to
minimize functional (9):

𝑥
𝑛+1
= 𝑥
𝑛

− [𝐹

(𝑥
𝑛
)
∗

(𝐹 (𝑥
𝑛
) − 𝑦
𝛿
) + 𝛼

𝑥
𝑛

(𝑥2
𝑛
+ 𝜀2)
1/2
] .

(10)

For a smooth parameter, we combine a sparsity regular-
izationmethodwith awaveletmethod.Awavelet transforma-
tion converts a smooth parameter into a sparse parameter. A
wavelet transformation is written as

𝑥 = 𝑊𝑥
𝑤
, (11)

where𝑊,𝑥
𝑤
stand for an inverse transformation matrix and

the sparse representation of 𝑥, respectively. Taking (11) into
(9) and (10), we arrive at

𝐽 (𝑥
𝑤
) =

𝐹 (𝑊𝑥

𝑤
) − 𝑦
𝛿

2

2
+ 𝛼
𝑥𝑤
2,𝜀
, (12)

𝑥
𝑤,𝑛+1

= 𝑥
𝑤,𝑛
− [

[

𝐹

(𝑊𝑥
𝑤,𝑛
)
∗

(𝐹 (𝑊𝑥
𝑤,𝑛
) − 𝑦
𝛿
)

+ 𝛼
𝑥
𝑤,𝑛

(𝑥2
𝑤,𝑛
+ 𝜀2)
1/2

]

]

.

(13)
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3. Sparsity-Homotopy Perturbations
Inversion Method

Because the Landweber method (13) is very slow, it is not
realistic to reconstruct large scale real applications. We use
a homotopy perturbation inversion method to modify the
classical Landweber method. For convenience, we omit 𝑊
and replace 𝑥

𝑤
with 𝑥.

Setting a homotopy mapping

𝐻 : 𝐹 × [0, 1] → 𝑌

𝐻(�̃�, 𝑝)

= 𝑝[

[

𝐹

(�̃�)
∗
(𝐹 (�̃�) − 𝑦

𝛿
) + 𝛼

�̃�

(�̃�
2
+ 𝜀2)
1/2

]

]

+ (1 − 𝑝) (�̃� − 𝑥
0
) = 0, 𝑝 ∈ [0, 1] ,

(14)

where 𝑝 is an embedding parameter and 𝑥
0
is an initial guess

value. Hence,

𝐻(�̃�, 0) = �̃� − 𝑥
0
= 0,

𝐻 (�̃�, 1) = [

[

𝐹

(�̃�)
∗
(𝐹 (�̃�) − 𝑦

𝛿
) + 𝛼

�̃�

(�̃�
2
+ 𝜀2)
1/2

]

]

= 0.

(15)

We write �̃� as the power series of 𝑝,

�̃� = 𝑥
0
+ 𝑝
1
𝑥
1
+ 𝑝
2
𝑥
2
+ ⋅ ⋅ ⋅ , (16)

and obtain the approximation of functional (12):

𝑥 = lim
𝑝→1

�̃� = 𝑥
0
+ 𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ . (17)

We expand 𝐹(𝑥) in (14) as a Taylor series near 𝑥
0
:

𝐻(�̃�, 𝑝) = 𝑝[𝐹

(𝑥
0
)
∗

(𝐹 (𝑥
0
) + 𝐹

(𝑥
0
) (�̃� − 𝑥

0
)

+ 𝑜 (�̃� − 𝑥
0
) − 𝑦
𝛿
) + 𝛼(

𝑥
0

(𝑥
2

0
+ 𝜀2)
1/2

+
𝜀
2

(𝑥
2

0
+ 𝜀2)
3/2
(�̃� − 𝑥

0
) + 𝑜 (�̃� − 𝑥

0
))] + (1 − 𝑝)

⋅ (�̃� − 𝑥
0
) = 0,

𝑝 [𝐹

(𝑥
0
)
∗

(𝐹 (𝑥
0
) + 𝐹

(𝑥
0
) (𝑝
1
𝑥
1
+ 𝑝
2
𝑥
2
+ ⋅ ⋅ ⋅)

− 𝑦
𝛿
) + 𝛼(

𝑥
0

(𝑥
2

0
+ 𝜀2)
1/2

+
𝜀
2

(𝑥
2

0
+ 𝜀2)
3/2
(𝑝
1
𝑥
1
+ 𝑝
2
𝑥
2
+ ⋅ ⋅ ⋅))] + (1 − 𝑝)

⋅ (𝑝
1
𝑥
1
+ 𝑝
2
𝑥
2
+ ⋅ ⋅ ⋅) = 0.

(18)

Following the power of 𝑝, we can get

𝑝
1
: 𝑥
1
= −𝐹

(𝑥
0
)
∗

(𝐹 (𝑥
0
) − 𝑦
𝛿
) − 𝛼

𝑥
0

(𝑥
2

0
+ 𝜀2)
1/2
,

𝑝
2
: 𝑥
2
= (𝐼 − 𝐹


(𝑥
0
)
∗

𝐹 (𝑥
0
) −

𝛼𝜀
2

(𝑥
2

0
+ 𝜀2)
3/2
)

⋅ (−𝐹

(𝑥
0
)
∗

(𝐹 (𝑥
0
) − 𝑦
𝛿
) − 𝛼

𝑥
0

(𝑥
2

0
+ 𝜀2)
1/2
) ,

(19)

𝑥 = 𝑥
0
+ (−𝐹


(𝑥
0
)
∗

(𝐹 (𝑥
0
) − 𝑦
𝛿
)

− 𝛼
𝑥
0

(𝑥
2

0
+ 𝜀2)
1/2
) + (𝐼 − 𝐹


(𝑥
0
)
∗

𝐹 (𝑥
0
)

−
𝛼𝜀
2

(𝑥
2

0
+ 𝜀2)
3/2
)(−𝐹


(𝑥
0
)
∗

(𝐹 (𝑥
0
) − 𝑦
𝛿
)

− 𝛼
𝑥
0

(𝑥
2

0
+ 𝜀2)
1/2
+ ⋅ ⋅ ⋅) .

(20)

Following formula (20), the parameter for the noisymeasure-
ment data is reconstructed by the first two terms:

𝑥
𝑛+1
= 𝑥
𝑛
+ (2𝐼 − 𝐹


(𝑥
𝑛
)
∗

𝐹 (𝑥
𝑛
) −

𝛼𝜀
2

(𝑥2
𝑛
+ 𝜀2)
3/2
)

⋅ (−𝐹

(𝑥
𝑛
)
∗

(𝐹 (𝑥
𝑛
) − 𝑦
𝛿
) − 𝛼

𝑥
𝑛

(𝑥2
𝑛
+ 𝜀2)
1/2
) ,

(21)

where 𝑛 is the iteration number.
When the parameter is reconstructed by the first term,

𝑥
𝑛+1
= 𝑥
𝑛

− [𝐹

(𝑥
𝑛
)
∗

(𝐹 (𝑥
𝑛
) − 𝑦
𝛿
) + 𝛼

𝑥
𝑛

(𝑥2 + 𝜀2)
1/2
] .

(22)

Equation (22) is a well-known Landweber method. Equation
(21) is a modified version of (22), which is called a homotopy
perturbation inversion method. The convergent rate is faster
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and the accuracy is higher than a Landweber method. By
using a wavelet transformation, we can obtain

𝑥
𝑤,𝑛+1

= 𝑥
𝑤,𝑛
+ (2𝐼 − 𝐹


(𝑊𝑥
𝑤,𝑛
)
∗

𝐹 (𝑊𝑥
𝑤,𝑛
)

−
𝛼𝜀
2

(𝑥2
𝑤,𝑛
+ 𝜀2)
3/2
)

⋅ (−𝐹

(𝑊𝑥
𝑤,𝑛
)
∗

(𝐹 (𝑊𝑥
𝑤,𝑛
) − 𝑦
𝛿
)

− 𝛼
𝑥
𝑤,𝑛

(𝑥2
𝑤,𝑛
+ 𝜀2)
1/2
) .

(23)

4. Numerical Experiments

4.1. Reconstructing Sparse Volatility. The reconstruction of
a volatility is investigated based on the Black-Scholes (B-S)
option pricing model. We use a finite difference method to
solve the forward problem. In order to improve the accuracy
and convergent rate of a Landweber method, we design a
homotopy perturbation inversion method to reconstruct a
volatility. The B-S formula is widely used in the field of a
derivative pricing, when the price changes of a derivative
satisfy the standard geometric Brown motion. The boundary
conditions of the different values vary with the different
types of derivatives. When boundary conditions are given,
a derivative pricing 𝑉

𝑡
can be obtained by solving the B-S

formula of the derivative pricing model. When the derivative
is taken as option, we define the forward problem as the
determination of the option pricing. For simplicity, we take
the European call option as example.

The relationship between the European call and put
options shows that the reconstructed volatility should be the
same by using the call options market quotes or the put
options market quotes. For the European call option in the
time interval [0, 𝑇], let 𝑉

𝑡
= 𝑉(𝑆

𝑡
, 𝑡; 𝜎, 𝐾, 𝑇) be the European

call option pricing, and 𝑉 satisfies

𝜕𝑉
𝑡

𝜕𝑡
+ (𝑟 − 𝑞) 𝑆

𝑡

𝜕𝑉
𝑡

𝜕𝑆
𝑡

+
1

2
𝜎
2
(𝑆
𝑡
, 𝑡) 𝑆
2

𝑡

𝜕
2
𝑉
𝑡

𝜕𝑆
2

𝑡

− 𝑟𝑉
𝑡
= 0,

𝑉
𝑇
= (𝑆
𝑇
− 𝐾)
+

,

(24)

where 𝑆
𝑡
is stock prices with time,𝐾 is strike price, 𝑟 is interest

rate, 𝑞 is dividend, 𝑇 is availability period, 𝑡 is time, and 𝜎 is
volatility.

In the B-S formula, except that the volatility is a free
variable, the other parameters and variables are decided by
the prevailing market conditions or contracts. Hence, the
volatility 𝜎 is a very important parameter. For an option, we
can infer the volatility from the B-S formula.

The inverse problem is defined as follows: reconstruct-
ing the local volatility 𝜎 from the measurement data
𝑉(𝑆
∗
, 𝑡
∗
; 𝜎, 𝐾
𝑖
, 𝑇
𝑖
) = 𝑉
𝑖
(𝑖 = 1, 2, . . . , 𝑁) and 𝑆 = 𝑆

∗
.

Table 1: Relative errors and computational time.

Noisy level Relative
error (I)

Relative
error (II) Time (I) Time (II)

0.00% 0.21% 1.36% 77 s 112 s
0.50% 1.28% 3.06% 196 s 332 s
1.00% 3.25% 6.98% 528 s 1052 s

We define a nonlinear vector-valued function 𝐹 : 𝜎 →
𝑉, namely, 𝐹(𝜎) = 𝑉. For testing the performance of sparse
regularization and Tikhonov regularization methods, we set
𝑇 = 1 and set stock prices 𝑆 = 50, interest rate 𝑟 = 0.05, and
strike price𝐾 = 35, 40, 45.We add 0%, 0.5%, and 1%Gaussian
random noises to the measurement data in order to test the
stability. The exact volatility is provided as follows:

𝜎 = 0.15 sin(𝜋
𝑇
𝑡) + 0.15 cos(𝜋

𝑇
𝑡) . (25)

We transform the smooth volatility into the sparse volatil-
ity

𝜎 = 𝑊𝜎
𝑤
, (26)

where 𝜎
𝑤

is a sparse representation. Functional (12) is
rewritten as

𝐽 (𝜎
𝑤
) =

𝐹 (𝑊𝜎

𝑤
) − 𝑉
𝛿

2

2
+ 𝛼
𝜎𝑤
2,𝜀
. (27)

The results of the proposed method (I) and Tikhonov
method (II) are listed in Table 1.

From the above reconstructions, we can see that the
proposed method has better performance than the Tikhonov
regularization method.

4.2. Reconstructing Policy Parameter for Todaro Model.
Todaro model is the famous model to describe the number
of rural migrants (namely, workers in urban areas from rural
areas) in the labor economics. The Todaro model is also used
in development economics and welfare economics to explain
some of the issues concerning rural-urban migration. The
main assumption of the model is that the migration decision
is based on expected income differentials between rural and
urban areas [21]. A Todaro model shows the relationship
between the number of rural migrants with the income
difference of urban and rural areas. A Todaro model can be
written in the following form:

𝑀 = 𝑓 (𝑑) , (28)

where 𝑀,𝑑 denote the number of rural migrants and the
income difference of urban and rural areas, respectively.
Function 𝑓 is an increasing function, that is, 𝑓 > 0. A
modified Todaro model considers policy parameter 𝜒:

𝑀 = 𝑓 (𝜒, 𝑑) , (29)

where𝜒 describes the efficiency of government policy includ-
ing household registration policy, social security policy, old-
supporting policy, and others.
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We consider 𝐼 urban areas and 𝐽 rural areas. 𝑑
𝑖𝑗
(1 ≤

𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝐽) stands for the income difference between
the 𝑖th urban area and the 𝑗th rural area, and 𝑔

𝑖𝑖
(1 ≤ 𝑖 ≤

𝐼, 1 ≤ �̃� ≤ 𝐼) stands for the income difference between the
𝑖th and the �̃�th urban areas. The number of migrants into
the 𝑖th urban area is denoted as𝑀

𝑖
. For the 𝑖th urban area,

policy parameter 𝜒
𝑖
is split into two parts 𝜒

𝑖
= 𝜒
𝑟

𝑖
+𝜒
𝑢

𝑖
, where

𝜒
𝑟

𝑖
, 𝜒
𝑢

𝑖
denote the efficiency of government policy to rural

and urban areas, respectively. We assume that the number
of workers from urban areas into rural areas is zero. In real
applications, Function 𝑓 has many different representations.
In this section, we focus on the performance of the proposed
method, and hence we take𝑓 as a linear function.TheTodaro
model is modified as

𝜒
𝑟

1
𝑑
11
+ 𝜒
𝑟

1
𝑑
12
+ ⋅ ⋅ ⋅ + 𝜒

𝑟

1
𝑑
1𝐽
+ 𝜒
𝑢

1
𝑔
11
+ 𝜒
𝑢

1
𝑔
12
+ ⋅ ⋅ ⋅

+ 𝜒
𝑢

1
𝑔
1𝐼
= 𝑀
1

.

.

.

𝜒
𝑟

𝑖
𝑑
𝑖1
+ 𝜒
𝑟

𝑖
𝑑
𝑖2
+ ⋅ ⋅ ⋅ + 𝜒

𝑟

𝑖
𝑑
𝑖𝐽
+ 𝜒
𝑢

𝑖
𝑔
𝑖1
+ 𝜒
𝑢

𝑖
𝑔
𝑖2
+ ⋅ ⋅ ⋅

+ 𝜒
𝑢

𝑖
𝑔
𝑖𝐼
= 𝑀
𝑖

.

.

.

𝜒
𝑟

𝐼
𝑑
𝐼1
+ 𝜒
𝑟

𝐼
𝑑
𝐼2
+ ⋅ ⋅ ⋅ + 𝜒

𝑟

𝐼
𝑑
𝐼𝐽
+ 𝜒
𝑢

𝐼
𝑔
𝐼1
+ 𝜒
𝑢

𝐼
𝑔
𝐼2
+ ⋅ ⋅ ⋅

+ 𝜒
𝑢

𝐼
𝑔
𝐼𝐼
= 𝑀
𝐼
,

(30)

where the income differences 𝑑
𝑖𝑗
and 𝑔

𝑖𝑖
and the number𝑀

𝑖

of migrants into the 𝑖th urban area are known. The policy
parameter 𝜒 is unknown.

Let

𝐷
𝑘
=

𝐽

∑

𝑗=1

𝑑
𝑘𝑗
,

𝐺
𝑘
=

𝐼

∑

𝑖=1

𝑔
𝑘𝑖
,

1 ≤ 𝑘 ≤ 𝐼,

𝐴 =
(
(

(

𝐷
1
𝐺
1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 𝐷
𝑖
𝐺
𝑖
⋅ ⋅ ⋅ 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐷
𝐼
𝐺
𝐼

)
)

)

𝑀 = (𝑀
1
, . . . ,𝑀

𝑖
, . . . ,𝑀

𝐼
)
𝑇

,

𝑋 = (𝜒
𝑟

1
, 𝜒
𝑢

1
, . . . , 𝜒

𝑟

𝑖
, 𝜒
𝑢

𝑖
, . . . , 𝜒

𝑟

𝐼
, 𝜒
𝑢

𝐼
)
𝑇

.

(31)

Equation (30) is recast as

𝐴𝑋 = 𝑀. (32)

Table 2: Relative errors.

𝑛 Relative error (I) Relative error (II)
4 3.61% 5.82%
5 3.76% 6.75%
6 4.97% 8.99%

Note that (32) is underdetermined, and hence we apply the
regularization method to solve this equation. We transform
a smooth policy parameter into a sparse parameter 𝑋 =

𝑊𝑋
𝑤
, where 𝑋

𝑤
means a sparse policy parameter. The cost

functional is as follows:

𝐽 (𝑋
𝑤
) =

𝐴𝑊𝑋

𝑤
− 𝑦
𝛿

2

2
+ 𝛼
𝑋𝑤

2,𝜀
. (33)

In numerical tests, we take 𝐼 = 2𝑛−1, 𝐽 = 2𝑛. We add a 1%
Gaussian random noise to the measurement data in order
to test the stability. We reconstruct three policy parameters
corresponding to 𝑛 = 4, 5, 6. The relative errors of the
proposed method (I) and Tikhonov method (II) are listed in
Table 2. Due to linearity and small scale, the difference of the
computational times of the proposed method and Tikhonov
method is small. Table 2 shows that the proposed method is
feasible to reconstruct policy parameters.

5. Conclusions

We design a sparsity regularization method to reconstruct
a volatility and a policy parameter. Because parameters are
often smooth in the fields of economy and finance, we apply
a wavelet transformation from a smooth parameter into
a sparse parameter. The homotopy perturbation inversion
method is used to minimize the cost functional, and the
accuracy and convergent rate of reconstruction are improved.
The numerical experiments show that the proposed method
can be applied to parameter identification and initial value
problem in heat transfer equations [22, 23].
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