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Accelerated degradation testing (ADT) has been widely used for reliability prediction of highly reliable products. In many
applications, ADT data consists of multiple degradation-related features, and these features are usually dependent. When dealing
with such ADT data, it is important to fully utilize the multiple degradation features and take into account their inherent
dependency. This paper proposes a novel reliability-assessment method that combines Brownian motion and copulas to model
ADT data obtained from vibration signals. In particular, degradation feature extraction is first carried out using the raw vibration
signals, and a feature selectionmethod quantifying feature properties, such as trendability, monotonicity, and robustness, is adopted
to determine the most suitable degradation features.Then, a multivariate s-dependent ADTmodel is developed, where a Brownian
motion is used to depict the degradation path of each degradation feature and a copula function is employed to describe the
dependence among these degradation features. Finally, the proposed ADT model is demonstrated using the vibration-based ADT
data for an electric motor.

1. Introduction

Nowadays, products are made more reliable due to the
advances of design and manufacturing and to the improve-
ment of materials technology. As a result, traditional relia-
bility analysis methods based on lifetime data are becoming
less capable of evaluating the reliability of such highly reliable
products. In practice, the failure mechanism of a product
often can be traced to the degradation of the product’s key
performance parameters, such as wear, fatigue crack, and
material corrosion. The product is considered to be failed if
any of the performance parameters exceeds its critical value.
Therefore, an alternative way for evaluating the product’s
reliability is to analyze the degradation data obtained from a
degradation test. To collect degradation data in a short time,
accelerated degradation testing (ADT) technique has been
proposed, where some units of the product are exposed to
harsher-than-normal conditions in order to speed up product
degradation. The resulting ADT data will be used to develop

an ADTmodel that enables the extrapolation of the product’s
reliability under the normal operating conditions.

In order to find the degradation trend of a product and
predict its lifetime using ADT, the product’s performance
indicators must be defined first. Such indicators may include
not only the product’s functional or performance parameters,
but also those special features extracted from raw sensor
data [1], such as vibration, force and acoustic signals, tem-
perature, and voltage. In particular, vibration monitoring has
been widely used in fault diagnostics and remaining useful
life (RUL) prediction for mechanical and electromechanical
systems [2]. Nectoux et al. [3] developed a bearing exper-
imental platform, called PRONOSTIA, to perform bearing
ADT, where both vibration and temperature signals were
monitored. Liu et al. [4] introduced the confidence value
(CV) as the degradation index for a product and used a
fuzzy regression model to analyze the bearing vibration
data given in [3]. However, in the field of prognostic and
health management (PHM), little effort has been focused on
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the mathematical modeling of multiple degradation features
obtained from vibration-based ADT.

Generally, raw vibration data may not be directly used
for degradation modeling. As a solution, signal processing
techniques are usually utilized to extract some features from
the vibration data [5]. It is not uncommon that quite a few
features can be extracted in the time, frequency, and time-
frequency domains aswell as via information entropy analysis
[3]. However, since not all features are required in describing
the product’s degradation process, it is necessary to per-
form dimension reduction for the purpose of degradation
modeling. There are two popular ways to do that. The first
one is to perform principal component analysis, singular
value decomposition, self-organizing map, or clustering [2].
The other one is feature selection that selects a subset of
features by assessing the fitness of candidate features [6–10].
The purpose of performing feature selection is to identify
those features that can best describe the fault progression
process [8]. Coble and Hines [6] proposed three metrics
for feature selection, that is, trendability, monotonicity, and
prognosability. Javed et al. [9] performed feature selection
by evaluating feature fitness using the monotonicity metric
defined in [6] and a new trendabilitymetric, and Liao [8] only
used the monotonicity criterion. Camci et al. [10] divided a
degradation feature into segments and the average separabil-
ity of all segments was defined for feature selection. Zhang
et al. [7] defined three other metrics, that is, correlation,
monotonicity, and robustness, for selecting more relevant
degradation features.

It is quite common that there is an s-dependent rela-
tionship among the stochastic processes describing different
degradation features. Clearly, ignoring such dependency in
ADT analysis will lead to inaccurate reliability estimates. For
modeling multiple degradation processes, most work con-
siders an independence assumption or multivariate normal
distributions [11, 12]. However, these assumptions may not
be appropriate in many engineering applications. Copulas
provide a convenient way to model the dependence of ran-
dom variables characterized by their marginal distributions
[13]. In addition, no constraints on the univariate marginal
distributions are required in implementing copula. Because
of its advantages, copula has become a popular approach
in multivariate statistical analysis. Sari et al. [14] used a
copula function to describe the correlation between two
performance characteristics of light emitting diode (LED)
and combined it with a generalized linear regression model
to model bivariate constant-stress ADT. Pan et al. [15]
discussed the bivariate degradation modeling approaches
based on Wiener processes and copulas under constant-
stress accelerating scenarios as well. Similarly, Peng et al. [16],
Liu et al. [17], Wang and Pham [18], and Li and Xue [19]
also employed the copula method to model the dependency
between bivariate degradation features. However, previous
research is limited on modeling the dependence between
bivariate degradation processes, and little effort has been
focused on multiple dependent degradation processes.

Another key issue in ADT modeling is how to choose
appropriate mathematic models to depict the degradation
paths. In the literature, two kinds of degradation models that

have been widely used are stochastic process model (e.g.,
Brownianmotion, gammaprocess, and inverseGaussian pro-
cess) and general pathmodel [20]. Ye and Xie [20] conducted
a comprehensive literature review on Brownianmotion based
degradation models. Liao and Elsayed [21] developed an
ADT model based on Brownian motion to predict the field
reliability of LED considering stress variations. Guan et al.
[22] adopted Brownian motion to model the constant-stress
ADT (CSADT) and estimated themodel parameters using an
objective Bayesian method.

Based on the related literature, one can see that some
technical problems have not been resolved in the study
of vibration-based ADT with multiple features, including
fitness analysis of degradation indicators, development of
multivariate s-dependent ADT model, and parameter esti-
mation. To overcome these challenges, a novel reliability
modeling method for vibration-based CSADT with multiple
dependent features is proposed in this paper. To the best
of our knowledge, this study is the first attempt in the
related areas. The remainder of this paper is organized as
follows. The framework of the proposed method is given
in Section 2. Section 3 introduces the feature exaction and
selection methods. Section 4 provides a multivariate ADT
model based on copulas. In Section 5, a case study is used
to illustrate the validity of the proposed model. Finally,
conclusions are drawn in Section 6.

2. Framework of the Proposed Model

Figure 1 provides the proposed framework for reliability and
life evaluation using vibration-based ADT data. The frame-
work consists of two parts: fitness analysis of degradation
indicators and modeling of multivariate ADT data.

The first part is to extract and select the degradation
indicators from the raw vibration data. It is often necessary
to first denoise the vibration data to reduce the negative
influence of environmental noise on the subsequent analysis.
Then, features are extracted in four domains, that is, time,
frequency, time-frequency, and information domains. Since
the dimension of the features is high, three goodness metrics
are used for the selection of the most suitable degradation
indicators from these candidate features.

The other part is to model the multiple accelerated
degradation processes describing the selected features. At
first, a Brownian motion model is adopted to depict the
degradation path of each feature and to extrapolate the
reliability related to each feature under the normal stress with
an accelerationmodel and a specified failure threshold. After-
wards, a copula function is used to describe the dependence
of different degradation features resulting in a multivariate
s-dependent ADT model. A two-stage statistical inference
procedure, called Inference Functions for Margins (IFM)
method, is employed to estimate the unknown parameters
of the proposed model. Finally, Akaike information criterion
(AIC) is used to determine the best fitting copula function,
and the system joint reliability under the normal operating
condition can be obtained.

The following sections will elaborate on the analysis of
vibration-based ADT with multiple features.
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Figure 1: The framework of reliability and life evaluation for vibration-based ADT.

3. The Degradation Indicator Fitness Analysis

3.1. Signal Processing and Feature Extraction. Denoising is
an important step in effective fault detection, diagnosis, and
prognostics [23]. In this paper, wavelet automatic denoising
technique [24] is used to remove the noise from vibration
signals prior to feature extraction. This technique is capable
of deconstructing complex signals into basis signals of finite
bandwidth and then reconstructing them again with very
little loss of information, which is best for nonstationary
signal analysis.

Then, different signal processing methods are utilized
to find the most valuable features relevant to the product’s
performance state. Indeed, feature extraction via signal pro-
cessing is considered one of the major elements and the most
challenging aspect in analyzing vibration-based ADT data
[25]. The existing signal processing and feature extraction
techniques dealing with vibration signals mainly include four
categories [2].

(1) Time Domain. Time domain feature extraction is per-
formed directly on the waveforms of vibration signals, which
are suitable for fault detection. Usually, the extracted features
include mean, variance, waveform factor, crest factor, clear-
ance factor, and kurtosis factor.

(2) Frequency Domain. Frequency domain analysis can iden-
tify and isolate those important frequency components of
the signals. The most popular method is the fast Fourier
transform, with which features such as center frequency,

mean square frequency, and frequency variance can be
obtained.

(3) Time-FrequencyDomain. Time-frequency analysis aims at
investigating the signals in both time and frequency domains
[9]. In particular, Hilbert-Huang Transform (HHT), based
on empirical mode decomposition, is the most powerful
technique for the analysis of nonstationary signals [26]. HHT
marginal energy is calculated as the feature in this domain.

(4) Information Entropy. Information entropy is a measure of
uncertainty of signals [4]. A higher value indicates a higher
uncertainty of the signal. Following this idea, the Hilbert
marginal energy spectrum entropy is computed in feature
extraction.

Let 𝑥1, 𝑥2, . . . , 𝑥𝑁 be the recorded vibration signals, 𝑓 be
the frequency components of the signals, and 𝑆(𝑓) be the
power spectrum. Table 1 gives various features obtained by
processing the original vibration signals.

3.2. Feature Selection. The selection of a subset of appro-
priate features is essential for prognostic modeling. It is
often performed on the basis of feature characteristics by
comparing candidate features with respect to their fitness.
In other words, the features with high attribute values, such
as monotonicity, correlation, trendability, and robustness,
should lead to more accurate prognostic results and thus be
included for further degradation modeling.

Technically, after removing unwanted noise, a feature is
decomposed into its trend and random part by applying a
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Table 1: Candidate degradation features.

Feature Formula Feature Formula

Mean 𝑥 = 1𝑁
𝑁∑
𝑖=1
𝑥𝑖 Clearance factor

𝐿 = max {󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨}
[(1/𝑁)∑𝑁𝑖=1√󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨]2

Variance 𝜎2 = 1𝑁
𝑁∑
𝑖=1
(𝑥𝑖 − 𝑥)2 Frequency center FC = ∫+∞0 𝑓𝑆 (𝑓) 𝑑𝑓

∫+∞0 𝑆 (𝑓) 𝑑𝑓
Crest factor 𝐶 = max {󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨}

√(1/𝑁)∑𝑁𝑖=1 𝑥2𝑖 Frequency variance VF = ∫+∞0 (𝑓 − FC)2 𝑆 (𝑓) 𝑑𝑓
∫+∞0 𝑆 (𝑓) 𝑑𝑓

Kurtosis factor 𝛼 = 1𝑁
𝑁∑
𝑖=1

(𝑥𝑖 − 𝑥)4𝜎4 HHT marginal energy (HME)

HME (𝜔) = ∫𝑇
0
𝐻2 (𝜔, 𝑡) 𝑑𝑡

𝐻 (𝜔, 𝑡) = Re
𝑚∑
𝑗=1
𝑐𝑗 (𝑡) 𝑒𝑖 ∫ 2𝜋𝜔𝑗(𝑡)𝑑𝑡

Waveform factor 𝑆 = √(1/𝑁)∑𝑁𝑖=1 𝑥2𝑖
(1/𝑁)∑𝑁𝑖=1 |𝑥𝑖|

HHT marginal energy spectrum
entropy (HMESE)

HMEE = −∑𝑚𝑗=1 𝑝𝑗 log2𝑝𝑗
log2𝑚 ,

𝑝𝑗 = HME (𝑗)
∑𝑚𝑗=1HME (𝑗) ,
𝑚∑
𝑗=1
𝑝𝑗 = 1

Note:𝑚 is the number of frequency components in Hilbert-Huang Transform (HHT).

robust locally weighted scatter plot smooth (RLOESS) with a
span value of 0.5 (i.e., 50%), as shown in (1). Unlike locally
weighted scatter plot smooth (LOESS) that is a popular
smoothing method based on a locally weighted regression
function and a quadratic polynomial, RLOESS uses a robust
regression weight function to make the LOESS process
insensitive to outliers

𝑥 = 𝑥𝑇 + 𝑥𝑅, (1)

where 𝑥 is the actual feature value, 𝑥𝑇 is its trend value, and𝑥𝑅 is the residual.
Then, a set ofmathematical criteria in favor of the features

with high attribute values are considered in feature selection.
(1) Monotonicity characterizes the underlying increasing

or decreasing trend of feature. It can be measured by
the average absolute difference of derivatives for each
feature [6] as follows:

𝑀 = mean(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
No. of 𝑑/𝑑𝑥 > 0𝑛 − 1 − No. of 𝑑/𝑑𝑥 < 0𝑛 − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) , (2)

where 𝑛 is the number of observations, 𝑑/𝑑x is the
derivative, and mean represents averaging. The value
of 𝑀 is from 0 to 1, with 𝑀 = 1 indicating
highly monotonic features and 𝑀 = 0 indicating
nonmonotonic features.

(2) Trendability is related to the linear relationship
between the feature and the time. Clearly, it shows
how the degrading state varies with time. The metric
of trendability is given by [9]

𝑇 = 󵄨󵄨󵄨󵄨𝑛 (∑𝑥𝑇 ⋅ 𝑡) − (∑𝑥𝑇) (∑ 𝑡)󵄨󵄨󵄨󵄨
√[𝑛∑𝑥2𝑇 − (∑𝑥𝑇)2] [𝑛∑ 𝑡2 − (∑ 𝑡)2]

, (3)

where 𝑇 ∈ [0, 1] is the absolute correlation coefficient
between feature trend 𝑥𝑇 and time 𝑡. Obviously,
a constant function of feature has zero correlation
with time, while a linear function indicates a strong
correlation between the feature and the time.

(3) Robustness reflects the tolerance of the feature to
outliers [7], which is given by

𝑅 = 1𝑛 ∑ exp(− 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥𝑅𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨) . (4)

One can see that all the three metrics of features are
confined in the range of [0, 1]. Due to the fact that one metric
only partially measures the suitability of candidate feature, a
weighted sum of the three metrics is used in this paper as the
fitness function for feature selection

max fitness = 𝑤1 ⋅ 𝑀 + 𝑤2 ⋅ 𝑇 + 𝑤3 ⋅ 𝑅
s.t. 𝜔𝑖 > 0

∑
𝑖
𝜔𝑖 = 1,

𝑖 = 1, 2, 3,
(5)

where constants𝜔1,𝜔2, and𝜔3 control the importance of each
metric in the optimization problem.

4. Modeling of CSADT with Multiple Features

4.1. The Univariate Accelerated Degradation Model. The
premise of ADT-based reliability evaluation is to choose an
appropriate model based on the degradation physics or the
degradation data [20]. We first focus on each degradation
feature.
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4.1.1. Basic Assumptions. Among many stochastic process
models, Brownianmotion is themostwidely used in degrada-
tionmodeling and analysis.This paper employs this model to
describe each degradation process. To evaluate the reliability
characteristics of the product under the normal operating
condition based on ADT data, the relationship between
lifetime characteristics and accelerated stress levels should be
modeled. To this end, the following assumptions are made.

(A1) The test specimens are independent, and no catas-
trophic failures occur during the test.

(A2) Under either the normal condition 𝑆0 or accelerated
conditions 𝑆1 < 𝑆2 < ⋅ ⋅ ⋅ < 𝑆𝐾, degradation process𝑌(𝑡) over time can be described by

𝑌 (𝑡) = 𝜎𝐵 (𝑡) + 𝜇 ⋅ 𝑡 + 𝑦0, (6)

where 𝑡 is time, 𝐵(𝑡) is a standard Brownian motion,𝑦0 is the initial degradation level at time zero, 𝜇 > 0
is the drift parameter, and 𝜎 > 0 is the diffusion
parameter describing the variability due to unit-to-
unit variation and the variation of operating and
environmental conditions.
The drift parameter 𝜇, commonly known as the
degradation rate, is regarded as a function of stress
conditions. Usually, such acceleration relationships,
such as Arrhenius model, Eyring model, or inverse
powermodel [27], are obtained from physical mecha-
nism analysis or empirical experiences. In particular,
the following log-linear relationship is considered:

ln 𝜇 = ln 𝑑 (𝑆) = 𝑎 + 𝑏 ⋅ 𝜑 (𝑆) , (7)

where 𝑎 and 𝑏 are unknown parameters, 𝑑(𝑆) is the
degradation rate under stress level 𝑆, and 𝜑(𝑆) is a
function of stress level depending on the stress type.
For example, if 𝑆 is absolute temperature, 𝜑(𝑆) = 1/𝑆;
if 𝑆 is voltage, 𝜑(𝑆) = ln 𝑆.

(A3) The diffusion parameter 𝜎 does not change with
stress, that is, 𝜎0 = 𝜎1 = ⋅ ⋅ ⋅ = 𝜎𝐾 = 𝜎 for the normal
condition 𝑆0 and accelerated conditions 𝑆1 < 𝑆2 <⋅ ⋅ ⋅ < 𝑆𝐾.

4.1.2. Reliability Function for Each Degradation Process.
Because of the independent increment property of Brownian
motion, the degradation increment Δ𝑦 over nonoverlapped
interval Δ𝑡 is normally distributed with mean 𝜇Δ𝑡 and
variance 𝜎2Δ𝑡. Its probability density function (PDF) is

𝑓 (Δ𝑦) = 1√2𝜋𝜎2Δ𝑡 exp {−
[Δ𝑦 − 𝜇 ⋅ Δ𝑡]2

2𝜎2Δ𝑡 } . (8)

Generally, a product is supposed to be failed if its
performance degradation exceeds a critical threshold for
the first time. In other words, the first passage time (FPT)
distribution is used as the product’s lifetime distribution. For
a given critical threshold 𝐷, the lifetime 𝑇𝐷 of the product is

the instant when degradation process 𝑌(𝑡) exceeds 𝐷 for the
first time; that is,

𝑇𝐷 = inf {𝑡 > 0 | 𝑌 (𝑡) ≥ 𝐷} . (9)

It is well-known that the first passage time follows the inverse
Gaussian distribution with the following PDF [28]:

𝑓 (𝑡; 𝑦0, 𝐷) = 𝐷 − 𝑦0𝜎√2𝜋𝑡3 exp{−
[(𝐷 − 𝑦0) − 𝜇 ⋅ 𝑡]22𝜎2𝑡 } . (10)

Combined with (7), the associated reliability function
under normal operational condition 𝑆0 can be expressed as

𝑅 (𝑡) = Φ[𝐷 − 𝑦0 − 𝑑 (𝑆0) 𝑡𝜎√𝑡 ]
− exp(2𝑑 (𝑆0) (𝐷 − 𝑦0)𝜎2 )
⋅ Φ[−𝐷 − 𝑦0 + 𝑑 (𝑆0) 𝑡𝜎√𝑡 ] ,

(11)

whereΦ(⋅) is the cumulative distribution function of standard
normal distribution.

4.2. Use of Copulas for Multiple Features

4.2.1. Definition and Basic Properties. Sklar’s theorem lays the
theoretical foundation for copulas and their applications [13].

Theorem 1 (Sklar’s theorem [29]). Let𝑋 = (𝑋1, . . . , 𝑋𝑁) be a
random vector withmarginal distributions𝐹1(𝑥1), . . . , 𝐹𝑁(𝑥𝑁)
and 𝐹 be their joint distribution function. Then, there exists a
copula function 𝐶 such that

𝐹 (𝑥1, . . . , 𝑥𝑛, . . . , 𝑥𝑁)
= 𝐶 (𝐹1 (𝑥1) , . . . , 𝐹𝑛 (𝑥𝑛) , . . . , 𝐹𝑁 (𝑥𝑁)) . (12)

If 𝐹1(𝑥1), . . . , 𝐹𝑁(𝑥𝑁) are continuous, the copula function 𝐶 is
unique. Conversely, if𝐹1(𝑥1), . . . , 𝐹𝑁(𝑥𝑁) are univariate distri-
butions, the function 𝐹 defined by (12) is the joint distribution
function associated with margins 𝐹1(𝑥1), . . . , 𝐹𝑁(𝑥𝑁).

Based on the theorem, a multivariate copula function can
be defined as follows.

Definition 2 (𝑛-dimensional copula or 𝑛-copula [13]). An𝑁-
dimensional copula is a function 𝐶 mapping from I𝑁 =[0, 1]𝑁 to I with the following properties:

(1) Grounded: for every u = (𝑢1, . . . , 𝑢𝑁) in I𝑁, 𝐶(u) = 0
if at least one coordinate of u is 0.

(2) Uniform marginals: if all coordinates of u are ones
except 𝑢𝑘, then

𝐶 (u) = 𝐶 (1, . . . , 1, 𝑢𝑘, 1, . . . , 1) = 𝑢𝑘. (13)
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Table 2: Typical multivariate copulas.

Copulas 𝐶 (𝑢1, 𝑢2, . . . , 𝑢𝑛) Parameters
Gaussian
copula Φ𝜌 [Φ−1 (𝑢1) , Φ−1 (𝑢2) , . . . , Φ−1 (𝑢𝑛)] 𝜌 ∈ (−1, 1)
Student’s
t-copula 𝑡𝜌,V [𝑡−1V (𝑢1) , 𝑡−1V (𝑢2) , . . . , 𝑡−1V (𝑢𝑛)] 𝜌 ∈ (−1, 1)

𝑘 > 2
Clayton
copula ( 𝑛∑

𝑖=1
𝑢−𝛿𝑖 − 𝑛 + 1)−1/𝛿 𝛿 > 0

Frank
copula −𝛿−1 log{1 + ∏𝑛𝑖=1 [exp (−𝛿𝑢𝑖) − 1][exp (−𝛿) − 1]𝑛−1 } 𝛿 ∈(−∞,∞) \ {0}

𝛿 > 0 for 𝑛 ≥ 3
Joe
copula 1 − {1 − 𝑛∏

𝑖=1
[1 − (1 − 𝑢𝑖)𝛿]}

1/𝛿 𝛿 ∈ [1,∞)

(3) 𝑁-increasing: for each hyperrectangle 𝐵 = ∏𝑁𝑖=1[𝑢𝑖,
V𝑖] ⊆ [0, 1]𝑁, the 𝐶-volume of 𝐵 is nonnegative:

∫
𝐵
𝑑𝐶 ([u, k]) = ∑

z∈×𝑁𝑖=1{𝑢𝑖 ,V𝑖}
(−1)𝑁(z) 𝐶 (z) ≥ 0, (14)

where𝑁(z) = #{𝑘 : 𝑧𝑘 = 𝑢𝑘}.
Furthermore, the PDF corresponding to joint distribu-

tion function 𝐹(𝑥1, . . . , 𝑥𝑛, . . . , 𝑥𝑁) can be calculated as

𝑓 (𝑥1, . . . , 𝑥𝑛, . . . , 𝑥𝑁)
= 𝑐 (𝐹1 (𝑥1) , . . . , 𝐹𝑛 (𝑥𝑛) , . . . , 𝐹𝑁 (𝑥𝑁)) 𝑁∏

𝑛=1
𝑓𝑛 (𝑥𝑛) , (15)

where 𝑓𝑛(⋅) is the PDF of a marginal distribution 𝐹𝑛(⋅), and𝑐(⋅) is the density of copula function 𝐶:
𝑐 (𝑢1, . . . , 𝑢𝑛, . . . , 𝑢𝑁) = 𝜕𝑁𝐶 (𝑢1, . . . , 𝑢𝑛, . . . , 𝑢𝑁)𝜕𝑢1, . . . , 𝜕𝑢𝑛, . . . , 𝜕𝑢𝑁

∀u = (𝑢1, . . . , 𝑢𝑛, . . . , 𝑢𝑁) ∈ I𝑁.
(16)

4.2.2. Selection of Copula Family. It is important to select an
appropriate copula family for the given data, as the selection
significantly influences the prediction performance. Table 2
presents five popular multivariate copula families, where𝑢1, . . . , 𝑢𝑛 are 𝑛 random variables.

To balance the statistical fitting and model complexity,
the values of classic Akaike information criterion (AIC) are
computed for the candidate copula families:

AIC = 2𝑘 − 2 ln 𝐿, (17)

where 𝑘 is the number of estimated parameters in the model,
and 𝐿 is the value of the correspondingmaximum likelihood.
By comparing the AIC values, the family with the minimum
value will be selected.

4.3. Multivariate ADT Model. To analyze the multivariate
CSADT data, additional assumptions are considered.

(A4) For a product with multiple degradation indicators,
the dependency among the features can be character-
ized by a copula function.

(A5) The degradation measurements of all specimens are
collected at the same time.

(A6) The specimen is considered to be failed if one of the
features reaches its corresponding failure threshold
for the first time.

Suppose that a product has 𝑃 degradation features and
each of the accelerated degradation processes is modeled by
a drift Brownian motion. 𝑌𝑝(𝑡), 𝑝 = 1, 2, . . . , 𝑃, denotes the
degradation process of the 𝑝th characteristic index at oper-
ating condition 𝑆0, and its corresponding failure threshold is𝐷𝑝. Let the failure time of the 𝑝th characteristic index be 𝑇𝑝,
and the lifetime of the product be 𝑇, so 𝑇 = min (𝑇1, . . . , 𝑇𝑝).
Clearly, the system reliability under normal condition 𝑆0 can
be expressed as

𝑅 (𝑡) = 𝑃 (𝑇 > 𝑡) = 𝑃 (𝑇1 > 𝑡, . . . , 𝑇𝑃 > 𝑡)
= 𝑃 (𝑌1 (𝑡) < 𝐷1, . . . , 𝑌𝑃 (𝑡) < 𝐷𝑃) . (18)

Apparently, if the𝑃 degradation features are independent,
(18) can be rewritten as

𝑅 (𝑡) = 𝑃 (𝑌1 (𝑡) < 𝐷1) × ⋅ ⋅ ⋅ × 𝑃 (𝑌𝑃 (𝑡) < 𝐷𝑃)
= 𝑅1 (𝑡) × ⋅ ⋅ ⋅ × 𝑅𝑃 (𝑡) , (19)

where 𝑅𝑝(𝑡), 𝑝 = 1, 2, . . . , 𝑃 is the 𝑝th characteristic index’s
reliability function under normal operating condition 𝑆0,
as defined in (11). However, this is often not true in many
engineering applications. To address the dependence of 𝑃
degradation features, a copula function can be utilized. In
particular, the product’s reliability at time 𝑡 under normal
operating condition 𝑆0 can be performed as

𝑅 (𝑡) = 𝐶 (𝑅1 (𝑡) , 𝑅2 (𝑡) , . . . , 𝑅𝑃 (𝑡) ; 𝜃) , (20)

where 𝜃 is the parameter set of the copula.

4.4. Parameter Estimation. Consider a copula-based multi-
variate distribution for the random vector [𝑌1, . . . , 𝑌𝑃], with
joint PDF

𝑓 (y;𝛼1, . . . ,𝛼𝑃, 𝜃)
= 𝑐 (𝐹1 (𝑦1;𝛼1) , . . . , 𝐹𝑃 (𝑦𝑃;𝛼𝑃) ; 𝜃) 𝑃∏

𝑝=1
𝑓𝑝 (𝑦𝑝;𝛼𝑝) , (21)

where 𝐹𝑝(⋅;𝛼𝑝) and 𝑓𝑝(⋅;𝛼𝑝), 𝑝 = 1, . . . , 𝑃, are the 𝑝th
marginal CDF and PDF with parameter set 𝛼𝑝, and 𝑐(⋅; 𝜃) is
the density of copula function 𝐶(⋅; 𝜃) with parameter 𝜃.

For a sample of size 𝑛, the full log-likelihood function can
be expressed as

ln 𝐿 (𝛼1, . . . ,𝛼𝑃, 𝜃)
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Figure 2: Overview of the motor vibration-based ADT platform.

= 𝑛∑
𝑖=1

ln 𝑐 (𝐹1 (𝑦1𝑖;𝛼1) , . . . , 𝐹𝑃 (𝑦𝑃𝑖;𝛼𝑃) ; 𝜃)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
dependence structure 𝐿𝐶

+ 𝑃∑
𝑝=1

𝑛∑
𝑖=1
𝑓𝑝 (𝑦𝑝𝑖;𝛼𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

marginals ∑𝑃𝑝=1 𝐿𝑝

.

(22)
The maximum likelihood estimates (MLE) of the param-

eters (𝛼1, . . . ,𝛼𝑝, 𝜃) can be obtained by maximizing (22).
However, as the dimension of parameters increases, it is
difficult to get the optimal solution. Joe [30, 31] proposed
the IFM method as a computationally attractive alternative
to estimate the parameters in multivariate copula models.
Technically, (22) is first decomposed into two parts. The
first part, denoted by 𝐿𝐶, is the contribution from the
dependence structure in data, and the other part is the
contributions from each margin, 𝐿𝑝, 𝑝 = 1, . . . , 𝑃. Then, The
IFMmethod separately estimates the parameters of marginal
distributions and the parameters of the copula in two stages.
In the first stage, the estimates of the marginal distribution
parameters are obtained from the log-likelihood 𝐿𝑝 of each
margin. In the second stage, the copula parameter estimates
are computed by maximizing 𝐿𝐶 based on the marginal
distribution parameters estimated in the first stage. In this
paper, we use this method to estimate the parameters of the
proposed multivariate ADT model.

4.4.1. Marginal Distribution Parameters Estimation. Suppose
that in a CSADT with 𝐾 stress levels the total sample size
is 𝑛. There are 𝑛𝑙 specimens under stress level 𝑆𝑙. During
the CSADT, all specimens are measured once in every Δ𝑡
time interval and there are 𝑀𝑙 inspections under 𝑆𝑙. Then,
the observation of the 𝑝th characteristic index at time 𝑡𝑙𝑖𝑗 is𝑦𝑝(𝑡𝑙𝑖𝑗), 𝑝 = 1, . . . , 𝑃, 𝑙 = 1, . . . , 𝐾, 𝑖 = 1, . . . , 𝑛𝑙, 𝑗 = 1, . . . ,𝑀𝑙,
where 𝑡𝑙𝑖𝑗 is the time of the 𝑗th measurement of the 𝑖th unit
under the 𝑙th stress level. According to (8), the likelihood
function of the 𝑝th characteristic indices is given by

𝐿𝑝 = 𝐾∏
𝑙=1

𝑛𝑙∏
𝑖=1

𝑀𝑙−1∏
𝑗=1

1
√2𝜋𝜎2𝑝Δ𝑡

⋅ exp {{{
−[(𝑦𝑝 (𝑡𝑙𝑖(𝑗+1)) − 𝑦𝑝 (𝑡𝑙𝑖𝑗)) − 𝜇𝑝𝑙 ⋅ Δ𝑡]

2

2𝜎2𝑝Δ𝑡
}}}
,

𝑝 = 1, . . . , 𝑃.

(23)

Considering the acceleration model given by (7), 𝜇𝑝𝑙 can
be expressed as 𝜇𝑝𝑙 = 𝑑𝑝(𝑆𝑙) = exp (𝑎𝑝 + 𝑏𝑝𝜑(𝑆𝑙)), where𝑎𝑝 and 𝑏𝑝 are unknown parameters of the 𝑝th characteristic
index. So the model parameter set of the characteristic index
is 𝛼𝑝 = (𝑎𝑝, 𝑏𝑝, 𝜎𝑝), 𝑝 = 1, . . . , 𝑃. Let Δ𝑦𝑝𝑙𝑖𝑗 = 𝑦𝑝(𝑡𝑙𝑖(𝑗+1)) −𝑦𝑝(𝑡𝑙𝑖𝑗); then (23) can be expressed as

ln 𝐿 = −12
𝐾∑
𝑙=1

𝑛𝑙∑
𝑖=1

𝑀𝑙−1∑
𝑗=1

{{{
ln (2𝜋𝜎2𝑝Δ𝑡) + [Δ𝑦𝑝𝑙𝑖𝑗 − exp (𝑎𝑝 + 𝑏𝑝𝜑 (𝑆𝑙)) ⋅ Δ𝑡]2𝜎2𝑝Δ𝑡

}}}
, 𝑝 = 1, . . . , 𝑃 (24)

and the parameter set 𝛼𝑝 = (𝑎𝑝, 𝑏𝑝, 𝜎𝑝) of each marginal
distribution can be estimated by maximizing the log-
likelihood function.

4.4.2. Copula Parameter Estimation. By replacing the mar-
ginal parameters 𝛼𝑝, 𝑝 = 1, . . . , 𝑃, with their first-stage
estimate 𝛼̂𝑝, the copula parameters can be estimated by
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Figure 3: Feature set of a motor.

maximizing the copula likelihood contribution. Then, the
copula parameter 𝜃 in (20) is given by

𝜃̂

= argmax
𝑃∑
𝑝=1

𝑛∑
𝑖=1

ln 𝑐 (𝑅1 (𝑦1𝑖; 𝛼̂1) , . . . , 𝑅𝑃 (𝑦𝑝𝑖; 𝛼̂𝑃) ; 𝜃) . (25)

In addition, the AIC method mentioned in Section 4.2.2
is used to quantitatively select the best fitting model from
candidate copula functions.

5. Case Study

A case study is provided in this section to demonstrate
the use of the proposed framework in real-world industrial
applications.

5.1. Description of the ADT Experiment. DC motor converts
DC power into mechanical energy. It is a key part of
robots, electric vehicle, numerical control machines and
household appliances, and so forth. The failure of motors



Shock and Vibration 9

0.3

0.2

0.1

0

0

−0.1

−0.2

−0.3

H
ilb

er
t m

ar
gi

na
l e

ne
rg

y 
sp

ec
tr

um
 en

tro
py

0.3

0.2

0.1

−0.1

−0.2

−0.3

0.3

0.2

0.1

0

−0.1

−0.2

H
ilb

er
t m

ar
gi

na
l e

ne
rg

y 
sp

ec
tr

um
 en

tro
py

3.5V

6.0V

4.5V

Time (h)
120100806040200

Time (h)
120100806040200

Motor number 11
Motor number 12
Motor number 13

Motor number 21
Motor number 22
Motor number 23

Time (h)
120100806040200

Motor number 31
Motor number 32
Motor number 33

0.4

0.4

−0.4

0.5

0.6

H
ilb

er
t m

ar
gi

na
l e

ne
rg

y 
sp

ec
tr

um
 en

tro
py

Figure 4: The CSADT data of Hilbert marginal energy spectrum entropy.

will significantly decrease the availability and safety of such
machines and even lead to big economic losses.

To assess the life and reliability of PZB131 brushed DC
motors, a dedicated CSADT platform was designed as shown
in Figure 2. The platform is composed of DC power, electric
motors, vibration sensors, charge amplifier, data acquisition

card, and computer.The key failuremechanism of this type of
DC motors is the wear-out between brush and commutator,
which is mainly related to the rotating speed and load. To
speed up the degradation process, the input voltage was
employed as the accelerated stress that controls the rotating
speed of motors under a nonload condition.
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Figure 5: The CSADT data of clearance factor.

The rated voltage of themotor is 2.0 V, and the accelerated
stress levels are 3.5 V, 4.5 V, and 6.0V. The sample size under
each stress level was 3. The vibration signals on the surface
of motor were collected every hour. The sampling time is 2
seconds and the total number of sampling points is 3000.

5.2. Feature Extraction and Selection. First, denoising of raw
vibration signals was performed using the Daubechies (db8)
waveletmethod based on the principle of Stein’s unbiased risk
with soft-thresholding [24]. Ten features of each motor were
exacted using the signal processing methods addressed in
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Figure 6: The CSADT data of crest factor.

Section 3.1. Figure 3 shows all the candidate features collected
from one of the motors.

Afterwards, feature selection was implemented using the
proposed feature selecting procedure given in Section 3.2,
and the most suitable features were selected from the ten

candidate features. Because prognostic features showing sig-
nificant monotonic trends are more desired [7], different
weights, 0.3, 0.6, and 0.1, were given to trendability, mono-
tonicity, and robustness, respectively. The feature selection
results are presented in Table 3.
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Figure 7: Determination of the failure threshold.

Because the clearance factor, crest factor, and HHT
marginal energy spectrum entropy (HMESE) fitness were
all greater than 0.7, they were selected as the degradation
indicators for the motors. The degradation processes of three
selected optimal features are illustrated in Figures 4–6.

5.3. Reliability Modeling. Defining the failure threshold for
each feature is the first step for degradation-based reliability
modeling. To this end, two motors were tested until failure,
and the failure thresholds were determined by analyzing the
clearance factor, Hilbert marginal energy spectrum entropy,
and crest factor of the motors upon failure. As can be seen
in Figure 7, the relative failure threshold D-𝑦0 of Hilbert

marginal energy spectrum entropy, clearance factor, and crest
factor is 0.5, 3, and 3, respectively.

Then, the univariate accelerated degradation models for
the three features were established, respectively, using the
Brownian motion models addressed in Section 4.1. The
model parameters were estimated using the method given
in Section 4.4.1. Figure 8 shows the reliability functions of
the three features calculated by (11). One can see that the
reliability curve of crest factor tends to be higher than those
of the other two features.

Next, the multivariate ADT model was developed using
the copula function that describes the dependence among
three features, and the IFM method was used to estimate
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Table 3: Feature evaluation results.

No. Feature Stress 𝑇 𝑀 𝑅 Fitness Mean (𝑓) Rank

1 Mean
3.5 V 0.2491 0.5556 0.9500 0.5425

0.5102 84.5 V 0.1616 0.3333 0.9839 0.3469
6.0V 0.7032 0.5556 0.9682 0.6411

2 Variance
3.5 V 0.6042 0.5556 0.8549 0.6001

0.5350 74.5 V 0.4839 0.3333 0.7852 0.4237
6.0V 0.5634 0.5556 0.7892 0.5813

3 Crest factor
3.5 V 0.8614 0.5556 0.9808 0.6898

0.7509 34.5 V 0.7359 1 0.9263 0.9134
6.0V 0.7430 0.5556 0.9319 0.6494

4 Kurtosis factor
3.5 V 0.3349 0.5556 0.9438 0.5282

0.4236 104.5 V 0.3380 0.3333 0.7947 0.3809
6.0V 0.3179 0.3333 0.6620 0.3616

5 Waveform factor
3.5 V 0.5856 0.3333 0.9987 0.4756

0.6896 44.5 V 0.7208 0.7778 0.9962 0.7825
6.0V 0.8182 0.7778 0.9858 0.8107

6 Clearance factor
3.5 V 0.8603 1 0.9436 0.9525

0.8961 14.5 V 0.8570 1 0.9460 0.9517
6.0V 0.7649 0.7778 0.8804 0.7842

7 Frequency center
3.5 V 0.6258 0.5556 0.8631 0.6074

0.6260 54.5 V 0.6474 0.5556 0.7387 0.6014
6.0V 0.8213 0.5556 0.8940 0.6691

8 Frequency variance
3.5 V 0.6124 0.5556 0.8679 0.6039

0.6194 64.5 V 0.6907 0.5556 0.7590 0.6164
6.0V 0.7157 0.5556 0.8978 0.6378

9 HHT marginal energy (HME)
3.5 V 0.5675 0.5556 0.7430 0.5779

0.5057 94.5 V 0.4637 0.5556 0.8415 0.5566
6.0V 0.3360 0.3333 0.8192 0.3827

10 HHT marginal energy spectrum entropy (HMESE)
3.5 V 0.7513 0.7778 0.9545 0.7875

0.8569 24.5 V 0.8404 1 0.9643 0.9486
6.0V 0.9094 0.7778 0.9518 0.8347

the copula parameters. Figure 9 shows the system reliability
curves of the motor using different copulas. To determine
the best copula function, the AIC values of the five candidate
copula families were obtained and compared. From Table 4,
one can see that the AIC value of Frank copula function is
the minimum, so it was adopted as the best choice among the
candidates.

Figure 10 shows the marginal reliability and system relia-
bility functions under both s-dependent and s-independent
assumptions. One can see that the reliability function by
assuming s-independent degradation features tends to be
much lower than that based on the s-dependent assumption.
Clearly, the dependence among the multiple features cannot
be ignored.

6. Conclusions

This study is focused on the reliability modeling of vibration-
based ADT data. The proposed framework for data analysis

Table 4: Goodness-of-fit for the candidate copulas.

Copula family AIC value Ranking
Gaussian copula 42961 5
t-copula −2278 2
Clayton copula −1179 3
Frank copula −17136 1
Joe copula −899 4

focuses on feature selection and multivariate accelerated
degradation modeling. A set of feature selection criteria were
used to select the most suitable features after extracting
features from raw vibration signals. Then, a multivariate
s-dependent ADT model was presented, where Brownian
motion was applied to establish accelerated degradation
model for each feature and a copula function was employed
to characterize the dependence among multiple degradation
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Figure 8: Reliability of three features under normal operating
condition.
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Figure 9: Comparison of different copula functions.

processes. A case study on motor vibration-based CSADT
data was conducted to demonstrate the usefulness and
validity of the proposed model and statistical method. The
results show that the proposed framework can provide a pow-
erful tool for modeling the reliability of products exhibiting
multiple dependent degradation features.
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