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ABSTRACT 

A number of applications on parallel computers deal with very large data sets that 
cannot fit in main memory. In such applications, data must be stored in files on disks 
and fetched into memory during program execution. Parallel programs with large out­
of-core arrays stored in files must read/write smaller sections of the arrays from/to 
files. In this article, we describe a method for accessing sections of out-of-core arrays 
efficiently. Our method, the extended two-phase method, uses collective 1/0: Processors 
cooperate to combine several 1/0 requests into fewer larger granularity requests, to 
reorder requests so that the file is accessed in proper sequence, and to eliminate simulta­
neous 1/0 requests for the same data. In addition, the 1/0 workload is divided among 
processors dynamically, depending on the access requests. We present performance 
results obtained from two real out-of-core parallel applications-matrix multiplication 
and a Laplace's equation solver-and several synthetic access patterns, all on the Intel 
Touchstone Delta. These results indicate that the extended two-phase method significantly 
outperformed a direct (noncollective) method for accessing out-of-core array 
sections. © 1996 John Wiley & Sons, Inc. 

1 INTRODUCTION 

Parallel computers are being used increasingly to 
solve large computationally intensive as well as 
data-intensive applications, such as large-scale 
computations in physics, chemistry, biology, engi­
neering, medicine, and other sciences. The data 
required by many of these applications must be 
stored in files on disks, as they are too large to fit 
in main memory [1]. The program must perform 
1/0 to access data from disks. Examples of such 

Received Mav 1995 
Revised May .1996 

© 1996 John Wiley & Sons, Inc. 
Scif'ntific Programming. VoL 5, pp. 301-317 (1996) 
CCC 1058-9244/96/040301-17 

applications are Hartree-F ock calculations in 
chemistry, very large fast fourier transforms to de­
tect faint radio pulsars, seismic data processing, 
weather and climate modeling, three-dimensional 
turbulence simulations, scattering and radiation 
problems in computational electromagnetics, and 
several others [2]. 

Multidimensional arrays are widely used as data 
structures in scientific programs. Scientific appli­
cations with large out-of-core data sets may there­
fore have one or more out-of-core multidimen­
sional arrays stored in files. At run-time, the 
program must fetch smaller sections of these arrays 
from files, perform computation, and, if necessary, 
store the results back to files. Different processors 
may need different sections of the arrays depend­
ing on the data distribution, and the sections may 
have strides in each dimension. 
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In this article, we describe a method, called the 
extended two-phase method, for parallel programs 
to access sections of out-of-core arrays efficiently. 
In this method, the requesting processors cooper­
ate in reading or writing data-a process known 
as collective 110. Specifically, processors cooper­
ate to combine several 110 requests into fewer 
larger granularity requests, reorder requests so that 
the file is accessed in proper sequence, and elimi­
nate simultaneous 110 requests for the same data. 
In addition, the extended two-phase method parti­
tions the total 1/0 workload among processors dy­
namically, depending on the access requests. 
Compared to a static partitioning scheme, dynamic 
partitioning results in a more balanced distribution 
of 1/0 among processors and therefore performs 
considerablv better. 

We prese~t extensive performance results com­
paring the extended two-phase method with a di­
rect (noncollective) method on the Intel Touch­
stone Delta. For this purpose, we use two real 
parallel applications-out-of-core matrix multi­
plication and out-of-core Laplace's equation 
solver-as well as several synthetic access pat­
terns. We found that the extended two-phase 
method performed considerably better than the 
direct method for a wide range of access patterns, 
array sizes, and nun1ber of processors. 

The rest of this article is organized as follows. 
ln Section 2, we describe the 110 access patterns 
of two out-of-core parallel applications and thus 
motivate the need for the extended two-phase 
method. The method itself is explained in Section 
3. In Section 4" we describe a simple static scheme 
for partitioning II 0 among processors and then 
show how the partitioning can be improved by us­
ing a dynamic scheme. Extensive performance and 
scalability results are presented in Section 5. We 
draw ove~all conclusions in Section 6. 

2 TWO OUT -OF-CORE PARALLEL 
APPLICATIONS 

Here we describe the II 0 access patterns of two 
out-of-core parallel applications-matrix multi­
plication and a Laplace's equation solver. 

2.1 Out-of-Core Matrix Multiplication 

We consider an out-of-core GAXPY algorithm for 
matrix multiplication, described in [3]. Let A" B, 
and C ben X n matrices such that C =A X B. 

The matrices can be represented in terms of their 
individual columns as 

A= [a 1 ,. 

B = [6 1 ,. 

C = [c1 ,. 

. , an], a1 E Rn 

. , bn], bj E Rn 

. ' cnl' C; ERn 

The GAXPY algorithm for computing C = A X 

B is 

j= 1 :n 

In other words, to compute the jth column of 
C, we need the jth column of B and all columns 
of A. An out-of-core GAXPY algorithm for matrix 
multiplication can be implemented as follows. In 
the first step, processors read two-dimensional 
sub-blocks of matrix A into main memory such 
that the sub-blocks of all processors together span 
entire rows (see Fig. 1). The processors also read 
two-dimensional sub-blocks ofmatrixB into mem­
orv such that the sub-blocks of all processors to­
gether span entire columns. The data now present 
in memorv are sufficient to compute the first two­
dimensio~al sub-block of matrix C. This computa­
tion requires a global sum operation. The proces­
sors then write the newly computed sub-block of 
C to the file. In the following step, processors read 
the next set of sub-blocks of B (shown by dashed 
lines in Fig. 1 ), reuse the sub-blocks of A fetched 
in the previous step, and calculate the second sub­
block of C. This process is repeated until all the 
sub-blocks in the first block of rows of C are com­
puted. The above process is then repeated with 
the sub-blocks from the next set of rows of A" 
shown bv dashed lines. The entire matrix C is com­
puted in. this fashion. :'\ote that, at any time, each 
processor has only one sub-block of matrices A, 
B, and C in memory. 

2.2 Out-of-Core Laplace's 
Equation Solver 

We consider a Laplace's equation solver that uses 
a Jacobi iteration method. This is a stencil compu­
tation where the value at each point is computed 
by using the values at its neighbors in each of the 
four directions. 

do k=1, niter 
A(i, j) = (B(i-1, j) +B(i+1, j) + 
B(i, j-1) +B(i, j+1)) /4, i, j=1: n 
Exchange A and B 

end do 
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FIGURE 1 1/0 access pattern in out-of-core matrix multiplication. 

An out-of-core Laplace's equation solver can 
be implemented as follows. Divide the out-of-core 
array into two-dimensional sub-blocks such that 
two blocks (one for old values, one for new values) 
can fit at a time in the memory of each processor. 
Assign blocks to processors in a round-robin fash­
ion as shown in Figure 2. Each processor reads 
one block at a time from the file containing the 
array. Processors can either communicate bound­
ary ;ows and columns or read them directly from 
the file. After a processor computes new values, it 
writes the new block to a file containing the new 
array. This process is repeated on other sub-blocks 
of the array to complete one iteration. The algo-

FIGURE 2 110 access pattern in an out-of-core La­
place's equation solver. 

rithm is repeated for further iterations until it con­
verges. 

2.3 Accessing Out-of-Core 
Array Sections 

In the above applications, processors access two­
dimensional sub-blocks of out-of-core arrays. 
This type of access pattern also occurs in other 
applications, such as out-of-core LU solvers [ 4]. 
Since arrays are usually stored in a file in either 
column-major order (as in Fortran) or row-major 
order (as in C), the data required by each processor 
are not located contiguously in the file. In many 
cases, the requests of different processors are in­
terleaved in the file. To read noncontiguous data 
with the interfaces currently provided by parallel 
file systems, each processor must explicitly seek to 
the appropriate location in the file, read a small 
chunk of data, then seek to the next location, and 
so on. We call this the direct method. The Vesta 
and PIOFS file systems on the IBM SP [5, 6] and 
the nCUBE file system do provide support for 
the user to specify a logical view of the data to 
be read and use a single call to read data. Each 
processor's request, however, is serviced indepen­
dently, and the file systems do not perform collec­
tive I/0. 

The drawback of the direct method is that the 
parallel file system may receive a large number of 
low-granularity requests from multiple processors 
in any order. As II 0 latency is very high, such 
access requests perform poorly. For many access 
patterns, such as in the above applications, the 
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II 0 performance can be improved by using the 
collective knowledge of the access requests of all 
processors. Processors can cooperate among 
themselves to perform IIO in large chunks and in 
the proper order, a process known as collective 
IIO. The extended two-phase method specifies a 
procedure for performing collective II 0 to access 
out-of-core array sections. Other examples of col­
lective IIO are disk-directed IIO [8] and server­
directed collective IIO [9]. 

3 EXTENDED TWO-PHASE METHOD 

The two-phase method, proposed in [10, 11], is 
a collective II 0 technique for reading an entire in­
core array from a file into a distributed array in 
main memory, and conversely. for writing a distrib­
uted in-core arrav to a file. IIO is done in two 
phases. In the first phase, processors always read 
data assuming a conforming distribution. A con­
forming distribution is defined as a distribution of 
an array among processors such that each proces­
sor's local array is stored contiguously in the file, 
resulting in each processor reading a single large 
chunk of data. For an arrav stored in a file in 
column-major order. a column-block distribution 
is the conforming distribution. In the second 
phase, data are redistributed among processors to 
the desired distribution. Since IIO cost is orders 
of magnitude more than communication cost, the 
cost incurred by the second phase is negligible. 
This two-phase approach is found to perform well 
for all array distributions [10, 11]. 

\Ve have extended the basic two-phase method 
to access sections of out-of-core arrays. This ex­
tended two-phase method performs l/0 for out­
of-core arrays efficiently by: 

1. Dynamically partitioning the IIO workload 
among processors, depending on the ac­
cess requests. 

2. Combining several IIO requests into fewer 
larger granularity requests. 

3. Reordering requests so that the file is ac­
cessed in proper sequence. 

4. Eliminating simultaneous II 0 requests for 
the same data. 

3.1 Reading Sections of 
Out-of-Core Arrays 

We first describe the extended two-phase method 
for reading array sections. For the purpose of ex-

planation, we consider the ease where each proces­
sor must read a section (specified in terms of a 
lower-bound, upper-bound, and stride in each di­
mension) of a two-dimensional array stored in a 
file in column-major order. In general, the ex­
tended two-phase method can be used for arrays 
with any number of dimensions, stored in any or­
der in the file, and accessed by a subset of the total 
number of processors. 

The extended two-phase method divides the 
II 0 workload among processors by assigning own­
ership to portions of the file. A processor can di­
rectly access only the portion of the file it owns, 
called its file domain. For a file stored in column­
major order, the file domain of each processor is 
some set of columns of the arrav. Section 4 de­
scribes two ways of assigning file domains to pro­
cessors. 

Assume that each processor must read a section 
(11 : u 1 : s1 , 12 : u 2 : s"2.) of the out-of-core array in 
global coordinates. The sections required by dif­
ferent processors may be identical, overlapping, 
or distinct. In the first step of the extended two­
phase method, processors exchange their own ac­
cess information (the indices 11 , u 1 • s 1 , 12 , u 2 , s2 ) 

with other processors, so that each processor 
knows the access requests of other processors. This 
information is stored in a data structure called the 
file access descriptor (FAD). The FAD contains 
exactly the same information on all processors. 
This exchange phase is not required if the collec­
tive II 0 interface itself provides information about 
the access requests of other processors. 

Since each processor knows its own file domain 
and the access requests of other processors, it can 
determine what portion of the data in its file do­
main is needed by other processors. This is done 
by computing the intersection of the requests of 
other processors from the FAD and its own file 
domain. This information is stored in a data stnie­
ture called the file domain access table (FDAT). 
The FDAT of a processor thus contains informa­
tion indicating which portions of its file domain 
have been requested by other processors. 

Each processor must now read data from its file 
domain as specified by the FDAT. For example, 
Figure 3 shows the file domain of processor 0 and, 
for some access pattern, the portions of this file 
domain that have been requested by other proces­
sors. A simple way of reading is to read all the data 
needed by processor 0, followed by that needed 
by processor 1, and so on, in order of processor 
number. This method, however, may result in too 
many small accesses that are not in sequence. For 
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FIGURE 3 Processor 0 must read the requested data 
from its file domain. Section ABCD is the smallest section 
containing all the requested data. Processor 0 reads this 
section by using an optimization called data sieving. 

reading the data efficiently, processors must ana­
lyze the FDAT and use a read strategy that ac­
cesses the file in sequence and contiguously. 

We use the following general method for this 
purpose. Each processor calculates the minimum 
of the lower-bounds and the maximum of the 
upper-bounds of all sections in its FDAT. This 
effectively determines the smallest section contain­
ing all the data that must be read from the file 
domain (for example, section ABCD in Fig. 3). 
This section may also contain some data that are 
not required by any processor. If the processor 
attempts to read only the useful data, it may result 
in a number of small-strided accesses. To avoid 
this, the processor uses an optimization we pro­
posed previously, called data sieving [12, 13]. The 
processor reads a column (for column-major or­
der) of the section at a time in a single operation 
into a temporary buffer. This may include some 
unwanted data. The useful data ar~ extracted from 
the temporary buffer and placed in communica­
tion buffers, depending on which processors need 
the data. The entire section is read from the file 
domain in this fashion. The processor may read 
more than one column at a time, if sufficient. mem­
ory is available to do sieving on the set of columns. 
This forms the first phase of the extended two­
phase method. 

The second phase of the extended two-phase 
method consists of communicating the data read 
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in the first phase to the respective processors. From 
the information in the FDA T, each processor de­
termines what data must be sent to which proces­
sor. In addition, since each processor knows the 
file domains of other processors and its own access 
request, it can calculate how much data to receive 
from other processors and where to store it in 
memory. 

The two phases of the extended two-phase 
method either can be done distinctly by performing 
all 1/0 first and then communication, or they can 
be overlapped (pipelined) by reading smalle; por­
tions of data and communicating it. 

3.2 Writing Sections of 
Out-of-Core Arrays 

The algorithm for writing sections is essentiallv the 
reverse of the algorithm for reading sections. From 
the FAD, each processor determines what portions 
of its write request are located in the file domains 
of other processors; those portions must be sent 
to the respective processors. From the FDAT, each 
processor determines what portions of the write 
requests of other processors are located in its own 
file domain; those portions must be received from 
the respective processors. This communication 
forms the first phase of the extended two-phase 
method for writing sections. 

Data are written to the file in the second phase. 
The FDAT is analyzed in the same wav as in the 
read algorithm. Ea~h processor calculat~s the min­
imum and maximum of all indices in its FDAT, 
which determines the smallest section containing 
all the data to be written to the file domain. The 
processor uses data sieving [12, 13] to write the 
useful data in this section. Note that, since there 
may be "holes" between the useful data to be 
written, an extra read operation is required before 
writing. This extra read is not required if the useful 
data are located contiguously in the file. 

If the sections requested to be written by differ­
ent processors have some elements in c~mmon 
there is a data-consistency problem. The resul~ 
depends on the particular implementation of the 
extended two-phase method. In our implementa­
tion, if there are write requests from multiple pro­
cessors to the same location, the data from the 
highest-numbered processor are written to the file. 

4 PARTITIONING THE 1/0 WORKLOAD 

In the extended two-phase method, processors co­
operate to perform II 0. The exact partitioning of 
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FIGURE 4 Static versus dvnamic partitioning: FD, 
file domain. 

the II 0 workload among processors depends on 
how file domains are defined. In general, IIO can 
be partitioned either statically or dynamically. 
J\ote that we are referring to a logical partitioning of 
the file among processors: the file is not physically 
repartitioned into separate files. 

4.1 Static Partitioning 

One way of partitioning IIO (for an array stored in 
column-major order) is to assign a block of col­
umns of the entire out-of-core array to each pro­
cessor. as if the array were distributed among 
processors in a column-block fashion. The file do­
main of each processor is therefore a block of col­
umns of the array stored contiguously in the file. 
The size of each file domain can be determined 
from the size of the array and the number of proc­
essors and is independent of the access requests. 
This is called a static-partitioning scheme. Figure 
4A shows the file domains of four processors, with 
static partitioning of II 0. 

4.2 Dynamic Partitioning 

The main drawback of static partitioning is that the 
partitioning is independent of the access requests. 
For many access patterns, static partitioning may 
result in an imbalance of II 0 among processors: 
some processors may perform more IIO than oth­
ers and some may not perform any II 0 at all. For 
example, consider the access pattern in Figure 4. 
With static partitioning, the access requests span 
the file domains of only two processors (1 and 2); 

therefore, only two processors perform all the 
II 0. In addition. if we increase the size of the out­
of-core array, keeping the number of processors 
fixed, the size of each file domain also increases, 
and the access requests span the file domains of 
fewer processors. resulting in greater IIO im­
balance. 

A dynamic partitioning scheme, based on ac­
cess requests, can divide the 1/0 workload more 
evenly and therefore improve IIO throughput. Fig­
ure 4B illustrates such a partitioning scheme. For 
a file stored in column-major order, each processor 
calculates the first and last among the columns 
of the sections requested by all processors. The 
section formed by these columns and all the rows 
of the out-of-core array is called the bounding sec­
tion. The bounding section ineludes the sections 
requested by all processors and is located contigu­
ously in the file. Figure 4B shows the bounding 
section for the given access requests. File domains 
are determined by dividing the bounding section 
among processors in a column-block fashion. The 
file domain of each processor is thus a contiguous 
chunk of the bounding section. 

If the requested sections span all the columns 
of the out-of-core array, the dynamically selected 
file domains are identical to those determined stat­
ically. If the requested sections span only a few 
columns, however, dynamic partitioning provides 
a much better balance of IIO among processors 
(as Fig. 4 shows). It also reduces the memory re­
quirements of the extended two-phase method, 
because the file domain of each processor is 
smaller. \Vith static partitioning, if all requested 
sections are located in a single processor's file 
domain. all the requested data may not fit in 
the memory of that processor. Consequently. 
IIO and communication may need to be done 
in stages, several times. This situation is less 
likely to occur with dynamic partitioning. because 
the requested data are more evenly divided 
among processors. 

For an array stored in row-major order. file 
domains are determined as follows. Each proces­
sor calculates the first and last among the rows 
of the sections requested by all processors. The 
bounding section is the section formed by these 
rows and all the columns of the out-of-core arrav. 
File domains are determined by dividing the 
bounding section among processors in a row­
block fashion. 

Figure 5 summarizes the extended two-phase 
method for reading sections of out-of-core arrays, 
with dynamic partitioning of II 0. 
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L Exchange access information with other processors and fill in the file access descriptor (FAD). 

2. Calculate the smallest section, called the bounding section, that includes the sections 

requested by all processors. 

3. Determine the file domain of each processor by dividing this bounding section 

among processors in a column-block manner for arrays stored in column-major order 

or row-block manner for arrays stored in row-major order. 

4. Compute the intersection of the FAD and this processor's file domain,and fill in the 

file domain access table (FDAT). 

5. Calculate the minimum of the lower bounds and the maximum of the upper bounds 

of all sections in the FDAT to determine the smallest section containing all the data 

needed from the file domain. 

6. Read this section by using data sieving, and communicate the data to the requesting 

processors. 

FIGURE 5 Extended two-phase method for reading sections of out-of-core arrays with dynamic partitioning of I/0. 

5 PERFORMANCE 

We used the Intel Touchstone Delta for an ex peri­
mental study of the performance of the extended 
two-phase method. The Touchstone Delta has 512 
compute nodes (each an Intel i860/XR micropro­
cessor) and 32 I/0 nodes (each an Intel 80386 
microprocessor). Each I/0 node is connected to 
two disks, resulting in a total of 64 disks. Intel's 
Concurrent File System (CFS) provides parallel ac­
cess to files. By default, CFS stripes files across all 
64 disks in 4-Kbyte blocks. See [ 14] for a detailed 
discussion of the performance of the CFS. 

We studied the performance of the extended 
two-phase method versus the direct method exten­
sively for several synthetic access patterns as well 
as for two real out-of-core parallel applications­
matrix multiplication and a Laplace's equation 
solver. \Ve report the results of these experi­
ments below. 

5.1 Synthetic Access PaHerns 

We used three basic types of synthetic access pat­
terns: 

1. Common sections: All processors access the 
same section of the array. 

2. Overlapping sections: Parts of the section 
requested by a processor may overlap with 

parts of the sections requested by other pro­
cessors. 

3. Distinct sections: The section requested by 
each processor does not have any data in 
common with the section requested by any 
other processor. 

Reading Common Sections 

Table 1 shows the performance of the direct and 
extended two-phase methods for reading common 
sections ( 4K X 4K array, 16 processors). Figure 6 
illustrates the approximate location of each of 
these sections in the array. We measured the per­
formance of the extended two-phase method with 
both static and dynamic partitioning. In all cases, 
the extended two-phase method performed con­
siderably better than the direct method, because 
it read the common section only once and broad­
cast it to other processors. In the direct method, 
on the other hand, all processors read the same 
section from the file simultaneously, resulting in 
extra l/0 overhead. 

In all cases, the extended two-phase method 
took much less time with dynamic partitioning. 
With static partitioning, each processor's file do­
main was of size 4K X 256. Therefore, all sections, 
except those in case V, were located in the file 
domains of only a few processors. With dynamic 
partitioning, on the other hand, the II 0 requests 
were evenly divided among all available proces-
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Table 1. Comparison of the Direct and Extended Two-Phase Methods (Static and Dynamic Partitioning) 
for Reading Common Sections 

Direct 
Extended Two-Phase 

No. Array Section Read Static Dynamic 

(1:100:1, 1:100:1) 1.632 1.027 0.431 
II (200 : 300 : 1' 200 : 300 : 1) 1.867 0.883 0.363 

III (400: 800:1, 400:800: 1) 6.265 3.692 1.056 
IV (32:64:1, 128:1,024:1) 9.995 2.780 1.318 
v (1 :16:1.1 :4,096:1) 52.06 3.241 3.241 

VI ( 1 : 4' 096 : 1' 1 : 16 : 1) 1.216 2.024 0.420 

NOTE: Array size 4K X 4K real numbers (single precision). 16 processors. time in seconds. 

sors, resulting in higher 1/0 throughput. Since the 
section in case V spanned all 4,096 columns, the 
statically and dynamically selected file domains 
were identical, and so was the performance. For 
case V, the extended two-phase method performed 
considerably better than the direct method, be­
cause the direct method resulted in a large number 
of small requests spread across the entire file. 

Reading Overlapping Sections 

Table 2 shows the time taken for reading various 
overlapping sections. Figure 7 illustrates the ap­
proximate location of each of these sections in the 
array. To represent these overlapping sections for 
all processors concisely, we use the following 
notation. Each processor's request is denoted by 
(/1 + ov1 X p: u 1 + ov1 X p: s1 , / 2 + ov2 X p: u 2 + 
ov2 X p : s2), where p is the processor number and 

ov1, ov2 are some constants. The amount of over­
lap can be changed by varying ov1 and ov2. For 
example, the notation (1: 100:1, 1 + 10p: 100 
+ 1 Op : 1) in case I of Table 2 represents a group 
of overlapping sections with processor 0 requesting 
section (1: 100: L 1:100: 1), processor 1 re­
questing section (1: 100:1, 11:110: 1), proces­
sor 2 requesting section (1: 100:1, 21:120: 1), 
and so on. 

The extended two-phase method with dynamic 
partitioning performed the best in all cases. The 
sections in cases I and II were of the same size, 
but they differed in the amount of overlap: the 
sections in case I had more overlap than those in 
case II. Since the total number of columns of the 
out-of-core array spanned by the sections in case 
I was less than that of the sections in case II, it 
took less time to read the sections in case I. The 
sections in cases IV, V, and VI spanned only a 

Dl:J 
(I) (II) (III) 

DOD 
(IV) (V) (VI) 

FIGURE 6 Three common sections listed in Table 1 (not to scale). 
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Table 2. Comparison of the Direct and Extended Two-Phase Methods (Static and Dynamic Partitioning) 
for Reading Overlapping Sections 

Array Section Direct 
Extended Two-Phase 

"io. (p = Processor :'>lumber) Read Static Dynamic 

( 1 : 1 00 : 1, 1 + 1 Op : 100 + 1 Op : 1) 2.000 1.830 0.693 
II (1:100:1,1 + 50p:100 + 50p:1) 4.627 1.859 0.875 

III (400: 800:1, 400 + lOOp: 800 + 100p: 1) 8.097 3.348 2.477 
IV (1 :4,096: 1. 1 + 8p: 16 + 8p: 1) 1.152 3.374 0.826 
v (1 + 50p:100 + 50p:1, 1 :100:1) 1.579 1.994 0.524 

VI (400 + 100p:800 + 100p:1, 400:800:1) 7.442 11.84 1.361 
VII (1 + 8p:16 + 8p:1.1 :4,096:1) 50.32 2.992 2.992 

VIII (200 + 1 OOp : 400 + 1 OOp : 1, 200 + 1 OOp : 400 + 1 OOp : 1) 3.104 2.986 1.739 

'\IOTE: Arrav size 4K X 4K real numbers (single precision), 16 processors. time in seconds. 

few columns. For these cases, the direct method 
performed better than the extended two-phase 
method with static partitioning, because static par­
titioning resulted in only a few processors perform­
ing 1/0. The extended two-phase method with dy­
namic partitioning. however, performed better 
than the direct method, since the II 0 workload 
was better distributed. The worst case for the direct 
method was case VII, which spanned all columns 
of the array. The sections in case VIII were overlap­
ping in both dimensions, and again the extended 
two-phase method with dynamic partitioning took 
the least time. 

overlap overlap 

(I) (II) 

overlap 

(V) (VI) 

Reading Distinct Sections 

Table 3 shows the time taken for reading distinct 
sections. Figure 8 illustrates the approximate loca­
tion of these sections in the array. We use the same 
notation as above, (l1 + ov1 X p : u 1 + ov1 X p : s1 , 

/2 + ov2 X p : u 2 + ov2 X p : s 2), for representing 
distinct sections. The overlap factors ov1 and ov2 
must be large enough to ensure that the sections 
are distinct. 

In case I, the requests of different processors 
were situated in separate locations in the file, be­
cause the sections requested were located along 
rows. As a result, 1/0 in the extended two-phase 

overlap 
overlap 

(Ill) (IV) 

overlap !II .. 
overlap 

(Vll) (VIII) 

FIGURE 7 The overlapping sections listed in Table 2 (not to scale). 
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Table 3. Comparison of the Direct and Extended Two-Phase Methods (Static and Dynamic Partitioning) 
for Reading Distinct Sections 

Array Section Direct 
Extended Two-Phase 

No. (p = Processor Number) Read Static Dynamic 

I (1:100:1, 1 + 100p:100 + 100p:1) 1.976 2.254 1.976 
II (1 + 100p:100 + 100p:1,1 :100:1) 1.633 2.182 0.548 

III (200 + 200p : 400 + 200p : 1. 512 : 1 024 : 1) 8.016 5.680 1.725 
IV (1 + 32p:16 + 32p:1, 1 :4,096:1) 51.63 4.823 4.823 
v (200 + 200p: 400 + 200p: 1, 1 + 200p: .512 + 200p: 1) 5.466 4.524 3.912 

VI (1 + 32p:32 + 32p:1, 1 + 100p:1.024 + 100p:1) 12.02 2.991 2.371 

NOTE: Array size 4K X 4K real numbers (single precision). 16 processors. time in seconds. 

method with dynamic partitioning was identical to 
that in the direct method, and it took the same 
time. The extended two-phase method with static 
partitioning took longer than the direct method, 
because only a few processors performed II 0. The 
sections in cases II-IV were located along columns, 
and the requests of different processors were inter­
leaved in the file. The extended two-phase method 
therefore performed considerably better for these 
cases. Static partitioning did not perform well for 
the sections in case II, because they spanned only 
a few columns. The best case for the extended 
two-phase method was case IV, since the sections 
spanned all columns. The sections in cases V and 
VI were partly interleaved in the file, and even 

for these cases, the extended two-phase method 
performed the best. 

Writing Distinct Sections 

We considered only the case where each processor 
writes a distinct section to the file. because other 
cases, such as writing overlapping or common sec­
tions, are unlikely to occur. Table 4 shows the time 
taken for writing distinct sections. The sections 
chosen were the same as those for reading (Table 3, 
Fig. 8). As for reading distinct sections, the direct 
method and the extended two-phase method with 
dynamic partitioning took the same time for writing 
the sections in case I, whereas the extended two-

DD 
(I) (II) (III) 

(IV) (V) (VI) 

FIGURE 8 The distinct sections listed in Table 3 (not to scale). 
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Table 4. Comparison of the Direct and Extended Two-Phase Methods (Static and Dynamic Partitioning) 
for Writing Distinct Sections 

Array Section Direct 
Extended Two-Phase 

No. (p = Processor ~umber) Write Static Dynamic 

I (1 :100:1,1 + 100p:100 + 100p:1) 1.944 2.166 1.944 
II (1 + 100p:100 + 100p:1, 1 :100:1) 1.182 2.034 0.494 

III (200 + 200p:400 + 200p:1, 512:1,024:1) 4.202 5.445 1.669 
IV (1 + 32p:16 + 32p:1, 1:4,096:1) 24.85 10.25 10.25 
v (200 + 200p : 400 + 200p : 1, 1 + 200p : 512 + 200p : 1) 5.155 5.461 4.401 

VI (1 + 32p:32 + 32p:1, 1 + 100p:1,024 + 100p:1) 8.233 4.994 4.274 

NOTE: Arrav size 4K X 4K real numbers (single precision), 16 processors. time in seconds. 

phase method with static partitioning took longer. 
In the other cases, the extended two-phase method 
with dynamic partitioning performed considerably 
better than the direct method. 

Accessing Sections with Nonunit Strides 

We also tested the performance for accessing sec­
tions with nonunit strides. When an arrav section 
has a nonunit stride, each element requested is 
strided in the file. The only way of reading such 
array sections using a direct method is to seek ex­
plicitly to each individual element and read only 
that element. This results in very low granularity 
of data transfer, which is very expensive. The ex­
tended two-phase method overcomes this draw­
back of the direct method by reordering requests 
and using data sieving for larger granularity ac­
cesses. 

Table 5 shows the performance for reading sec­
tions with nonunit strides. The sections in case I 
spanned almost the entire array, with stride equal 
to the number of processors. As a result, static 
and dynamic partitioning took the same time. The 
sections in cases II and III were located diagonally 
across the out-of-core array. The sections in case 
IV were located along columns, and the sections 

in ease V were located along rows. In all eases, the 
extended two-phase method was more than 20 
times faster than the direct method. Table 6 shows 
the performance of the extended two-phase 
method for writing sections with nonunit strides. 
The sections chosen were the same as in Table 5. 
Even for writing sections, the extended two-phase 
method improved 110 performance considerably. 

We also studied the scalability of the extended two­
phase method for a large number of processors, 
large array sections, and large out-of-core arrays. 
Since dynamic partitioning always performed bet­
ter than, or at least as well as static partitioning, 
we considered only dynamic partitioning for the 
scalability experiments. Table 7 shows the timings 
obtained by varying the number of processors re­
questing array sections from 4 to 128, for both 
reading and writing. We selected a few sections 
in each category-common, overlapping, distinct, 
and nonunit strides. Note that, as the number of 
processors was increased, the total amount of 
II 0 performed also increased. 

The extended two-phase method sealed well 
with the number of processors. In many eases, the 

Table 5. Comparison of the Direct and Extended Two-Phase Methods (Static and Dynamic Partitioning) 
for Reading Sections with Nonunit Strides 

Array Section Direct 
Extended Two-Phase 

No. (p = Processor :'-Jumber) Read Static Dynamic 

(p + 1 : 4,096 : nprocs,p + 1 : 4,096 : nprocs) 210.8 9.330 9.330 
II (1 + 250p: 250 + 2.50p: 2, 1 + 250p: 250 + 250p: 2) 53.13 3.610 2.842 

III (1 + 200p: 500 + 200p: 3, 1 + 200p: 500 + 200p: 3) 87.19 4.394 4.387 
IV (1 + 64p: 64 + 64p: 2, 500: 2,500: 3) 96.20 4.759 3.848 
v (500: 2,500:3. 1 + 64p: 64 + 64p: 2) 130.7 4.574 2.340 

NOTE: Arrav size 4K X 4K real numbers (single precision). 16 processors. time in seconds. 
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Table 6. Comparison of the Direct and Extended Two-Phase Methods (Static and Dynamic Partitioning) 
for Writing Sections with Nonunit Strides 

Array Section Direct 
Write 

Extended Two-Phase 

~0. 

I 
II 

III 
IV 
v 

(p = Processor !"umber) 

(p + 1:4,096: nprocs. p + 1:4,096: nprocs) 
(1 + 250p : 250 + 250p: 2. 1 + 250p: 250 + 250p : 2) 
(1 + 200p: 500 + 200p: 3, 1 + 200p: 500 + 200p: 3) 

(1 + 64p: 64 + 64p: 2, 500:2,500: 3) 
(500: 2,500:3, 1 + 64p: 64 + 64p: 2) 

:-.IOTE: Array size 4K X 4K real numbers (single precision). time in seconds. 

53.28 
25.22 
44.64 
71.35 
79.24 

Static 

22.77 
6.438 
8.696 
8.858 
7.724 

Dynamic 

22.77 
3.775 
7.516 
7.279 
4.405 

Table 7. Scalability of the Extended Two-Phase Method. The Number of Processors Accessing Sections 
was Varied from 4 to 128 

Reading Common Sections 

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Procs = 64 Procs = 128 

Section DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP 

I 2.620 1.282 3.184 1.040 4.421 1.056 8.734 1.169 16.28 1.436 32.64 2.130 
II 12.16 4.315 13.95 3.099 19.65 3.241 32.96 2.647 60.11 3.432 116.7 3.219 

Reading Overlapping Sections 

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Procs = 64 Procs = 128 

DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP 

Ill 3.079 1.748 5.208 1.699 6.850 1.991 13.61 2.798 24.98 3.801 47.95 4.602 
IV 13.75 4.450 13.77 3.391 19.63 2.992 32.70 3.696 60.58 4.791 115.9 7.401 

Reading Distinct Sections 

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Procs = 64 Procs = 128 

DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP 

v 12.37 4.791 13.57 3.929 19.76 4.149 32.38 6.109 46.12 7.276 54.82 8.161 
VI 3.704 1.893 2.396 1.585 4.125 1.638 7.806 2.418 19.77 2.970 26.23 4.110 

Writing Distinct Sections 

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Procs = 64 Procs = 128 

DW ETP DW ETP DW ETP DW ETP DW ETP DW ETP 

v 3.129 7.900 6.971 6.861 12.45 8.554 27.52 12.74 37.70 18.52 52.41 24.74 
VI 0.982 1.937 1.803 2.218 3.954 3.058 6.436 5.028 7.139 6.234 21.20 9.403 

Reading Sections with ;\lonunit Strides 

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Procs = 64 Procs = 128 

DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP 

VII 799.2 22.82 216.6 15.83 210.8 9.331 103.1 10.89 54.94 8.307 50.60 9.657 
Vlii 56.44 1.342 77.78 1.440 83.87 1.870 163.1 3.123 331.5 5.062 867.4 7.711 

Writing Sections with Nonunit Strides 

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Procs = 64 Procs = 128 

DW ETP DW ETP DW ETP DW ETP DW ETP DW ETP 

VII 668.7 42.75 147.3 39.11 84.54 31.40 64.53 26.42 35.35 28.40 51.38 31.16 
VIII 9.041 1.612 18.83 1.603 35.17 2.972 75.95 4.812 163.6 7.915 341.8 21.75 

J'liOTE: Arrav size 4K X 4K real numbers (single precision). time in seconds. DR. Direct Read: ETP. extended two-phase method 
with dvnamic partitioning: DW. direct write. I = (400: 800: 1. 400: 800: 1 ). Figure 6(III): II= (1 : 16: 1. 1 :4.096: 1 ). Figure 6(V): 
III = (400: 800: 1. 400 + 25p: 800 + 25p: 1 ). Figure 7(IIJ): IV = (1 + 8p: 16 + 8p: L 1 :4.096: 1 ). Figure 7(VII): Y = (1 + 
2Sp: 16 + 2Sp: L 1 :-t.096: 1). Figure 8(IV): VI= (1 + 32p :32 + 32p: 1. 1 + 24p: 1,024 + 24p: 1). Figure 8(VI): VII= (p + 
1:4.096: nprocs. p + 1 :4,096: nprocs): nn = (500: 2.500:3. 1 + 32p: 32 + 32p: 2). 
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Table 8. Scalability of the Extended Two-Phase Method for Large Requests. Array Size 16K X 16K Real 
Numbers (Single Precision), 1 Gbyte File 

Reading Sections 

Procs = 'f Procs = 8 Procs = 16 Proes = 32 Procs = 64 Procs = 128 

Section DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP 

23.65 7.880 'f3.4:3 7.795 78.99 7.935 151.:3 9.085 :302.7 9.:368 605.1 11.86 
II 53.~30 26.51 10:3.3 28.10 132.3 28.50 157.6 32.49 162.3 'f0.03 182.4 52.08 

III 13.31 5.061 24.11 6.489 31.49 7.400 :39.81 9.25:3 41.28 10.12 44.29 13.2:3 
IV 0.68:3 0.699 0.841 0.939 1.~343 1.173 2.189 1.663 4.H9 2.850 8.486 4.994 
v 10.97 5.380 19.:31 8.475 26.52 10.58 35.06 12.69 52.81 14.10 124.2 22.06 

VI 57.29 21.9-'t 74.0;) 2:3.05 127.3 32.88 240.8 51.26 500.2 112.2 799.7 98.68 

Writinl! Sections 

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Proes = 6'f Procs = 128 

DW ETP ow ETP D\V ETP D\V ETP DW ETP DW ETP 

v 7.108 12.01 15.21 18.98 32.20 23.37 35.99 30.17 5:3.1 () 3S.76 98.90 :~2.54 

VI 'f8.35 44.18 71.85 52.07 1;)1.4 73.34 272.8 122.3 5'f8.1 174.1 746.6 16'+.2 

'>;OTE: The nurnLer of processors accesf'inf: sections was varied from 4 to 1:28. DR. direct read: ETP. <"Xtt'ndcd two-phase 
method with dynamic partitioning: DW. direct writt>. Timf' in seconds. I = (.).000: (),()()(): l: 5.000: ().000: I): II = (I + I Otlp: 
300 + lOOp: 1: 4.000:8.000: 11: Ill = (1 + 100p: 400 + lOOp: 1: 2.000 + 20p: :2.800 + :20p: 1 ): TY = :·i.OOO: 8.000: 1. 1 + 
'tp :3 + 4p: 1 \' = (1 +lOOp: 100 + 100p: L 1 +lOOp: 1.024 +lOOp:!;: Yl = .1 + 20p: 16 + 20p: 1: 4.000:12.000: 1). 

time taken increased only slightly as the number 
of processors was increased, indicating that we ob­
tained higher l/0 throughput by increasing the 
number of processors. for example. for the sec­
tions in ease I, the time taken increased from 1.282 
to only 2.130 ;:; when the number of processors 
was increased from"!: to 128. In some cases, such 
as case II. the time taken even decreased. The 
direct method performed quite poorly when the 
number of processor:; was increased. especially for 
cases IL IY .. and VIII. The extended two-phase 
method also scaled well for writing sections. For a 
small number of proceRsors. the extended two­
phaiie method rook longer for writing, because of 
the extra read before each -i·rite. for a large num­
ber of processors (2:: 16 ). however, the extended 
two-phase method performed better than the di­
rect method in spite of the extra read. For sections 
with nonunit strides. the extended two-phase 
method performed considerably better than the 
direct method. 

Table 8 shows the performance for accessing 
large sections of a large out-of-core array of size 
16K X 16K single precision real numbers (file size 
1 Gbyte). figure 9 shows the approximate location 
of these sections in the arrav. \Ve considered com­
mon. overlapping. and distinct sections for reading 
and distinct sections for writing. The trend in the 
results was the same as for a "l:K X 4K array (Table 
7). The direct method performed much worse for 

accessing large sections than for small sections, 
whereas the extended two-phase method per­
formed consistentlv wdl for sections of anv size. . . 
figures 10 and 11 com part> the rdative perfor-
mance of the two methods for reading and writing 
the sections in case Yl of Table B. 

5.2 Real Applications 

\\ e also studied the performanct~ of the extended 
two-phase method with dynamic partitioning ver­
sus the direct method. for two real out-of-core par­
allel applications-matrix multiplication and a 
Laplace's equation soln'r. 

Matrix Multiplication 

Table 9 shows the l/0 time for out-of-core matrix 
multiplication for different array sizes and number 
of processors. The l/0 time \vas calculated as the 
maximum of the time taken by all proce,;sors. for 
alll/0 (reading and writing) rf'quired in the out­
of-core matrix multiplication algorithm described 
in Section 2. l\ote that in the extended two-phase 
method. the l/0 time includes the time for data 
communication. In all cases. the extended t\VO­
phase method performed better than the direct 
method. Figure 12 show,.; that the percentage im-
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overlap overlap 

·. 

(I) (II) (III) 

·. 

overlap 

(IV) (V) (VI) 

FIGURE 9 Thc- sections listed in Table 8 (not to scale). 

provement in I/0 time provided by the extended 
~-o-phase method over the direct method varied 
from 22 to 75%. 

Laplace's Equation Solver 

Table 10 shows the II 0 time for an out -of-core 
Laplace's equation solver for different array sizes 
and number of processors. The l/0 time is the 
maximum of the time taken by all processors for 
c:tll l/0 (readiag and writinf() required in the out-
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FIGUHE 10 Scalability results. 16K X 16K array. time 
for readin!! sPctions in ca~e VI of Table 8. 

of-core Laplace's equation solver algorithm de­
scribed in Section 2. As in the ease of matrix multi­
plication, the extended two-phase method per­
formed better than the direct method. The per­
centage improvement in l/0 time provided by the 
extended two-phase method over the direct 
method is shown in Figure 13. The percentage 
improvement was lower than in the case of matrix 
multiplication, possibly because of the difference 
in the I/0 access patterns of the two applications. 
H.ecall that in out-of-core matrix multiplication, 
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FIGUHE 11 Scalability results~ 16K X 16K array, time 
for writin!! sections in case YT of Table 8. 
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Table 9. 110 Time in Seconds for Out-of-Core Matrix Multiplication Using 
Direct and Extended Two-Phase Methods with Dynamic Partitioning (ETP) 

1K X 1K Array 2K X 2K Array 4K X 4K Array 

Procs. Direct ETP Direct ETP Direct ETP 

8 44.65 34:.77 103.4 80.43 589.0 416.8 
16 39.88 24.78 94.37 69.87 465.9 326.8 
32 37.80 18.88 108.6 
64 50.65 17.66 168.8 

128 161.0 24.76 377.1 

matrix B is accessed in blocks along columns. The 
results with synthetic access patterns in Section 
5.1 indicate that the extended two-phase method 
performs very well for such accesses. 

6 CONCLUSIONS 

The extended two-phase method is clearly supe­
rior to a direct method for accessing sections of 
out-of-core arrays. In our experirnents with real 
applications as well as several synthetic access pa­
terns, the extended two-phase method outper­
formed the direct method significantly. 

The extended rwo-phase method also provides 
much flexibility in partitioning the I/0 workload 
among processors. \Ve have described one dy­
namic partitioning scheme that performed signifi­
cantly better than a static partitioning scheme, but 
it may be possible to do even better. For example. 
instead of dividing the bounding section among 
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FIGURE 12 Percentage improvement in l/0 time of 
out-of-core matrix multiplication by using the extended 
two-phase method versus the direct method. 

76.36 536.4 354.5 
122.8 814.2 501.1 
218.1 1562 909.3 

processors in a column-block fashion, it could be 
divided in a block-cvclic fashion, so that if the 
bounding section in~ludes some unwanted col­
umns, they are evenly distributed. Another ap­
proach is to divide l/0 among processors in such 
a way that the 1/0 requests from different proces­
sors go to different disks or I/0 nodes. Further­
more, if the ratio of processors to disks on the 
machine is very high, it is possible to have only 
a few processors perform l/0. thereby reducing 
contention for the I/0 svstem. 

The extended two-phase method can be used 
for accessing arrays with any number of dimen­
sions and any storage order. For the dynamic parti­
tioning scheme we have proposed. tht-: file domains 
for ann-dimensional array can be obtained by first 
calculating the n-dimensional bounding section of 
all requests. and then dividing it among processors 
such that the file domain of each processor is lo­
cated contiguously in the file. 

g. 
"/::: 
~ 
Q) 
c.. 

Array sections other than those that can be rep-
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FIGURE 13 Percentage improvement in l/0 time of 
out-of-core Laplace''s equation solver by using the ex­
tended two-phase method versus the direct method. 
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Table 10. I/0 Time in Seconds for Out-of-Core Laplace's Equation Solver 
Using the Direct and Extended Two-Phase Methods with Dynamic Partitioning 
(ETP) 

1K X 1K Array 2K x 2K Array 4K X 4K Array 

Proes. Direct ETP Direct ETP Direct ETP 

8 27.15 25.03 72.34 68.00 387.1 356.7 
16 17.06 15.27 61.96 54.65 434.0 294.3 
32 18.59 13.29 50.27 43.63 448.3 273.3 
64 19.20 14.80 49.15 42.06 383.6 280.0 

128 31.40 18.16 64.67 53.10 508.5 334.4 

resented by a lower-bound, upper-bound, and 
stride in each dimension, for example, sections 
with nonuniform strides, can also be accessed 
by using the extended two-phase method. This 
requires a more general notation for representing 
such sections. The data structures, such as FAD 
and FDA T, must be modified to handle such 
requests, but the basic idea remains the same. 

It is not necessary that all processors running 
the application must call the extended two-phase 
read/write routine. Even a subset of processors 
may call the routine and participate in the two­
phase process. The I/0 workload can be divided 
among the processors in this subset. 

The extended two-phase method is not specific 
to any particular machine, file system, or architec­
ture; it ean be easily implemented by using any 
file-system interface, or by using portable inter­
faces, such as MPI-10 [15], resulting in portable 
implementations. It can also be easily modified 
and tuned for any particular system-by defining 
file domains appropriately and possibly using a 
different algorithm for interprocessor communi­
cation. 

The best way to use the extended two-phase 
method is to implement it as library routines that 
can be called from an application program. We 
have implemented it in the PASSION run-time li­
brary [16], which is available on the WWW at 
http: //www.cat.syr.edujpassion.html. 
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