
An Extended Two-Phase Method for Accessing
Sections of Out-of-Core Arrays

RAJEEV THAKUR1 AND ALOK CHOUDHARY2

1Mathematics and Computer Science Division, Argonne Nat1:onal Laboratory, Argonne, IL 60439. e-mail: thakur@mcs.anl.gov
2Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208; e-mail: choudhar@ece.nwu.edu

ABSTRACT

A number of applications on parallel computers deal with very large data sets that
cannot fit in main memory. In such applications, data must be stored in files on disks
and fetched into memory during program execution. Parallel programs with large out­
of-core arrays stored in files must read/write smaller sections of the arrays from/to
files. In this article, we describe a method for accessing sections of out-of-core arrays
efficiently. Our method, the extended two-phase method, uses collective 1/0: Processors
cooperate to combine several 1/0 requests into fewer larger granularity requests, to
reorder requests so that the file is accessed in proper sequence, and to eliminate simulta­
neous 1/0 requests for the same data. In addition, the 1/0 workload is divided among
processors dynamically, depending on the access requests. We present performance
results obtained from two real out-of-core parallel applications-matrix multiplication
and a Laplace's equation solver-and several synthetic access patterns, all on the Intel
Touchstone Delta. These results indicate that the extended two-phase method significantly
outperformed a direct (noncollective) method for accessing out-of-core array
sections. © 1996 John Wiley & Sons, Inc.

1 INTRODUCTION

Parallel computers are being used increasingly to
solve large computationally intensive as well as
data-intensive applications, such as large-scale
computations in physics, chemistry, biology, engi­
neering, medicine, and other sciences. The data
required by many of these applications must be
stored in files on disks, as they are too large to fit
in main memory [1]. The program must perform
1/0 to access data from disks. Examples of such

Received Mav 1995
Revised May .1996

© 1996 John Wiley & Sons, Inc.
Scif'ntific Programming. VoL 5, pp. 301-317 (1996)
CCC 1058-9244/96/040301-17

applications are Hartree-F ock calculations in
chemistry, very large fast fourier transforms to de­
tect faint radio pulsars, seismic data processing,
weather and climate modeling, three-dimensional
turbulence simulations, scattering and radiation
problems in computational electromagnetics, and
several others [2].

Multidimensional arrays are widely used as data
structures in scientific programs. Scientific appli­
cations with large out-of-core data sets may there­
fore have one or more out-of-core multidimen­
sional arrays stored in files. At run-time, the
program must fetch smaller sections of these arrays
from files, perform computation, and, if necessary,
store the results back to files. Different processors
may need different sections of the arrays depend­
ing on the data distribution, and the sections may
have strides in each dimension.

302 THAKUR AND CHOUDHARY

In this article, we describe a method, called the
extended two-phase method, for parallel programs
to access sections of out-of-core arrays efficiently.
In this method, the requesting processors cooper­
ate in reading or writing data-a process known
as collective 110. Specifically, processors cooper­
ate to combine several 110 requests into fewer
larger granularity requests, reorder requests so that
the file is accessed in proper sequence, and elimi­
nate simultaneous 110 requests for the same data.
In addition, the extended two-phase method parti­
tions the total 1/0 workload among processors dy­
namically, depending on the access requests.
Compared to a static partitioning scheme, dynamic
partitioning results in a more balanced distribution
of 1/0 among processors and therefore performs
considerablv better.

We prese~t extensive performance results com­
paring the extended two-phase method with a di­
rect (noncollective) method on the Intel Touch­
stone Delta. For this purpose, we use two real
parallel applications-out-of-core matrix multi­
plication and out-of-core Laplace's equation
solver-as well as several synthetic access pat­
terns. We found that the extended two-phase
method performed considerably better than the
direct method for a wide range of access patterns,
array sizes, and nun1ber of processors.

The rest of this article is organized as follows.
ln Section 2, we describe the 110 access patterns
of two out-of-core parallel applications and thus
motivate the need for the extended two-phase
method. The method itself is explained in Section
3. In Section 4" we describe a simple static scheme
for partitioning II 0 among processors and then
show how the partitioning can be improved by us­
ing a dynamic scheme. Extensive performance and
scalability results are presented in Section 5. We
draw ove~all conclusions in Section 6.

2 TWO OUT -OF-CORE PARALLEL
APPLICATIONS

Here we describe the II 0 access patterns of two
out-of-core parallel applications-matrix multi­
plication and a Laplace's equation solver.

2.1 Out-of-Core Matrix Multiplication

We consider an out-of-core GAXPY algorithm for
matrix multiplication, described in [3]. Let A" B,
and C ben X n matrices such that C =A X B.

The matrices can be represented in terms of their
individual columns as

A= [a 1 ,.

B = [6 1 ,.

C = [c1 ,.

. , an], a1 E Rn

. , bn], bj E Rn

. ' cnl' C; ERn

The GAXPY algorithm for computing C = A X

B is

j= 1 :n

In other words, to compute the jth column of
C, we need the jth column of B and all columns
of A. An out-of-core GAXPY algorithm for matrix
multiplication can be implemented as follows. In
the first step, processors read two-dimensional
sub-blocks of matrix A into main memory such
that the sub-blocks of all processors together span
entire rows (see Fig. 1). The processors also read
two-dimensional sub-blocks ofmatrixB into mem­
orv such that the sub-blocks of all processors to­
gether span entire columns. The data now present
in memorv are sufficient to compute the first two­
dimensio~al sub-block of matrix C. This computa­
tion requires a global sum operation. The proces­
sors then write the newly computed sub-block of
C to the file. In the following step, processors read
the next set of sub-blocks of B (shown by dashed
lines in Fig. 1), reuse the sub-blocks of A fetched
in the previous step, and calculate the second sub­
block of C. This process is repeated until all the
sub-blocks in the first block of rows of C are com­
puted. The above process is then repeated with
the sub-blocks from the next set of rows of A"
shown bv dashed lines. The entire matrix C is com­
puted in. this fashion. :'\ote that, at any time, each
processor has only one sub-block of matrices A,
B, and C in memory.

2.2 Out-of-Core Laplace's
Equation Solver

We consider a Laplace's equation solver that uses
a Jacobi iteration method. This is a stencil compu­
tation where the value at each point is computed
by using the values at its neighbors in each of the
four directions.

do k=1, niter
A(i, j) = (B(i-1, j) +B(i+1, j) +
B(i, j-1) +B(i, j+1)) /4, i, j=1: n
Exchange A and B

end do

EXTENDED TWO-PHASE METHOD 303

Step I, 5 ,....s_te....:.p_2.:_, 6--------, Step 1 Step 2

Step 1 ' 0 I
!

I

' I
I

----I ---_I

' I

StepS 0 I
I

----l.-

I 2 I 3
I I

-------L---- --- _,
StepS -

2
I

----1

3

A B c

FIGURE 1 1/0 access pattern in out-of-core matrix multiplication.

An out-of-core Laplace's equation solver can
be implemented as follows. Divide the out-of-core
array into two-dimensional sub-blocks such that
two blocks (one for old values, one for new values)
can fit at a time in the memory of each processor.
Assign blocks to processors in a round-robin fash­
ion as shown in Figure 2. Each processor reads
one block at a time from the file containing the
array. Processors can either communicate bound­
ary ;ows and columns or read them directly from
the file. After a processor computes new values, it
writes the new block to a file containing the new
array. This process is repeated on other sub-blocks
of the array to complete one iteration. The algo-

FIGURE 2 110 access pattern in an out-of-core La­
place's equation solver.

rithm is repeated for further iterations until it con­
verges.

2.3 Accessing Out-of-Core
Array Sections

In the above applications, processors access two­
dimensional sub-blocks of out-of-core arrays.
This type of access pattern also occurs in other
applications, such as out-of-core LU solvers [4].
Since arrays are usually stored in a file in either
column-major order (as in Fortran) or row-major
order (as in C), the data required by each processor
are not located contiguously in the file. In many
cases, the requests of different processors are in­
terleaved in the file. To read noncontiguous data
with the interfaces currently provided by parallel
file systems, each processor must explicitly seek to
the appropriate location in the file, read a small
chunk of data, then seek to the next location, and
so on. We call this the direct method. The Vesta
and PIOFS file systems on the IBM SP [5, 6] and
the nCUBE file system do provide support for
the user to specify a logical view of the data to
be read and use a single call to read data. Each
processor's request, however, is serviced indepen­
dently, and the file systems do not perform collec­
tive I/0.

The drawback of the direct method is that the
parallel file system may receive a large number of
low-granularity requests from multiple processors
in any order. As II 0 latency is very high, such
access requests perform poorly. For many access
patterns, such as in the above applications, the

304 THAKUR AND CHOUDHARY

II 0 performance can be improved by using the
collective knowledge of the access requests of all
processors. Processors can cooperate among
themselves to perform IIO in large chunks and in
the proper order, a process known as collective
IIO. The extended two-phase method specifies a
procedure for performing collective II 0 to access
out-of-core array sections. Other examples of col­
lective IIO are disk-directed IIO [8] and server­
directed collective IIO [9].

3 EXTENDED TWO-PHASE METHOD

The two-phase method, proposed in [10, 11], is
a collective II 0 technique for reading an entire in­
core array from a file into a distributed array in
main memory, and conversely. for writing a distrib­
uted in-core arrav to a file. IIO is done in two
phases. In the first phase, processors always read
data assuming a conforming distribution. A con­
forming distribution is defined as a distribution of
an array among processors such that each proces­
sor's local array is stored contiguously in the file,
resulting in each processor reading a single large
chunk of data. For an arrav stored in a file in
column-major order. a column-block distribution
is the conforming distribution. In the second
phase, data are redistributed among processors to
the desired distribution. Since IIO cost is orders
of magnitude more than communication cost, the
cost incurred by the second phase is negligible.
This two-phase approach is found to perform well
for all array distributions [10, 11].

\Ve have extended the basic two-phase method
to access sections of out-of-core arrays. This ex­
tended two-phase method performs l/0 for out­
of-core arrays efficiently by:

1. Dynamically partitioning the IIO workload
among processors, depending on the ac­
cess requests.

2. Combining several IIO requests into fewer
larger granularity requests.

3. Reordering requests so that the file is ac­
cessed in proper sequence.

4. Eliminating simultaneous II 0 requests for
the same data.

3.1 Reading Sections of
Out-of-Core Arrays

We first describe the extended two-phase method
for reading array sections. For the purpose of ex-

planation, we consider the ease where each proces­
sor must read a section (specified in terms of a
lower-bound, upper-bound, and stride in each di­
mension) of a two-dimensional array stored in a
file in column-major order. In general, the ex­
tended two-phase method can be used for arrays
with any number of dimensions, stored in any or­
der in the file, and accessed by a subset of the total
number of processors.

The extended two-phase method divides the
II 0 workload among processors by assigning own­
ership to portions of the file. A processor can di­
rectly access only the portion of the file it owns,
called its file domain. For a file stored in column­
major order, the file domain of each processor is
some set of columns of the arrav. Section 4 de­
scribes two ways of assigning file domains to pro­
cessors.

Assume that each processor must read a section
(11 : u 1 : s1 , 12 : u 2 : s"2.) of the out-of-core array in
global coordinates. The sections required by dif­
ferent processors may be identical, overlapping,
or distinct. In the first step of the extended two­
phase method, processors exchange their own ac­
cess information (the indices 11 , u 1 • s 1 , 12 , u 2 , s2)

with other processors, so that each processor
knows the access requests of other processors. This
information is stored in a data structure called the
file access descriptor (FAD). The FAD contains
exactly the same information on all processors.
This exchange phase is not required if the collec­
tive II 0 interface itself provides information about
the access requests of other processors.

Since each processor knows its own file domain
and the access requests of other processors, it can
determine what portion of the data in its file do­
main is needed by other processors. This is done
by computing the intersection of the requests of
other processors from the FAD and its own file
domain. This information is stored in a data stnie­
ture called the file domain access table (FDAT).
The FDAT of a processor thus contains informa­
tion indicating which portions of its file domain
have been requested by other processors.

Each processor must now read data from its file
domain as specified by the FDAT. For example,
Figure 3 shows the file domain of processor 0 and,
for some access pattern, the portions of this file
domain that have been requested by other proces­
sors. A simple way of reading is to read all the data
needed by processor 0, followed by that needed
by processor 1, and so on, in order of processor
number. This method, however, may result in too
many small accesses that are not in sequence. For

A D

l's request

2's request

3's request

c

FIGURE 3 Processor 0 must read the requested data
from its file domain. Section ABCD is the smallest section
containing all the requested data. Processor 0 reads this
section by using an optimization called data sieving.

reading the data efficiently, processors must ana­
lyze the FDAT and use a read strategy that ac­
cesses the file in sequence and contiguously.

We use the following general method for this
purpose. Each processor calculates the minimum
of the lower-bounds and the maximum of the
upper-bounds of all sections in its FDAT. This
effectively determines the smallest section contain­
ing all the data that must be read from the file
domain (for example, section ABCD in Fig. 3).
This section may also contain some data that are
not required by any processor. If the processor
attempts to read only the useful data, it may result
in a number of small-strided accesses. To avoid
this, the processor uses an optimization we pro­
posed previously, called data sieving [12, 13]. The
processor reads a column (for column-major or­
der) of the section at a time in a single operation
into a temporary buffer. This may include some
unwanted data. The useful data ar~ extracted from
the temporary buffer and placed in communica­
tion buffers, depending on which processors need
the data. The entire section is read from the file
domain in this fashion. The processor may read
more than one column at a time, if sufficient. mem­
ory is available to do sieving on the set of columns.
This forms the first phase of the extended two­
phase method.

The second phase of the extended two-phase
method consists of communicating the data read

EXTENDED TWO-PHASE METHOD 305

in the first phase to the respective processors. From
the information in the FDA T, each processor de­
termines what data must be sent to which proces­
sor. In addition, since each processor knows the
file domains of other processors and its own access
request, it can calculate how much data to receive
from other processors and where to store it in
memory.

The two phases of the extended two-phase
method either can be done distinctly by performing
all 1/0 first and then communication, or they can
be overlapped (pipelined) by reading smalle; por­
tions of data and communicating it.

3.2 Writing Sections of
Out-of-Core Arrays

The algorithm for writing sections is essentiallv the
reverse of the algorithm for reading sections. From
the FAD, each processor determines what portions
of its write request are located in the file domains
of other processors; those portions must be sent
to the respective processors. From the FDAT, each
processor determines what portions of the write
requests of other processors are located in its own
file domain; those portions must be received from
the respective processors. This communication
forms the first phase of the extended two-phase
method for writing sections.

Data are written to the file in the second phase.
The FDAT is analyzed in the same wav as in the
read algorithm. Ea~h processor calculat~s the min­
imum and maximum of all indices in its FDAT,
which determines the smallest section containing
all the data to be written to the file domain. The
processor uses data sieving [12, 13] to write the
useful data in this section. Note that, since there
may be "holes" between the useful data to be
written, an extra read operation is required before
writing. This extra read is not required if the useful
data are located contiguously in the file.

If the sections requested to be written by differ­
ent processors have some elements in c~mmon
there is a data-consistency problem. The resul~
depends on the particular implementation of the
extended two-phase method. In our implementa­
tion, if there are write requests from multiple pro­
cessors to the same location, the data from the
highest-numbered processor are written to the file.

4 PARTITIONING THE 1/0 WORKLOAD

In the extended two-phase method, processors co­
operate to perform II 0. The exact partitioning of

306 THAKUR AND CHOUDHARY

Bounding Section

-·­
•. -·:

FD FD FD FD
ofO of I of2 of3

(A) Static

FD FD FD FD
ofO ofl of2 of3

(B) Dynamic

FIGURE 4 Static versus dvnamic partitioning: FD,
file domain.

the II 0 workload among processors depends on
how file domains are defined. In general, IIO can
be partitioned either statically or dynamically.
J\ote that we are referring to a logical partitioning of
the file among processors: the file is not physically
repartitioned into separate files.

4.1 Static Partitioning

One way of partitioning IIO (for an array stored in
column-major order) is to assign a block of col­
umns of the entire out-of-core array to each pro­
cessor. as if the array were distributed among
processors in a column-block fashion. The file do­
main of each processor is therefore a block of col­
umns of the array stored contiguously in the file.
The size of each file domain can be determined
from the size of the array and the number of proc­
essors and is independent of the access requests.
This is called a static-partitioning scheme. Figure
4A shows the file domains of four processors, with
static partitioning of II 0.

4.2 Dynamic Partitioning

The main drawback of static partitioning is that the
partitioning is independent of the access requests.
For many access patterns, static partitioning may
result in an imbalance of II 0 among processors:
some processors may perform more IIO than oth­
ers and some may not perform any II 0 at all. For
example, consider the access pattern in Figure 4.
With static partitioning, the access requests span
the file domains of only two processors (1 and 2);

therefore, only two processors perform all the
II 0. In addition. if we increase the size of the out­
of-core array, keeping the number of processors
fixed, the size of each file domain also increases,
and the access requests span the file domains of
fewer processors. resulting in greater IIO im­
balance.

A dynamic partitioning scheme, based on ac­
cess requests, can divide the 1/0 workload more
evenly and therefore improve IIO throughput. Fig­
ure 4B illustrates such a partitioning scheme. For
a file stored in column-major order, each processor
calculates the first and last among the columns
of the sections requested by all processors. The
section formed by these columns and all the rows
of the out-of-core array is called the bounding sec­
tion. The bounding section ineludes the sections
requested by all processors and is located contigu­
ously in the file. Figure 4B shows the bounding
section for the given access requests. File domains
are determined by dividing the bounding section
among processors in a column-block fashion. The
file domain of each processor is thus a contiguous
chunk of the bounding section.

If the requested sections span all the columns
of the out-of-core array, the dynamically selected
file domains are identical to those determined stat­
ically. If the requested sections span only a few
columns, however, dynamic partitioning provides
a much better balance of IIO among processors
(as Fig. 4 shows). It also reduces the memory re­
quirements of the extended two-phase method,
because the file domain of each processor is
smaller. \Vith static partitioning, if all requested
sections are located in a single processor's file
domain. all the requested data may not fit in
the memory of that processor. Consequently.
IIO and communication may need to be done
in stages, several times. This situation is less
likely to occur with dynamic partitioning. because
the requested data are more evenly divided
among processors.

For an array stored in row-major order. file
domains are determined as follows. Each proces­
sor calculates the first and last among the rows
of the sections requested by all processors. The
bounding section is the section formed by these
rows and all the columns of the out-of-core arrav.
File domains are determined by dividing the
bounding section among processors in a row­
block fashion.

Figure 5 summarizes the extended two-phase
method for reading sections of out-of-core arrays,
with dynamic partitioning of II 0.

EXTENDED TWO-PHASE METHOD 307

L Exchange access information with other processors and fill in the file access descriptor (FAD).

2. Calculate the smallest section, called the bounding section, that includes the sections

requested by all processors.

3. Determine the file domain of each processor by dividing this bounding section

among processors in a column-block manner for arrays stored in column-major order

or row-block manner for arrays stored in row-major order.

4. Compute the intersection of the FAD and this processor's file domain,and fill in the

file domain access table (FDAT).

5. Calculate the minimum of the lower bounds and the maximum of the upper bounds

of all sections in the FDAT to determine the smallest section containing all the data

needed from the file domain.

6. Read this section by using data sieving, and communicate the data to the requesting

processors.

FIGURE 5 Extended two-phase method for reading sections of out-of-core arrays with dynamic partitioning of I/0.

5 PERFORMANCE

We used the Intel Touchstone Delta for an ex peri­
mental study of the performance of the extended
two-phase method. The Touchstone Delta has 512
compute nodes (each an Intel i860/XR micropro­
cessor) and 32 I/0 nodes (each an Intel 80386
microprocessor). Each I/0 node is connected to
two disks, resulting in a total of 64 disks. Intel's
Concurrent File System (CFS) provides parallel ac­
cess to files. By default, CFS stripes files across all
64 disks in 4-Kbyte blocks. See [14] for a detailed
discussion of the performance of the CFS.

We studied the performance of the extended
two-phase method versus the direct method exten­
sively for several synthetic access patterns as well
as for two real out-of-core parallel applications­
matrix multiplication and a Laplace's equation
solver. \Ve report the results of these experi­
ments below.

5.1 Synthetic Access PaHerns

We used three basic types of synthetic access pat­
terns:

1. Common sections: All processors access the
same section of the array.

2. Overlapping sections: Parts of the section
requested by a processor may overlap with

parts of the sections requested by other pro­
cessors.

3. Distinct sections: The section requested by
each processor does not have any data in
common with the section requested by any
other processor.

Reading Common Sections

Table 1 shows the performance of the direct and
extended two-phase methods for reading common
sections (4K X 4K array, 16 processors). Figure 6
illustrates the approximate location of each of
these sections in the array. We measured the per­
formance of the extended two-phase method with
both static and dynamic partitioning. In all cases,
the extended two-phase method performed con­
siderably better than the direct method, because
it read the common section only once and broad­
cast it to other processors. In the direct method,
on the other hand, all processors read the same
section from the file simultaneously, resulting in
extra l/0 overhead.

In all cases, the extended two-phase method
took much less time with dynamic partitioning.
With static partitioning, each processor's file do­
main was of size 4K X 256. Therefore, all sections,
except those in case V, were located in the file
domains of only a few processors. With dynamic
partitioning, on the other hand, the II 0 requests
were evenly divided among all available proces-

308 THAKUR AND CHOCDHARY

Table 1. Comparison of the Direct and Extended Two-Phase Methods (Static and Dynamic Partitioning)
for Reading Common Sections

Direct
Extended Two-Phase

No. Array Section Read Static Dynamic

(1:100:1, 1:100:1) 1.632 1.027 0.431
II (200 : 300 : 1' 200 : 300 : 1) 1.867 0.883 0.363

III (400: 800:1, 400:800: 1) 6.265 3.692 1.056
IV (32:64:1, 128:1,024:1) 9.995 2.780 1.318
v (1 :16:1.1 :4,096:1) 52.06 3.241 3.241

VI (1 : 4' 096 : 1' 1 : 16 : 1) 1.216 2.024 0.420

NOTE: Array size 4K X 4K real numbers (single precision). 16 processors. time in seconds.

sors, resulting in higher 1/0 throughput. Since the
section in case V spanned all 4,096 columns, the
statically and dynamically selected file domains
were identical, and so was the performance. For
case V, the extended two-phase method performed
considerably better than the direct method, be­
cause the direct method resulted in a large number
of small requests spread across the entire file.

Reading Overlapping Sections

Table 2 shows the time taken for reading various
overlapping sections. Figure 7 illustrates the ap­
proximate location of each of these sections in the
array. To represent these overlapping sections for
all processors concisely, we use the following
notation. Each processor's request is denoted by
(/1 + ov1 X p: u 1 + ov1 X p: s1 , / 2 + ov2 X p: u 2 +
ov2 X p : s2), where p is the processor number and

ov1, ov2 are some constants. The amount of over­
lap can be changed by varying ov1 and ov2. For
example, the notation (1: 100:1, 1 + 10p: 100
+ 1 Op : 1) in case I of Table 2 represents a group
of overlapping sections with processor 0 requesting
section (1: 100: L 1:100: 1), processor 1 re­
questing section (1: 100:1, 11:110: 1), proces­
sor 2 requesting section (1: 100:1, 21:120: 1),
and so on.

The extended two-phase method with dynamic
partitioning performed the best in all cases. The
sections in cases I and II were of the same size,
but they differed in the amount of overlap: the
sections in case I had more overlap than those in
case II. Since the total number of columns of the
out-of-core array spanned by the sections in case
I was less than that of the sections in case II, it
took less time to read the sections in case I. The
sections in cases IV, V, and VI spanned only a

Dl:J
(I) (II) (III)

DOD
(IV) (V) (VI)

FIGURE 6 Three common sections listed in Table 1 (not to scale).

EXTENDED TWO-PHASE METHOD 309

Table 2. Comparison of the Direct and Extended Two-Phase Methods (Static and Dynamic Partitioning)
for Reading Overlapping Sections

Array Section Direct
Extended Two-Phase

"io. (p = Processor :'>lumber) Read Static Dynamic

(1 : 1 00 : 1, 1 + 1 Op : 100 + 1 Op : 1) 2.000 1.830 0.693
II (1:100:1,1 + 50p:100 + 50p:1) 4.627 1.859 0.875

III (400: 800:1, 400 + lOOp: 800 + 100p: 1) 8.097 3.348 2.477
IV (1 :4,096: 1. 1 + 8p: 16 + 8p: 1) 1.152 3.374 0.826
v (1 + 50p:100 + 50p:1, 1 :100:1) 1.579 1.994 0.524

VI (400 + 100p:800 + 100p:1, 400:800:1) 7.442 11.84 1.361
VII (1 + 8p:16 + 8p:1.1 :4,096:1) 50.32 2.992 2.992

VIII (200 + 1 OOp : 400 + 1 OOp : 1, 200 + 1 OOp : 400 + 1 OOp : 1) 3.104 2.986 1.739

'\IOTE: Arrav size 4K X 4K real numbers (single precision), 16 processors. time in seconds.

few columns. For these cases, the direct method
performed better than the extended two-phase
method with static partitioning, because static par­
titioning resulted in only a few processors perform­
ing 1/0. The extended two-phase method with dy­
namic partitioning. however, performed better
than the direct method, since the II 0 workload
was better distributed. The worst case for the direct
method was case VII, which spanned all columns
of the array. The sections in case VIII were overlap­
ping in both dimensions, and again the extended
two-phase method with dynamic partitioning took
the least time.

overlap overlap

(I) (II)

overlap

(V) (VI)

Reading Distinct Sections

Table 3 shows the time taken for reading distinct
sections. Figure 8 illustrates the approximate loca­
tion of these sections in the array. We use the same
notation as above, (l1 + ov1 X p : u 1 + ov1 X p : s1 ,

/2 + ov2 X p : u 2 + ov2 X p : s 2), for representing
distinct sections. The overlap factors ov1 and ov2
must be large enough to ensure that the sections
are distinct.

In case I, the requests of different processors
were situated in separate locations in the file, be­
cause the sections requested were located along
rows. As a result, 1/0 in the extended two-phase

overlap
overlap

(Ill) (IV)

overlap !II ..
overlap

(Vll) (VIII)

FIGURE 7 The overlapping sections listed in Table 2 (not to scale).

310 THAKUR AND CHOUDHARY

Table 3. Comparison of the Direct and Extended Two-Phase Methods (Static and Dynamic Partitioning)
for Reading Distinct Sections

Array Section Direct
Extended Two-Phase

No. (p = Processor Number) Read Static Dynamic

I (1:100:1, 1 + 100p:100 + 100p:1) 1.976 2.254 1.976
II (1 + 100p:100 + 100p:1,1 :100:1) 1.633 2.182 0.548

III (200 + 200p : 400 + 200p : 1. 512 : 1 024 : 1) 8.016 5.680 1.725
IV (1 + 32p:16 + 32p:1, 1 :4,096:1) 51.63 4.823 4.823
v (200 + 200p: 400 + 200p: 1, 1 + 200p: .512 + 200p: 1) 5.466 4.524 3.912

VI (1 + 32p:32 + 32p:1, 1 + 100p:1.024 + 100p:1) 12.02 2.991 2.371

NOTE: Array size 4K X 4K real numbers (single precision). 16 processors. time in seconds.

method with dynamic partitioning was identical to
that in the direct method, and it took the same
time. The extended two-phase method with static
partitioning took longer than the direct method,
because only a few processors performed II 0. The
sections in cases II-IV were located along columns,
and the requests of different processors were inter­
leaved in the file. The extended two-phase method
therefore performed considerably better for these
cases. Static partitioning did not perform well for
the sections in case II, because they spanned only
a few columns. The best case for the extended
two-phase method was case IV, since the sections
spanned all columns. The sections in cases V and
VI were partly interleaved in the file, and even

for these cases, the extended two-phase method
performed the best.

Writing Distinct Sections

We considered only the case where each processor
writes a distinct section to the file. because other
cases, such as writing overlapping or common sec­
tions, are unlikely to occur. Table 4 shows the time
taken for writing distinct sections. The sections
chosen were the same as those for reading (Table 3,
Fig. 8). As for reading distinct sections, the direct
method and the extended two-phase method with
dynamic partitioning took the same time for writing
the sections in case I, whereas the extended two-

DD
(I) (II) (III)

(IV) (V) (VI)

FIGURE 8 The distinct sections listed in Table 3 (not to scale).

EXTENDED TWO-PHASE METHOD 311

Table 4. Comparison of the Direct and Extended Two-Phase Methods (Static and Dynamic Partitioning)
for Writing Distinct Sections

Array Section Direct
Extended Two-Phase

No. (p = Processor ~umber) Write Static Dynamic

I (1 :100:1,1 + 100p:100 + 100p:1) 1.944 2.166 1.944
II (1 + 100p:100 + 100p:1, 1 :100:1) 1.182 2.034 0.494

III (200 + 200p:400 + 200p:1, 512:1,024:1) 4.202 5.445 1.669
IV (1 + 32p:16 + 32p:1, 1:4,096:1) 24.85 10.25 10.25
v (200 + 200p : 400 + 200p : 1, 1 + 200p : 512 + 200p : 1) 5.155 5.461 4.401

VI (1 + 32p:32 + 32p:1, 1 + 100p:1,024 + 100p:1) 8.233 4.994 4.274

NOTE: Arrav size 4K X 4K real numbers (single precision), 16 processors. time in seconds.

phase method with static partitioning took longer.
In the other cases, the extended two-phase method
with dynamic partitioning performed considerably
better than the direct method.

Accessing Sections with Nonunit Strides

We also tested the performance for accessing sec­
tions with nonunit strides. When an arrav section
has a nonunit stride, each element requested is
strided in the file. The only way of reading such
array sections using a direct method is to seek ex­
plicitly to each individual element and read only
that element. This results in very low granularity
of data transfer, which is very expensive. The ex­
tended two-phase method overcomes this draw­
back of the direct method by reordering requests
and using data sieving for larger granularity ac­
cesses.

Table 5 shows the performance for reading sec­
tions with nonunit strides. The sections in case I
spanned almost the entire array, with stride equal
to the number of processors. As a result, static
and dynamic partitioning took the same time. The
sections in cases II and III were located diagonally
across the out-of-core array. The sections in case
IV were located along columns, and the sections

in ease V were located along rows. In all eases, the
extended two-phase method was more than 20
times faster than the direct method. Table 6 shows
the performance of the extended two-phase
method for writing sections with nonunit strides.
The sections chosen were the same as in Table 5.
Even for writing sections, the extended two-phase
method improved 110 performance considerably.

We also studied the scalability of the extended two­
phase method for a large number of processors,
large array sections, and large out-of-core arrays.
Since dynamic partitioning always performed bet­
ter than, or at least as well as static partitioning,
we considered only dynamic partitioning for the
scalability experiments. Table 7 shows the timings
obtained by varying the number of processors re­
questing array sections from 4 to 128, for both
reading and writing. We selected a few sections
in each category-common, overlapping, distinct,
and nonunit strides. Note that, as the number of
processors was increased, the total amount of
II 0 performed also increased.

The extended two-phase method sealed well
with the number of processors. In many eases, the

Table 5. Comparison of the Direct and Extended Two-Phase Methods (Static and Dynamic Partitioning)
for Reading Sections with Nonunit Strides

Array Section Direct
Extended Two-Phase

No. (p = Processor :'-Jumber) Read Static Dynamic

(p + 1 : 4,096 : nprocs,p + 1 : 4,096 : nprocs) 210.8 9.330 9.330
II (1 + 250p: 250 + 2.50p: 2, 1 + 250p: 250 + 250p: 2) 53.13 3.610 2.842

III (1 + 200p: 500 + 200p: 3, 1 + 200p: 500 + 200p: 3) 87.19 4.394 4.387
IV (1 + 64p: 64 + 64p: 2, 500: 2,500: 3) 96.20 4.759 3.848
v (500: 2,500:3. 1 + 64p: 64 + 64p: 2) 130.7 4.574 2.340

NOTE: Arrav size 4K X 4K real numbers (single precision). 16 processors. time in seconds.

312 THAKCR AND CHOuDHARY

Table 6. Comparison of the Direct and Extended Two-Phase Methods (Static and Dynamic Partitioning)
for Writing Sections with Nonunit Strides

Array Section Direct
Write

Extended Two-Phase

~0.

I
II

III
IV
v

(p = Processor !"umber)

(p + 1:4,096: nprocs. p + 1:4,096: nprocs)
(1 + 250p : 250 + 250p: 2. 1 + 250p: 250 + 250p : 2)
(1 + 200p: 500 + 200p: 3, 1 + 200p: 500 + 200p: 3)

(1 + 64p: 64 + 64p: 2, 500:2,500: 3)
(500: 2,500:3, 1 + 64p: 64 + 64p: 2)

:-.IOTE: Array size 4K X 4K real numbers (single precision). time in seconds.

53.28
25.22
44.64
71.35
79.24

Static

22.77
6.438
8.696
8.858
7.724

Dynamic

22.77
3.775
7.516
7.279
4.405

Table 7. Scalability of the Extended Two-Phase Method. The Number of Processors Accessing Sections
was Varied from 4 to 128

Reading Common Sections

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Procs = 64 Procs = 128

Section DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP

I 2.620 1.282 3.184 1.040 4.421 1.056 8.734 1.169 16.28 1.436 32.64 2.130
II 12.16 4.315 13.95 3.099 19.65 3.241 32.96 2.647 60.11 3.432 116.7 3.219

Reading Overlapping Sections

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Procs = 64 Procs = 128

DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP

Ill 3.079 1.748 5.208 1.699 6.850 1.991 13.61 2.798 24.98 3.801 47.95 4.602
IV 13.75 4.450 13.77 3.391 19.63 2.992 32.70 3.696 60.58 4.791 115.9 7.401

Reading Distinct Sections

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Procs = 64 Procs = 128

DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP

v 12.37 4.791 13.57 3.929 19.76 4.149 32.38 6.109 46.12 7.276 54.82 8.161
VI 3.704 1.893 2.396 1.585 4.125 1.638 7.806 2.418 19.77 2.970 26.23 4.110

Writing Distinct Sections

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Procs = 64 Procs = 128

DW ETP DW ETP DW ETP DW ETP DW ETP DW ETP

v 3.129 7.900 6.971 6.861 12.45 8.554 27.52 12.74 37.70 18.52 52.41 24.74
VI 0.982 1.937 1.803 2.218 3.954 3.058 6.436 5.028 7.139 6.234 21.20 9.403

Reading Sections with ;\lonunit Strides

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Procs = 64 Procs = 128

DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP

VII 799.2 22.82 216.6 15.83 210.8 9.331 103.1 10.89 54.94 8.307 50.60 9.657
Vlii 56.44 1.342 77.78 1.440 83.87 1.870 163.1 3.123 331.5 5.062 867.4 7.711

Writing Sections with Nonunit Strides

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Procs = 64 Procs = 128

DW ETP DW ETP DW ETP DW ETP DW ETP DW ETP

VII 668.7 42.75 147.3 39.11 84.54 31.40 64.53 26.42 35.35 28.40 51.38 31.16
VIII 9.041 1.612 18.83 1.603 35.17 2.972 75.95 4.812 163.6 7.915 341.8 21.75

J'liOTE: Arrav size 4K X 4K real numbers (single precision). time in seconds. DR. Direct Read: ETP. extended two-phase method
with dvnamic partitioning: DW. direct write. I = (400: 800: 1. 400: 800: 1). Figure 6(III): II= (1 : 16: 1. 1 :4.096: 1). Figure 6(V):
III = (400: 800: 1. 400 + 25p: 800 + 25p: 1). Figure 7(IIJ): IV = (1 + 8p: 16 + 8p: L 1 :4.096: 1). Figure 7(VII): Y = (1 +
2Sp: 16 + 2Sp: L 1 :-t.096: 1). Figure 8(IV): VI= (1 + 32p :32 + 32p: 1. 1 + 24p: 1,024 + 24p: 1). Figure 8(VI): VII= (p +
1:4.096: nprocs. p + 1 :4,096: nprocs): nn = (500: 2.500:3. 1 + 32p: 32 + 32p: 2).

EXTE!'\DED TWO-PHASE METHOD 313

Table 8. Scalability of the Extended Two-Phase Method for Large Requests. Array Size 16K X 16K Real
Numbers (Single Precision), 1 Gbyte File

Reading Sections

Procs = 'f Procs = 8 Procs = 16 Proes = 32 Procs = 64 Procs = 128

Section DR ETP DR ETP DR ETP DR ETP DR ETP DR ETP

23.65 7.880 'f3.4:3 7.795 78.99 7.935 151.:3 9.085 :302.7 9.:368 605.1 11.86
II 53.~30 26.51 10:3.3 28.10 132.3 28.50 157.6 32.49 162.3 'f0.03 182.4 52.08

III 13.31 5.061 24.11 6.489 31.49 7.400 :39.81 9.25:3 41.28 10.12 44.29 13.2:3
IV 0.68:3 0.699 0.841 0.939 1.~343 1.173 2.189 1.663 4.H9 2.850 8.486 4.994
v 10.97 5.380 19.:31 8.475 26.52 10.58 35.06 12.69 52.81 14.10 124.2 22.06

VI 57.29 21.9-'t 74.0;) 2:3.05 127.3 32.88 240.8 51.26 500.2 112.2 799.7 98.68

Writinl! Sections

Procs = 4 Procs = 8 Procs = 16 Procs = 32 Proes = 6'f Procs = 128

DW ETP ow ETP D\V ETP D\V ETP DW ETP DW ETP

v 7.108 12.01 15.21 18.98 32.20 23.37 35.99 30.17 5:3.1 () 3S.76 98.90 :~2.54

VI 'f8.35 44.18 71.85 52.07 1;)1.4 73.34 272.8 122.3 5'f8.1 174.1 746.6 16'+.2

'>;OTE: The nurnLer of processors accesf'inf: sections was varied from 4 to 1:28. DR. direct read: ETP. <"Xtt'ndcd two-phase
method with dynamic partitioning: DW. direct writt>. Timf' in seconds. I = (.).000: (),()()(): l: 5.000: ().000: I): II = (I + I Otlp:
300 + lOOp: 1: 4.000:8.000: 11: Ill = (1 + 100p: 400 + lOOp: 1: 2.000 + 20p: :2.800 + :20p: 1): TY = :·i.OOO: 8.000: 1. 1 +
'tp :3 + 4p: 1 \' = (1 +lOOp: 100 + 100p: L 1 +lOOp: 1.024 +lOOp:!;: Yl = .1 + 20p: 16 + 20p: 1: 4.000:12.000: 1).

time taken increased only slightly as the number
of processors was increased, indicating that we ob­
tained higher l/0 throughput by increasing the
number of processors. for example. for the sec­
tions in ease I, the time taken increased from 1.282
to only 2.130 ;:; when the number of processors
was increased from"!: to 128. In some cases, such
as case II. the time taken even decreased. The
direct method performed quite poorly when the
number of processor:; was increased. especially for
cases IL IY .. and VIII. The extended two-phase
method also scaled well for writing sections. For a
small number of proceRsors. the extended two­
phaiie method rook longer for writing, because of
the extra read before each -i·rite. for a large num­
ber of processors (2:: 16). however, the extended
two-phase method performed better than the di­
rect method in spite of the extra read. For sections
with nonunit strides. the extended two-phase
method performed considerably better than the
direct method.

Table 8 shows the performance for accessing
large sections of a large out-of-core array of size
16K X 16K single precision real numbers (file size
1 Gbyte). figure 9 shows the approximate location
of these sections in the arrav. \Ve considered com­
mon. overlapping. and distinct sections for reading
and distinct sections for writing. The trend in the
results was the same as for a "l:K X 4K array (Table
7). The direct method performed much worse for

accessing large sections than for small sections,
whereas the extended two-phase method per­
formed consistentlv wdl for sections of anv size. . .
figures 10 and 11 com part> the rdative perfor-
mance of the two methods for reading and writing
the sections in case Yl of Table B.

5.2 Real Applications

\\ e also studied the performanct~ of the extended
two-phase method with dynamic partitioning ver­
sus the direct method. for two real out-of-core par­
allel applications-matrix multiplication and a
Laplace's equation soln'r.

Matrix Multiplication

Table 9 shows the l/0 time for out-of-core matrix
multiplication for different array sizes and number
of processors. The l/0 time \vas calculated as the
maximum of the time taken by all proce,;sors. for
alll/0 (reading and writing) rf'quired in the out­
of-core matrix multiplication algorithm described
in Section 2. l\ote that in the extended two-phase
method. the l/0 time includes the time for data
communication. In all cases. the extended t\VO­
phase method performed better than the direct
method. Figure 12 show,.; that the percentage im-

314 THAKCR Al'D CHOCDHARY

overlap overlap

·.

(I) (II) (III)

·.

overlap

(IV) (V) (VI)

FIGURE 9 Thc- sections listed in Table 8 (not to scale).

provement in I/0 time provided by the extended
~-o-phase method over the direct method varied
from 22 to 75%.

Laplace's Equation Solver

Table 10 shows the II 0 time for an out -of-core
Laplace's equation solver for different array sizes
and number of processors. The l/0 time is the
maximum of the time taken by all processors for
c:tll l/0 (readiag and writinf() required in the out-

800.0

7'00.0

600.0

2" 500.0
a>

$
<1> 400.0
E
I=

300.0

200.0

100.0

0.0

11111111 Direct Read
!Z:Ii::':iJ Ext. Two-Phase

4 8 16 32 64
P•ocessors

126

FIGUHE 10 Scalability results. 16K X 16K array. time
for readin!! sPctions in ca~e VI of Table 8.

of-core Laplace's equation solver algorithm de­
scribed in Section 2. As in the ease of matrix multi­
plication, the extended two-phase method per­
formed better than the direct method. The per­
centage improvement in l/0 time provided by the
extended two-phase method over the direct
method is shown in Figure 13. The percentage
improvement was lower than in the case of matrix
multiplication, possibly because of the difference
in the I/0 access patterns of the two applications.
H.ecall that in out-of-core matrix multiplication,

800.0

7'00.0 Direct Write
Ext Two-Phase

600.0

<3 500.0
(1)

-!:Z-
<!> 400.0
E
I=

300.0

200.0

100.0

0.0

Processors

FIGUHE 11 Scalability results~ 16K X 16K array, time
for writin!! sections in case YT of Table 8.

EXTE'\IDED TWO-PHASE METHOD 315

Table 9. 110 Time in Seconds for Out-of-Core Matrix Multiplication Using
Direct and Extended Two-Phase Methods with Dynamic Partitioning (ETP)

1K X 1K Array 2K X 2K Array 4K X 4K Array

Procs. Direct ETP Direct ETP Direct ETP

8 44.65 34:.77 103.4 80.43 589.0 416.8
16 39.88 24.78 94.37 69.87 465.9 326.8
32 37.80 18.88 108.6
64 50.65 17.66 168.8

128 161.0 24.76 377.1

matrix B is accessed in blocks along columns. The
results with synthetic access patterns in Section
5.1 indicate that the extended two-phase method
performs very well for such accesses.

6 CONCLUSIONS

The extended two-phase method is clearly supe­
rior to a direct method for accessing sections of
out-of-core arrays. In our experirnents with real
applications as well as several synthetic access pa­
terns, the extended two-phase method outper­
formed the direct method significantly.

The extended rwo-phase method also provides
much flexibility in partitioning the I/0 workload
among processors. \Ve have described one dy­
namic partitioning scheme that performed signifi­
cantly better than a static partitioning scheme, but
it may be possible to do even better. For example.
instead of dividing the bounding section among

Q)

=
i¥
<1>
f::?:
Q)
c..

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0
32

Processors

FIGURE 12 Percentage improvement in l/0 time of
out-of-core matrix multiplication by using the extended
two-phase method versus the direct method.

76.36 536.4 354.5
122.8 814.2 501.1
218.1 1562 909.3

processors in a column-block fashion, it could be
divided in a block-cvclic fashion, so that if the
bounding section in~ludes some unwanted col­
umns, they are evenly distributed. Another ap­
proach is to divide l/0 among processors in such
a way that the 1/0 requests from different proces­
sors go to different disks or I/0 nodes. Further­
more, if the ratio of processors to disks on the
machine is very high, it is possible to have only
a few processors perform l/0. thereby reducing
contention for the I/0 svstem.

The extended two-phase method can be used
for accessing arrays with any number of dimen­
sions and any storage order. For the dynamic parti­
tioning scheme we have proposed. tht-: file domains
for ann-dimensional array can be obtained by first
calculating the n-dimensional bounding section of
all requests. and then dividing it among processors
such that the file domain of each processor is lo­
cated contiguously in the file.

g.
"/:::
~
Q)
c..

Array sections other than those that can be rep-

50.0

40.0

30.0

20.0

10.0

1K x 1K array
2K x 2K array
4K x4K array

Processors

FIGURE 13 Percentage improvement in l/0 time of
out-of-core Laplace''s equation solver by using the ex­
tended two-phase method versus the direct method.

316 THAKUR AND CHOUDHARY

Table 10. I/0 Time in Seconds for Out-of-Core Laplace's Equation Solver
Using the Direct and Extended Two-Phase Methods with Dynamic Partitioning
(ETP)

1K X 1K Array 2K x 2K Array 4K X 4K Array

Proes. Direct ETP Direct ETP Direct ETP

8 27.15 25.03 72.34 68.00 387.1 356.7
16 17.06 15.27 61.96 54.65 434.0 294.3
32 18.59 13.29 50.27 43.63 448.3 273.3
64 19.20 14.80 49.15 42.06 383.6 280.0

128 31.40 18.16 64.67 53.10 508.5 334.4

resented by a lower-bound, upper-bound, and
stride in each dimension, for example, sections
with nonuniform strides, can also be accessed
by using the extended two-phase method. This
requires a more general notation for representing
such sections. The data structures, such as FAD
and FDA T, must be modified to handle such
requests, but the basic idea remains the same.

It is not necessary that all processors running
the application must call the extended two-phase
read/write routine. Even a subset of processors
may call the routine and participate in the two­
phase process. The I/0 workload can be divided
among the processors in this subset.

The extended two-phase method is not specific
to any particular machine, file system, or architec­
ture; it ean be easily implemented by using any
file-system interface, or by using portable inter­
faces, such as MPI-10 [15], resulting in portable
implementations. It can also be easily modified
and tuned for any particular system-by defining
file domains appropriately and possibly using a
different algorithm for interprocessor communi­
cation.

The best way to use the extended two-phase
method is to implement it as library routines that
can be called from an application program. We
have implemented it in the PASSION run-time li­
brary [16], which is available on the WWW at
http: //www.cat.syr.edujpassion.html.

ACKNOWLEDGMENTS

This work was supported in part by the Sealable I/0
Initiative, a multiagency project funded by the Advanced
Research Projects Ageney (eontraet DABT63-9i-C-
0049), the Department of Energy, the National Aero­
nautics and Space Administration .. and the National
Science Foundation; by a National Science Foundation
Young Investigator Award (CCR-9357840); and by a

grant from Intel Scalable Systems Division. This work
was performed in part u;,mg the Intel Touchstone Delta
System operated by Caltech on behalf of the Concurrent
Supercomputing Consortium. Access to this facility was
provided by the Center for Research on Parallel Compu­
tation.

REFERENCES

[1] J. del Rosario and A. Chaudhary, "High perfor­
mance I/0 for parallel computers: Problems and
prospects," IEEE Computer, Vol. 27, pp. 59-68,
March 1994.

[2] Applications Working Group of the Sealable I/0
Initiative. Preliminary Survey ofl/0 Intensive Ap­
plications. Scalable I/0 Initiative Working Paper
Number 1. On the World-Wide Web at http: I I
www.ccsf.caltech.edu/SIO/
sro_apps. ps, 1994.

[3] R. Bordawekar, A. Choudhary, and R. Thakur,
"Data access reorganizations in compiling out-of­
core data parallel programs on distributed memory
machines," Syracuse University, New York,
Teeh. Rep. SCCS-622, NPAC, Sept. 1994. On
the World-Wide Web at ftp: I jere. cat. syr. edu/
ece/choudhary/PASSION/access_reorg.ps.Z.

[4] K. Klimkowski and R. van de Geijn, "Anatomy of
an out-of-core dense linear solver," in Proc. of the
1995 International Conference on Parallel Pro­
cessing, 1995, p. III-29.

[5] P. Corbett, D. Feitelson, J. Prost, and S. Baylor,
"Parallel aeeess to files in the Vesta file sys­
tem," in Proc. of Supercomputing '93, 1993,
p. 472.

[6] IBM Corp., "IBM AIX parallel I/0 file system: In­
stallation, administration, and use." Document
SH34-6065-01, Aug. 1995.

[7] E. DeBenedictis and J. del Rosario, "nCUBE par­
allel I/0 software," in Proc. of 11th International
Phoenix Conference on Computers and Commu­
nications, 1992, p. 117.

[8] D. Kotz, "Disk-directed I/0 for MIMD multipro-

cessors.'' in Proc. of the 1994 S_ymposium on Op­
erating S_ystems Design and Implementation,
1994, p. 61. Updated as Tech. Rep. PCS-TR94-
226, Department of Computer Science, Dart­
mouth College.

[9] K. Seamons, Y. Chen. P. Jones, J. Jozwiak, and
M. Winslett, "Server-directed collective IIO in
Panda," in Proc. of Supercomputing '95, 1995.

[10] J. del Rosario, R. Bordawekar, and A. Chaudhary,
"Improved parallel 110 via a two-phase runtime
access strategy," in Proc. of the Workshop on
II 0 in Parallel Computer S:Ystems at IPPS '93,
1993, p. 56.

[11] R. Bordawekar, J. del Rosario, and A. Chaudhary,
"Design and evaluation of primitives for parallel
I/0," in Proc. of Supercomputing '93, 1993,
p. 452.

[12] R. Thakur, R. Bordawekar, A. Chaudhary, R.
Ponnusamy, and T. Singh, "PASSIO:"' runtime

EXTENDED TWO-PHASE METHOD 317

library for parallel II 0." in Proc. of the Scalable
Parallel Libraries Conference, 1994, p. 119.

[13] R. Thakur, "Runtime support for in-core and out­
of-core data-parallel programs," PhD Thesis, De­
partment of Electrical and Computer Engineering,
Syracuse University, May 1995.

[14] R. Bordawekar, A. Chaudhary, and J. del Rosario,
"An experimental performance evaluation of
touchstone Delta concurrent file system,'' Proc. of
the 7th ACM International Conference on Super­
computing, 1993, p. 367.

[15] The MPI-10 committee, MPI-10: A Parallel File
II 0 Interface for MPI, Version 0. 5. On the
World-Wide Web at http: I /lovelace. nas. nasa.
gov/MPI-IO/mpi-io-report. 0. 5. ps, April1996.

[16] R. Thakur, A. Chaudhary, R. Bordawekar, S.
More, and S. Kuditipudi, "Passion: Optimized
IIO for parallel applications,'' IEEE Computer,
Vol. 29, pp. 70-78, June 1996.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

