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For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED), the transfer function of
Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the
atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through
Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is
constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward
to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness
and superiority for the coherence preservation.

1. Introduction

The enormous potential of quantum information has caused
the widespread concern in the scientific community and has
become an important research focus. Among the implemen-
tation of hardware design for quantum computing such as
cavity QED, ion trap, nuclear magnetic resonance, quantum
dots, and superconducting systems [1], cavity QED is one of
the most promising schemes because the basic interaction
within cavity QED is the vacuum Rabi oscillation and the
strong coupling of cavity field and atom allows atom-photon
system tomaintain good quantum coherence within the time
scale of the kinetic characteristics. Therefore, a variety of
entangled state preparation methods have been proposed
based on cavity QED. Accordingly, the advantages of cavity
QEDhavemade it possible to construct decisivemultiparticle
entanglement in experiment using it [2, 3].

However, all the advantages in cavity QED depend on the
coherence of the system. The loss of coherence in quantum
mechanical superposition states limits the time for which
quantum information remains useful. Similarly, it limits the
distance over which quantum information can be trans-
mitted [4]. Hence, decoherence is the major obstacle that
hinders the processing of quantum information in various
physical implementations [5]. The preservation of quantum

coherence is of fundamental importance in the hardware
implementation of quantum information. In cavity QED, the
foundation of quantum information processing is the Rabi
oscillation, an undamped oscillation process, which can be
destroyed by the spontaneous emission of the atom. Thus,
aiming at eliminating the decoherence effects in cavity QED,
a classical feedback control strategy is presented based on
the transfer function of the Rabi oscillation. A feedback
channel is constructed through the quantum tomography
technique for the quantum information acquisition to obtain
the Rabi oscillation stabilization control law based on the
root locus theory, which can be used to suppress the atomic
spontaneous emission and the associated decoherence effect.
Finally a physical implementation scheme of the strategy is
given and the simulation results show that it can prevent
the Rabi oscillation from vanishing and thus provide a stable
environment for quantum computing.

2. Methods

2.1. The System Model. The cavity QED investigates the
interaction of single atoms with single electromagnetic field
modes, defined, for example, by a pair of mirrors illustrated
in Figure 1 [6], which is a schematic representation of a cavity
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Figure 1: Schematic presentation of cavity QED [6].

QED system consisting of an atom with two energy levels
interacting with a single photon mode trapped by mirrors
to form a cavity. A photon in the cavity, bouncing back and
forth between the mirrors, can be absorbed by the atom;
conversely, if the atom is excited, it can decay by emitting a
photon into the cavity. The rate of this atom-light interaction
(𝑔) is proportional both to the dipole moment of the atom
and to the electric field of the photon at the atom’s location.

The strong-coupling regime is reached when the interac-
tion rate of the atom and a single photon (𝑔) is larger than
the dissipation arising from the loss of photons (at rate 𝜅)
or from emission from the atom into other modes at rate 𝛾,
that is, 𝑔 ≫ 𝜅, 𝛾. The excited atoms will periodically release
and absorb photons with a certain frequency, a phenomenon
known as vacuum Rabi oscillations [7]. The presence of the
cavity has made the spontaneous emission from the atom,
usually an irreversible process, into a coherent and reversible
oscillation, which means that quantum information can be
exchanged back and forth between the atom and the photon
many times before it is lost forever [6].

Undesired processes can take place in any real system
and the challenge for realizing strong-coupling cavity QED
and the generation of entanglement is to maximize the
vacuum Rabi frequency while simultaneously to minimize
the decoherence effects described by the decay (𝜅, 𝛾). In this
paper, the optical Bloch equations describing the mechanism
of cavity QED are investigated to obtain the transfer func-
tion of the Rabi oscillation with the spontaneous emission
[8]. A compensation strategy is designed to suppress the
spontaneous emission of atoms, which has a negative effect
on the coherence of the system. It should be noted that all
of the following discussion is based on zero detuning as a
precondition.

Nowwe start from the optical Bloch equation of the cavity
QED.The time-dependent mechanics of cavity QED is based
on the time-dependent Schrödinger equation [9]:

𝐻̂𝜓 (r, 𝑡) = 𝑖ℎ
d𝜓 (r, 𝑡)

d𝑡
. (1)

We first investigate an isolated 2-level system |𝜓
1
⟩, |𝜓
2
⟩

with energy eigenvalues 𝐸
1
, 𝐸
2
. The energy difference is

related to the transition frequency 2𝜋𝜔
0
, that is,ℎ𝜔

0
= 𝐸
2
−𝐸
1
.

Then we move forward to consider the effect on the atom of
an incident light beam.Their interactionwith the atom causes
an additional electromagnetic energy𝐻

𝐼
to the Hamiltonian

of the system𝐻
0
.The total Hamiltonian is then𝐻 = 𝐻

0
+𝐻
𝐼
,

which is explicitly dependent on time. In this case, specifying
the vector of the light field E

0
pointing to the 𝑥-direction,

if the frequency 𝜔 of the light is close to 𝜔
0
, only the two

selected atomic states are involved in the radiative process.
The solution to the Schrödinger equation (1) must be a linear
superposition
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𝜓
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|
2
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|
2
= 1.

Assume that the vector of the light field isE
0
, and the total

atomic electric-dipole moment is J = −𝑒∑ r
𝑘
= −𝑒D. The

main contribution to the interactionHamiltonian arises from
the potential energy of this electric dipole in the electric field
of the light beam. We can write

𝐻
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0
cos𝜔𝑡. (3)

Inserting (2) into (1), one obtains the equations for the
coefficients 𝐶
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2
(𝑡):
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where 𝑀
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are the transition matrix elements: ℎ𝑀
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=
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𝑘
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⟩ is the dipolematrix element.

Now, we define the Rabi frequency Ω as

Ω =
1

ℎ
e ⋅ E
0
𝑋
12
. (5)

Using these matrix elements, (4) can be now written as

Ω cos𝜔𝑡𝑒−𝑖𝜔0𝑡𝐶
2
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d𝐶
1

d𝑡
,
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(6)

For 𝜔
0
+ 𝜔 ≫ 𝜔

0
− 𝜔, we can neglect the fast oscillation

terms (𝜔 + 𝜔
0
)𝑡. The evolution will be governed by the slow

oscillating terms. This approximation is called the Rotating
Wave Approximation (RWA).

Using cos𝜔𝑡 = (𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)/2, (6) can be rewritten as

Ω
1

2
𝑒
−𝑖(𝜔−𝜔0)𝑡𝐶

2
= 𝑖

d𝐶
1

d𝑡
,

Ω
∗
𝑒
𝑖(𝜔−𝜔0)𝑡𝐶

1
= 𝑖

d𝐶
2

d𝑡
.

(7)

For zero detuning, 𝜔 = 𝜔
0
, one finds the well-known

Rabi oscillations between the ground and excited states of the
driven two-level system.

From the coefficients 𝐶
1
(𝑡) and 𝐶

2
(𝑡), we can form

equations for the density matrix of the atom. Noticing the
four elements of the atomic densitymatrix element𝜌

𝑖𝑗
defined
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by 𝜌
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off diagonal elements satisfying 𝜌
12
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21
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RWA to find the equations of motion for the density matrix
as follows:
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The previous discussions are concernedwith the situation
when there is no damping due to spontaneous emission. Now
we consider the spontaneous emission; the rectified equations
are as follows:
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where 𝛾 is the atomic spontaneous emission damping ratio.
For the special initial conditions 𝜌 = [1, 0, 0, 0]

󸀠 in the
case of resonant light 𝜔 = 𝜔

0
, the optical Bloch equation

degenerates into constant coefficient differential equations
[9]:
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Noticing that 𝜌
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= 𝜌
∗

11
, 𝜌
22
= 𝜌
∗

22
, we can give a general

solution of 𝜌
22
:

𝜌
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|Ω|
2
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2
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4
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2.2. The Rabi Oscillation Stabilization. When external coher-
ent laser field was applied, the vacuum-field-induced coher-
ence effects will be replaced by the microwave-field-induced
coherence effects. The decoherence effect caused by spon-
taneous emission in the system can be suppressed by the
introduction of the control of the laser field. Furthermore,
the method for implementing the decoherence suppression
is to change the Rabi oscillation frequency. According to
the previous strategy, the transfer function of the system is

constructed and then the decoherence suppression is realized
through the compensation of the transfer function.

We can infer from (11) that the underdamped Rabi
oscillation is a typical second-order systemand the open-loop
transfer function is (0 < 𝜉 < 1):

𝐺 (𝑠) =
𝐾
0
𝜔
2

𝑛

𝑠2 + 2𝜉𝜔
𝑛
𝑠 + 𝜔2
𝑛

. (13)

Hence, the unit step response of the open-loop system
described by (10) is as follows:

𝑦 (𝑡) = 𝐾
0
[1 − (cos𝜔

𝑑
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𝑑
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−𝜉𝜔𝑛𝑡] ,

𝜔
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𝑛
.

(14)

Comparing formula (11) and (14), the parameters in the
transfer function of damping Rabi oscillation can be obtained
as follows:

𝐾
0
=

|Ω|
2

4𝛾2 + 2|Ω|
2
, (15)

𝜉 =
3𝛾

√4𝜇2 + 9𝛾2
,

𝜔
𝑛
=
1

2
√4𝜇2 + 9𝛾2.

(16)

If we put the open-loop transfer function (13) into a unit
negative feedback system, the root locus of the closed-loop
system is as Figure 2(a) shows. And the damping system is
compensated on this basis. The basic idea is to make the unit
step response of the compensated system become an equal
amplitude oscillation through open-loop gain setting and
pole-zero configuration. The problem is how to design the
compensated system so that the root locus of the closed-loop
system will pass through the imaginary axis, and at the same
time, the operating point of the system is at the intersection
of the root locus with the imaginary axis. A feasible solution
to the problem is as follows.

(1) Add a pole 𝑠 = −𝑝 in the negative half real axis, where
𝑝 > 𝜉𝜔

𝑛
. After this step, the root locus of the system

is as Figure 2(b) shows.
(2) Considering that the compensated system is sensitive

to the open-loop gain after step (1), thenwe add a zero
𝑠 = −𝑧 to locate the asymptotes of the root locus in
the right side of the imaginary axis. Let Δ𝑥 > 0 be
the intersection of the asymptotes and the real axis. To
meet the requirements of the asymptote (−𝑝 − 2𝜉𝜔

𝑛
+

𝑧)/2 = Δ𝑥, we get 𝑧 = 𝑝 + 2𝜉𝜔
𝑛
+ 2Δ𝑥, where Δ𝑥

should be moderately selected to avoid causing the
open-loop gain to be too large. After this step, the root
locus of the system is as Figure 2(c) shows.

According to the control theory, the closed-loop charac-
teristic equation after the previous two steps is

(𝑠 + 𝑝) (𝑠
2
+ 2𝜉𝜔

2

𝑛
𝑠 + 𝜔
2

𝑛
) + 𝐾𝜔

2

𝑛
(𝑠 + 𝑧) = 0. (17)
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Figure 2:The root locus comparison before and after the compensa-
tion. (a) Origin root locus of the system. (b) Root locus of the system
after step (1). (c) Root locus of the system after step (2).

The condition for a critical oscillation is that the poles
of the closed-loop system are located on the imaginary axis.
Letting 𝑠 = 𝑖𝑦 and inserting it into (17), we have

𝐾 =
𝜉

𝜔
𝑛
Δ𝑥

(𝑝
2
+ 2𝜉𝜔

𝑛
𝑝 + 𝜔

2

𝑛
) . (18)

Since 𝐾
0
has been considered as a part in the open-loop

gain 𝐾, that is,𝐾 = 𝐾󸀠𝐾
0
, we have

𝐾
󸀠
=

𝜉

𝜔
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𝑛
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By inserting (12), (16) into (19), we get

𝐾
󸀠
=
3𝛾 (𝑝
2
+ 3𝑝𝛾 + 2𝛾

2
+ |Ω|
2
)

Δ𝑥|Ω|
2

. (20)

2.3. Physical Implementation. In the feedback control of
the quantum system, the information of the density matrix

Pole-zero
configuration

Light
beam

Cavity
QED

Quantum
tomography

Voltage
Compensation

Information acquisition and feedback

𝐾󳰀 𝜌

−

Figure 3: Schematic representation of the realization of the com-
pensation network.

cannot be measured directly because of the characteristics
of the quantum system. One of the challenges exists in how
to access the quantum information and feed it back to the
input, in other words, how to construct the negative feedback
channel for the quantum second-order system. In our work,
for solving the problem of information acquisition of the
quantum state, a quantum tomography scheme is designed
to reconstruct the density matrix.

Thephysical implementation of the proposal is as Figure 3
shows. The detailed description of the steps is as follows:
First, based on the tomography process, each element of the
density matrix 𝜌 is reconstructed from the output; thus, the
quantum information has been transformed into classical
information and fed back to the input. In order to realize
the compensation strategy of the Rabi oscillation based on
the transfer function analysis, a compensation circuit is
designed using the active phase-lead compensator and the
double integral A/D converter. The quantum density matrix
information is transformed into the classical voltage signal
for driving the light beam, which can be used to stabilize the
Rabi oscillation.Thedetails are described in Sections 2.3.1 and
2.3.2.

2.3.1. Information Acquisition. Quantum tomography tech-
nique is an indirect method to determine quantum system
parameters. The basic idea is to construct multiple copies of
the photon from the system output and determine density
matrix elements of the output photon through the optical
operations of the photon copies [10]. Assuming that the sys-
tem output is single-qubit photon, the measurement strategy
is as follows [11, 12].

(1) Let the 𝑁 identical copies of the output photon pass
through the horizontal-polarization wave plate, and
record the number 𝑛

0
.

(2) Let the 𝑁 identical copies of the output photon pass
through the vertically polarization wave plate and
record the number 𝑛

1
.

(3) Let the 𝑁 identical copies of the output photon pass
through the left-rotation wave plate and record the
number 𝑛

2
.

(4) Let the 𝑁 identical copies of the output photon pass
through the right-rotation wave plate and record the
number 𝑛

3
.
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𝑅1 𝑅2

𝐶 𝑅3

𝑉in (𝑡) 𝑉out (𝑡)

Figure 4: The active phase-lead compensation network.

The relationship between 𝑛
𝑖
(𝑖 = 0, 1, 2, 3) and the system

output 𝜌out can be described as follows [11, 12]:

𝑛
0
= 𝑁⟨0

󵄨󵄨󵄨󵄨𝜌out
󵄨󵄨󵄨󵄨 0⟩ ,

𝑛
1
= 𝑁⟨1

󵄨󵄨󵄨󵄨𝜌out
󵄨󵄨󵄨󵄨 1⟩ ,

𝑛
2
= 𝑁⟨+

󵄨󵄨󵄨󵄨𝜌out
󵄨󵄨󵄨󵄨 +⟩ ,

𝑛
3
= 𝑁⟨−

󵄨󵄨󵄨󵄨𝜌out
󵄨󵄨󵄨󵄨 −⟩ .

(21)

The densitymatrix of output photon can be reconstructed
according to (𝑛

0
, 𝑛
1
, 𝑛
2
, 𝑛
3
):

𝜌out =[
𝑛
0

𝑛
0
+ 𝑛
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,
𝑛
1

𝑛
0
+ 𝑛
1

, (
𝑛
2

𝑛
0
+ 𝑛
1

−
1

2
) + 𝑖 (

𝑛
3

𝑛
0
+ 𝑛
1

−
1

2
) ,

(
𝑛
2

𝑛
0
+ 𝑛
1

−
1

2
) − 𝑖 (

𝑛
3

𝑛
0
+ 𝑛
1

−
1

2
)]

𝑇

.

(22)

2.3.2. Compensation. If the element 𝜌
22
of the density matrix

has been reconstructed by (21), a voltage signal proportional
to 𝜌
22

can be obtained through the compensation to drive
the light beam. The classical circuit to achieve this function
consists of two parts.

(1) Due to the typical phase-lead compensation 𝐷(𝑠) =
(𝑠 + 𝑧)/(𝑠 + 𝑝), (𝑝 > 𝑧), the implementation of
the active phase-lead compensation network is as
Figure 4 shows.

(2) Due to the 1/|Ω|2 in the expression of 𝐾󸀠, a double
integral A/D converter can be used to realize the
reciprocal operation of |Ω|2 as Figure 5 shows.

3. Results and Discussion

Through the previous analysis, a coherence preserving solu-
tion in cavity QED has been presented using the quantum
tomography and the Rabi oscillation compensation. In the
following, simulation results have been analyzed for the
evaluation of the strategy.

3.1. Results of the Quantum Tomography. As stated in
Section 2.3, we will let the copied output photons pass
through four types of polarization wave plate and record the

𝑉1

𝑉0

𝑉0
𝑉𝑐

𝐶

𝐶
𝐴

𝐿0

1

CP 𝑇𝑠

𝑆1 𝑅

𝑆0

𝐿1

𝐷0𝐷1𝐷𝑛−1

𝑄 𝐽 𝑄 𝐽 𝑄 𝐽 𝑄 𝐽

𝐾 𝐾 𝐾 𝐾FF𝑛−1 FF1 FF0

𝑁-bit counter

(MSB) Output (LSB)

+
+

−
−𝑉ref

&

Figure 5: Double-integral A/D converters.

number of the photons passing through each type of the
wave plate, respectively, for reconstructing the output density
matrix. Taking into account the errors that may exist in the
process, we should mention that there are mainly two kinds
of errors in any realistic system: the first is the measurement
error due to the accuracy and sensitivity of the experimental
apparatus, the noise from the external environment, the
random interference, and so forth; and the other one is the
statistical error caused by the random collapse because of
the measurement of the output state; that is, infinite times
of detection are needed to obtain the accurate quantum
information theoretically, which is impossible in practice.

In this simulation, a theoretical value of 𝑛
𝑖
(𝑖 = 0, 1, 2, 3)

can be calculated from (21). In order to investigate the error’s
effect on the reconstruction, a random interference is added
on each value of 𝑛

𝑖
(𝑖 = 0, 1, 2, 3) for calculating the output

density matrix by (22). We can get the difference of each
component of the densitymatrix between the target quantum
state 𝜌

𝑖𝑗
and the reconstructed quantum state 𝜌󸀠

𝑖𝑗
by

Δ𝜌
𝑖𝑗
=
󵄨󵄨󵄨󵄨󵄨
𝜌
𝑖𝑗
− 𝜌
󸀠

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
, (23)

where the operator | ⋅ | stands for the magnitude of the error
and as for the single-qubit quantum state, 𝑖, 𝑗 = 1, 2.

In this paper, a series of error data are obtained by
changing the number of the input photons. The relationship
between the error and the number of the input photon is
shown in Figure 6, from which the following conclusions can
be drawn.

(1) Due to the presence of measurement error in the
experiment, there is deviation between the statistical
number of photons and the theoretical value, which
will lead to the deviation between the reconstructed
density matrix and the target quantum state density
matrix. Therefore, the reconstructed density matrix
may not satisfy the conditions of completely positive
or preserving the trace, and this deviation is randomly
generated and will have an inevitable impact on the
results, which is more significant especially when the
number of input photons is relatively small.
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(2) According to the theory of quantum tomography,
infinite times of detection are needed to guarantee
a completely accurate reconstructed density matrix,
which cannot be done in the experiment. However, as
can be seen from the simulation results in Figure 6,
with the number of photons increasing, the error
would converge to a satisfactory extent; in particular,
when the number of input photons reaches 3,000 or
more, it is reasonable to say that the negative impact
of the measurement errors and statistical errors is
negligible.

(3) Though the error can be eliminated by infinitely
increasing the number of input photons, doing so
will significantly increase the cost and reduce the
efficiency of the experiment. An appropriate number
of input photons should be chosen to achieve a
compromise between the error and efficiency.

3.2. Results of the Rabi Oscillation Stabilization. From the
discussion in Section 2, in the atom light interactions, if there

is no damping due to the spontaneous emission, the process is
coherent and reversible. But if the decoherence caused by the
spontaneous emission exists, in other words, 𝛾 ̸= 0, the equal
amplitude oscillation will change to a damped one, which
will generate detrimental effects on quantum information
processing. The impact of the decoherence caused by the
spontaneous emission is as Figure 7 shows. At 𝑡 = 0, the atom
is in the ground state (𝜌

11
(0) = 1, 𝜌

22
(0) = 0).The probability

to find the atom in the excited state is plotted for various ratios
of 𝛾 and the Rabi frequency Ω. In the simulation, we have
chosen the following value: 𝛾 = 0, 𝛾 = 0.1Ω, 𝛾 = 0.25Ω, 𝛾 =
0.5Ω, and 𝛾 = Ω.

As can be seen from Figure 7, when 𝛾 = 0, the oscillation
is with equal amplitude and fixed frequency. With the 𝛾
increasing, the damping effect becomes more and more
significant. The main objective of our design is to overcome
the damping effect by compensation; that is to say, when 𝛾
which stands for the spontaneous emission exists, the process
will still be a coherent process with equal amplitude and fixed
frequency.
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According to the strategy described in Section 2, taking
𝛾 = 0.3, |Ω| = 2, 𝑝 = 1.5, andΔ𝑥 = 0.1, the unit step response
of the uncompensated and compensated system is shown in
Figures 8(a) and 8(b), respectively.

It is clear that the uncompensated system approaches
a constant value after the damping process and the com-
pensated system can maintain a sustained oscillation with a
constant frequency and amplitude, which have proved the
effectiveness and superiority of our design.

4. Conclusions

For the coherence preservation in cavity QED, the model
of the damping Rabi oscillation in the form of the transfer
function is derived based on the optical Bloch equation.
The transfer function of the damping Rabi oscillation is

compensated using the root locus technique derived from the
classical control theory to suppress the atom’s spontaneous
emission. Finally, a physical implementation is put forward
to keep the coherence in cavity QED. The strategy has
provided a basis for the entanglement preparation in cavity
QED theoretically. The research has theoretical significance
and practical value. The simulation results showed that the
compensated system can maintain a sustained oscillation
with a constant frequency and amplitude. And it means
the process is a coherent reversible one, which is an ideal
environment for quantum information processing.

However, this work is based on the semiclassical optical
Bloch equations. In other words, only the atom is quantized
and the field is treated as a definite function of time rather
than as an operator. To obtain more rigorous results, the
further work will focus on the Jaynes-Cummings model, in
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which the radiation field is also quantized. And meanwhile,
an appropriate quantum feedback channel [13] is expected to
be found to replace the current classical feedback channel.
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