
Research Article
Rolling Bearing Fault Diagnosis Based on CEEMD and
Time Series Modeling

Liye Zhao,1,2 Wei Yu,1,2 and Ruqiang Yan1

1 School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2 Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, Nanjing 210096, China

Correspondence should be addressed to Ruqiang Yan; ruqiang@seu.edu.cn

Received 2 May 2014; Accepted 19 June 2014; Published 7 July 2014

Academic Editor: Xuefeng Chen

Copyright © 2014 Liye Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Accurately identifying faults in rolling bearing systems by analyzing vibration signals, which are often nonstationary, is challenging.
To address this issue, a new approach based on complementary ensemble empirical mode decomposition (CEEMD) and time
series modeling is proposed in this paper. This approach seeks to identify faults appearing in a rolling bearing system using proper
autoregressive (AR) model established from the nonstationary vibration signal. First, vibration signals measured from a rolling
bearing test system with different defect conditions are decomposed into a set of intrinsic mode functions (IMFs) by means of
the CEEMD method. Second, vibration signals are filtered with calculated filtering parameters. Third, the IMF which is closely
correlated to the filtered signal is selected according to the correlation coefficient between the filtered signal and each IMF, and then
the ARmodel of the selected IMF is established. Subsequently, the ARmodel parameters are considered as the input feature vectors,
and the hidden Markov model (HMM) is used to identify the fault pattern of a rolling bearing. Experimental study performed on
a bearing test system has shown that the presented approach can accurately identify faults in rolling bearings.

1. Introduction

Rolling element bearing failure is one of the foremost causes
of failures in rotating machinery, and such failure may
result in costly production loss and catastrophic accidents.
Early detection and diagnosis of bearing faults while the
machine is still in operation can help to avoid abnormal
event progression and to reduce productivity loss [1]. Since
structural defects can cause changes of the bearing dynamic
characteristics as manifested in vibrations, vibration-based
analysis has long been established as a commonly used
technique for diagnosing bearing faults [2]. However, some
nonlinear factors such as clearance, friction, and stiffness
affect complexity of the vibration signals; thus it is difficult
to make an accurate evaluation on the working condition of
rolling bearings only through analysis in time or frequency
domain as it does traditionally [3].

In order to overcome limitations of the traditional tech-
niques, autoregressive (AR) model has been successfully
applied to extracting features from vibration signals for fault

diagnosis in recent years [4–6]. This is because AR model
is a time series analysis method whose parameters comprise
important information of the system condition, and an accu-
rate AR model can reflect the characteristics of a dynamic
system [7]. For example, AR model was combined with a
fuzzy classifier for fault diagnosis in vehicle transmission
gear [8]. Three distinct techniques of autoregressive mod-
eling were compared for their performance and reliability
under conditions of various bearings signal lengths [9]. A
diagnosis method based on the AR model and continuous
HMM has also been used to monitor and diagnose the
rolling bearing working conditions [10]. However, when the
AR model is applied directly to the nonstationary bearing
vibration signals, the analysis results are imperfect since the
estimation method of the autoregression parameters of the
AR model is no longer applicable. Because the vibration
signal is nonstationary, whereas the AR model is suitable
for stationary signal processing, it is, therefore, necessary
to preprocess the vibration signals before the AR model is
generated.
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Empirical mode decomposition (EMD) is an adaptive
time-frequency signal processing method [11]. With EMD, a
signal is decomposed into a series of intrinsicmode functions
(IMFs) according to its own characteristics [12]. For example,
a new fault feature extraction approach based on EMD
method and AR model was used to process vibration signals
of roller bearings [3]. However, when the EMD method is
applied to the nonstationary signals containing intermittent
signal components, the original signal cannot be decomposed
accurately because of the problem of mode mixing [13]. To
alleviate mode mixing, Wu and Huang developed ensemble
empiricalmode decomposition (EEMD) to improve EMD.By
adding noise to the original signal and calculating the means
of IMFs repeatedly, EEMD is more accurate and effective
for signal decomposition [13]. Although the EEMD method
has effectively resolved the mode-mixing problem, it is time
consuming for implementing the large enough ensemble
mean. That is to say, the algorithm efficiency will be greatly
reduced. Aiming at solving this problem, the complementary
ensemble EMD (CEEMD) method is proposed [14]. In this
approach, the residue of added white noises can be extracted
from the mixtures of data and white noises via pairs of
complementary ensemble IMFs with positive and negative
added white noises. The CEEMD method has the same
performance as the EEMD, but the computational efficiency
is greatly improved.

In this paper, we combine the advantages of CEEMD
and time series model and propose a new method based on
CEEMD and AR model for rolling bearing fault diagnosis.
The CEEMD is used as the pretreatment to filter the signal
and extract the IMF which is closely correlated to the
filtered signal, and then the AR model of the selected IMF
is established. The AR model parameters are used as the
feature vectors to a classifier, where the hiddenMarkovmodel
(HMM) is used to identify the fault pattern of a rolling
bearing. The rest of this paper is organized as follows. In
Section 2, the review of the fault diagnosis method based on
AR model is presented, and the proposed method for rolling
bearing fault diagnosis is discussed. The evaluations and
experiments are presented in Section 3. Finally, concluding
remarks are drawn in Section 4.

2. Theoretical Framework

2.1. Time Series Modeling. Autoregressive moving average
(ARMA)model is the representative time seriesmodel, which
can be expressed in linear difference equation form as
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where 𝑛 and 𝑚 are the parameters of the ARMA (𝑛, 𝑚)
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ARMA model. Therefore, the AR model will be established
for characterizing the rolling bearing vibration signal, if the
precision of the model is enough for expressing the system,
which is expressed as
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It is critical to determine the order number of the AR
model, because the accuracy of the order not only affects the
accuracy of identification of the system, but also influences
the stability of the system. In order to estimate the order of
theARmodel correctly, FPE criterion, BIC criterion, andAIC
criterion are usually used [15], and they are expressed as

FPE criterion
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, (4)

BIC criterion
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AIC criterion

BIC (𝑛) = 𝑁 ln𝜎
2

𝑎
+ 𝑛 ln𝑁. (6)

After the model order is determined, the nonlinear least
squares method can be used to estimate model parameters,
and then the AR model with specific parameters is estab-
lished.

2.2. Complementary Ensemble Empirical Mode Decomposi-
tion. Complementary ensemble empirical mode decomposi-
tion (CEEMD) is an improved algorithm based on empirical
mode decomposition (EMD). Through EMD process, any
complex time series can be decomposed into finite numbers
of intrinsic mode functions (IMFs), and each IMF reflects
the dynamic characteristic of the original signal. The IMF
component must satisfy two conditions: (a) the number of
poles and zeros is either equal to each other or differs at most
by one; (b) the upper and lower envelopes must be locally
symmetric about the timeline. The basic principle of EMD
method is to decompose the original signal 𝑥(𝑡) into the form
as shown in (7) by continuously eliminating the mean of the
upper and lower envelope connected with the minimum and
maximum of the signal [16]. Consider
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where 𝑥
𝑡
is the vibration signal, imf

𝑖(𝑡)
is the IMF component

including different frequency bands ranging fromhigh to low,
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Figure 1: Signal waveforms.

and 𝑟
𝑛(𝑡)

is the residue of the decomposition process, which is
the mean trend of 𝑥

𝑡
.

The EMD method is a kind of adaptive local analysis
method, with each IMF highlighting the local features of
the data. However, EMD decomposition results often suffer
from mode mixing, which is defined as either a single IMF
consisting of widely disparate scales or a signal residing in
different IMF components [17]. To make it clear, a simulated
signal 𝑠(𝑡) consists of a Gaussian-type impulse interference
𝑠
1
(𝑡) and a cosine component with 500Hz frequency 𝑠

2
(𝑡),

and a trend term 𝑠
3
(𝑡) is used as an example. The equation of

the simulated signal is expressed as

𝑠 (𝑡) = sin (2𝜋𝛼𝑡) 𝑒
−((𝑡−𝑡0)

2
/𝜎)

+ cos (2𝜋𝛽𝑡) + 50𝑡, (8)

where 𝛼 = 3000, 𝛽 = 500, and 𝜎 = 10
6.

Thewaveformof the simulated signal is shown in Figure 1,
and the corresponding EMD results for the signal 𝑠(𝑡) are
shown in Figure 2, where the mode mixing happens.

To overcome the problem of mode mixing, the ensemble
empirical mode decomposition (EEMD) was proposed [18],
where Gaussian white noises with finite amplitude are added
to the original signal during the entire decomposition pro-
cess. Due to the uniform distribution statistical characteris-
tics of the white noise, the signal with white noise becomes
continuous in different time scales, and no missing scales are
present. As a result, mode mixing is effectively eliminated by
the EEMD process [18]. The EEMD decomposition result of
signal 𝑠(𝑡) is shown in Figure 3, where the added white noise
amplitude is 0.25 times the original signal standard deviation,
and the number of decompositions is 200 times.

It should be noted that, during the EEMD process, each
individual trial may produce noisy results, but the effect
of the added noise can be suppressed by large number
of ensemble mean computations. This would be too time
consuming to implement. An improved algorithm, named
complementary ensemble mode decomposition (CEEMD),
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Figure 2: The decomposition result by EMD.
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Figure 3: The decomposition result by EEMD.

is suggested to improve the computation efficiency. In this
algorithm, the residue of the added white noises can be
extracted from themixtures of data and white noises via pairs
of complementary ensemble IMFs with positive and negative
added white noises. Although this new approach yields IMF
with a similar RMSnoise to EEMD, it eliminates residue noise
in the IMFs and overcomes the problem ofmodemixing with
much more efficiency [14]. The procedure on implementing
CEEMD is shown below:

(a) 𝑥
1
and 𝑥
2
are constructed by adding a pair of opposite

phase Gaussian white noises 𝑥
𝑛
with the same ampli-

tude. Then 𝑥
1

= 𝑥 + 𝑥
𝑛
and 𝑥

2
= 𝑥 − 𝑥

𝑛
;



4 Mathematical Problems in Engineering

(b) 𝑥
1
and 𝑥

2
are decomposed by EMD only a few times,

and IMF
𝑥1

and IMF
𝑥2

are ensemble means of the
corresponding IMF generated from each trial;

(c) the average of corresponding component in IMF
𝑥1

and IMF
𝑥2

is calculated as the CEEMD decomposi-
tion results; that is,

IMF =

(IMF
𝑥1

+ IMF
𝑥2

)

2

.
(9)

The flow chart of CEEMD is shown in Figure 4, where 𝑛 is the
decomposition trials.

Figure 5 is the decomposition result by CEEMD for the
signal 𝑠(𝑡). As compared to the result shown in Figure 3,
the decomposition accuracies of EEMD and CEEMD are
consistent, while EEMD takes 1.62 s and CEEMD only needs
0.13 s.

2.3. Fault Diagnosis Based on CEEMD and Time Series Model.
Based on CEEMD and time series model, a hybrid fault
diagnosis approach can be designed. The hybrid approach
combines the advantages of CEEMD method in the non-
stationary signal decomposition with the ability of time
series modeling in feature extraction. The flow chart of the
developed approach is shown in Figure 6.

The main steps are as follows.

Step 1. The rolling bearing vibration signal is sampled and
then decomposed by CEEMD with the process shown in
Figure 4.

Step 2. The product of energy density and average period
of the IMFs which is a constant value according to [19] is
calculated using (10) and parameter 𝑅𝑃

𝑗
is calculated using

(11). Then the signal is filtered by comparing the parameter
𝑅𝑃
𝑗
and the given threshold value; that is to say, when 𝑅𝑃

𝑗
⩾

1, the previous 𝑗 − 1 IMFs with the trend term need to be
removed as noise and to rebuild the residual IMFs as filtered
signal [19, 20]:
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2 is the energy density of the
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is the average period of the 𝑗th IMF, 𝑁

is the length of each IMF, 𝐴
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is the amplitude of the 𝑗th IMF,

and 𝑂
𝑗
is the total number of extreme points of 𝑗th IMF.

Step 3. Equation (12) is used to calculate the correlation
coefficient between the filtered signal and each IMF, and the
IMFwhich is closely correlated to the filtered signal is selected
for AR modeling [21]:
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Figure 5: The decomposition result by CEEMD.

Step 4. The least square method is used to estimate the
parameters vectors of theARmodel established in Step 3, and
the parameters vectors are considered as the model feature
vector.

Step 5. After scalar quantization by index calculation formula
of Lloyds algorithm in (13) [22], the feature vector is used to
train the HMM of each bearing working condition:

indx (𝑥) =

{
{

{
{

{

1 𝑥 ≤ partition (𝑖)

𝑖 + 1 partition (𝑖) < 𝑥 ≤ partition (𝑖 + 1)

𝑁 partition (𝑁 − 1) < 𝑥,

(13)
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where 𝑁 is the length of the codebook vector, partition (𝑖)
is the partition vector with the length of 𝑁 − 1, and 𝑥 is the
feature vector for scalar quantization.

Step 6. A test vibration signal can then be acquired for
diagnosis, and themodel feature vector is first extracted.After
scalar quantization, the feature vector is put into the well-
trained HMMs, and the corresponding HMM which has the
maximum probability is regarded as the classification result
[23].

3. Evaluation of the Method Based on
CEEMD and AR Model

3.1. Evaluation Using Simulated Signals. To demonstrate the
validity of the method proposed in this study, three signals
𝑥
1
(𝑡), 𝑥
2
(𝑡), and 𝑥

3
(𝑡) are simulated as shown in Figure 7.The

signal 𝑥
1
(𝑡) consists of a Gaussian-type impulse interference,

a cosine component with 10Hz frequency, a trend term, and
white noise. The signal 𝑥

2
(𝑡) consists of a Gaussian-type

impulse interference, a square wave with 65% duty ratio, a
trend term, and white noise. The signal 𝑥

3
(𝑡) consists of a

Gaussian-type impulse interference, a sawtooth wave with
15Hz frequency, a trend term, and white noise.

Figure 8 shows the results of the CEEMD of signals 𝑥
1
(𝑡),

𝑥
2
(𝑡), and 𝑥

3
(𝑡). Correlation coefficients between filtered

signal and each IMF are illustrated in Table 1.
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It can be seen in Table 1 that the IMF which is closely
correlated to the filtered signal is IMF5 for both signal
𝑥
1
(𝑡) and signal 𝑥

3
(𝑡) and IMF6 for signal 𝑥

2
(𝑡). They are

used to construct the AR models, and the corresponding
feature vectors are estimated as shown in Table 2. After scalar
quantization, the feature vectors are used to train the HMM
for signal classification.
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Figure 8: The decomposition results by CEEMD.
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Table 1: Correlation coefficients between filtered signal and each IMF.

Signal Correlation coefficient
IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

𝑥
1
(𝑡) −0.0031 −0.0009 0.0371 0.4096 0.9668 0.2428 0.1273 −0.0448

𝑥
2
(𝑡) 0.0051 0.0004 0.0435 0.2111 0.4695 0.8887 0.7214 −0.0201

𝑥
3
(𝑡) −0.0234 −0.0154 0.0286 0.5900 0.8953 0.1649 0.1887 −0.0210

Table 2: Model parameter estimation results.

Signal Model parameter
𝜑
1

𝜑
2

𝜑
3

𝜑
4

𝜑
5

𝜑
6

𝑥
1
(𝑡) 4.7183 −9.1103 9.2034 −5.1408 1.5207 −0.1914

𝑥
2
(𝑡) 4.8894 −9.8269 10.3945 −6.1194 1.9153 −0.2531

𝑥
3
(𝑡) 4.8718 −9.9955 11.1616 −7.2529 2.6430 −0.4282

Table 3: Signal classification results.

Signal type Test sample Classification results Classification rate [%] Overall classification
rate [%]

𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)

𝑥
1
(𝑡) 20 19 1 0 95

96.7𝑥
2
(𝑡) 20 0 19 1 95

𝑥
3
(𝑡) 20 0 0 20 100

A total of 90 feature vectors were collected from three
groups of signals using the proposed approach. One-third of
the feature vectors in each condition were used for training
the classifier and others were used for testing. The results of
the signal classification are listed in Table 3.

Results in Table 3 indicate that the presented method
based on CEEMD and time series modeling can effectively
identify different signals, and the overall classification rate is
96.7%. For the purpose of comparison, the signal classifica-
tion rates use themethod based on time seriesmodeling only,
and the method based on EMD and time series modeling
is also calculated. 88.3% and 93.3% classification rates are
obtained, respectively. It is obvious that efficiency of the signal
classification method proposed in this paper is improved to a
certain extent.

3.2. Evaluation Using Experimental Data. In order to illus-
trate the practicability and effectiveness of the proposed
method, a bearing fault data set from the electrical engi-
neering laboratory of Case Western Reserve University is
analyzed [24]. The data set is acquired from the test stand
shown in Figure 9, where it consists of a 2 hp motor, a
torque transducer, a dynamometer, and control electronics.
The test bearings support the motor shaft which is the deep
groove ball bearings with the type of 6205-2RS JEMSKF.
Vibration data was collected at 12,000 samples per second
using accelerometers, which are attached to the housing with
magnetic bases. The motor load level was controlled by the
fan in the right side of Figure 9.

2 hp motor 
Torque 

transducer
Dynamometer

Figure 9: Bearing test stand.

Figure 10 illustrates representative waveforms of the sam-
ple vibration signals measured from the test bearings under
four initial conditions: (a) signal from a healthy bearing, (b)
signal from a bearing with inner ring defect, (c) signal from
a bearing with rolling element defect, and (d) signal from a
bearing with outer ring defect. These signals were measured
under 0 hpmotor load with themotor speed of 1797 rpm.The
decomposed IMFs of these signals are shown in Figure 11.

Correlation coefficients calculated between the filtered
signal and each IMF are shown in Table 4.

The IMF which is closely correlated to the filtered signal
is IMF2 for signal (a) and IMF1 for signals (b), (c), and (d),
respectively.These IMFs are used for ARmodel construction.
The model order estimation curves of the four conditions
based on the principle of FPE criterion are shown in Figure 12.
We can see that when the model order is 6, each model’s
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Figure 10: Vibration signal waveforms of different conditions.

Table 4: Correlation coefficients between filtered signals and each IMF.

Signal Correlation coefficient
IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

(a) 0.4135 0.7538 0.4381 0.4880 0.4356 0.1792 0.0971 −0.0056
(b) 0.8794 0.4275 0.2583 0.1337 0.0421 0.0285 −0.0009 −0.0074
(c) 0.9509 0.2180 0.2325 0.1337 0.0821 0.0350 −0.0017 0.0009
(d) 0.9878 0.1267 0.0636 0.0509 0.0136 0.0060 −0.0008 −0.0068

Table 5: Model parameter estimation results.

Signal Model parameter
𝜑1 𝜑2 𝜑3 𝜑4 𝜑5 𝜑6

(a) 3.1280 −4.7797 4.2245 −2.1489 0.4241 0.0356
(b) 0.2084 −1.3585 0.5142 −0.6356 0.3471 −0.0422
(c) 0.1335 −1.6472 0.3941 −0.8473 0.2142 −0.1011
(d) −0.1172 −1.2159 0.1178 −0.1283 0.1467 0.2533

residual tends to be stable. Therefore the model order is
selected as 6, and the results of parameters estimation are
listed in Table 5.

The parameters in Table 5 were quantified by Lloyds
algorithm in (12) as feature vectors for training the HMMs of
different conditions. The results of quantization are revealed
in Figure 13.

A total of 160 feature vectors were collected from the
four conditions, half of the feature vectors were used for
training the classifier and others for signal classification, and
the classification results are listed in Table 6. Out of 80 test
feature vectors, just two cases were not correctly classified,
and the overall classification rate is 97.5%.

For comparison, Tables 7 and 8 list classification results
based on time series modeling usingmeasured signal directly
and based on EMD and time series model method. From

the comparison results, the proposed method is efficient for
rolling bearing fault diagnosis, and the overall classification
rate of the proposedmethod is higher to a certain extent than
the other two methods mentioned above.

4. Conclusions

Aiming at diagnosing rolling bearing faults, a hybrid ap-
proach based on CEEMD and time series modeling is pro-
posed in this paper.The CEEMDmethod can decompose the
nonstationary signal into a series of IMFs with low compu-
tation. AR model is an effective approach to extract the
fault feature of the vibration signals and the fault pattern
can be identified directly by the extracted fault features
without establishing the mathematical model and studying
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Figure 11: The decomposition results by CEEMD under different conditions.
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Figure 12: The model order estimation curves.

Table 6: Fault diagnosis using CEEMD and time series model.

Fault type Test sample Classification results Classification rate [%] Overall classification
rate [%]

No
defect

Inner
ring
defect

Rolling
element
defect

Outer
ring
defect

No defect 20 20 0 0 0 100

97.5Inner ring
defect 20 0 19 1 0 95

Rolling element
defect 20 0 1 19 0 95

Outer ring
defect 20 0 0 0 20 100
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Figure 13: The results of quantization.

Table 7: Fault diagnosis using time series model only.

Fault type Test sample Classification results Classification rate [%] Overall classification
rate [%]

No
defect

Inner
ring
defect

Rolling
element
defect

Outer
ring
defect

No defect 20 19 1 0 0 95

90.0Inner ring
defect 20 1 17 2 0 85

Rolling element
defect 20 0 2 17 1 85

Outer ring
defect 20 0 0 1 19 95
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Table 8: Fault diagnosis using EMD and time series model.

Fault type Test sample Classification results Classification rate [%] Overall classification
rate [%]

No
defect

Inner
ring
defect

Rolling
element
defect

Outer
ring
defect

No defect 20 19 1 0 0 95

93.75Inner ring
defect 20 0 18 2 0 90

Rolling element
defect 20 0 1 19 0 95

Outer ring
defect 20 0 0 1 19 95

the fault mechanism of the system. In this paper, the CEEMD
method is used as a pretreatment, which can increase the
accuracy of the AR model for the measured signal, and
the AR model of the IMF which is closely correlated to
the filtered signal is established to extract the fault feature
parameters. Comparing to the EMD-AR approach and the
direct modeling approach where raw signals are directly
used as input for AR modeling, a higher classification rate
was shown to be achieved by using the new approach (e.g.,
96.7% for simulated signals and 97.5% for experimental data).
Meanwhile we anticipate that the proposed method can also
be used for incipient fault diagnosis in rolling bearing, where
further experiments are needed to verify the accuracy. Since
the approach presented in this study is generic in nature, it
can be readily adapted to a broad range of applications for
machine fault diagnosis.
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