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Due to the physical nature of the interference phenomenon, extracting the phase of an interferogram is a known sinusoidal
modulation problem. In order to solve this problem, a new hybrid mathematical optimization model for phase extraction is
established. The combination of frequency guide sequential demodulation and harmony search optimization algorithms is used
for demodulating closed fringes patterns in order to find the phase of interferogram applications. The proposed algorithm is tested
in four sets of different synthetic interferograms, finding a range of average relative error in phase reconstructions of 0.14-0.39 rad.
For reference, experimental results are compared with the genetic algorithm optimization technique, obtaining a reduction in
the error up to 0.1448 rad. Finally, the proposed algorithm is compared with a very known demodulation algorithm, using a real
interferogram, obtaining a relative error of 1.561 rad. Results are shown in patterns with complex fringes distribution.

1. Introduction

Interferometry includes a series of techniques used in the
measurement of aberrations, deformations, flatness, and
perturbations. It may also be applied to measure variables as
temperature gradients, strain analysis, depth measurement,
and so forth. Widely known techniques to demodulate
interferograms are phase shifting algorithms for several
images and the Fourier method for a single linear carrier
fringe pattern [1]. However, these techniques are difficult to
implement when the object under study changes fast and
continuously, and the dynamic range of the phase does not
allow the use of a large linear carrier without infringing the
sampling theorem. In those situations a single interferogram
with closed and possibly complex fringe distribution must be
analyzed to recover the phase information related to the phys-
ical phenomena being measured. This is known as a difficult
task since there are many solutions that are compatible with

the measured data but lacks physical meaning. The accuracy
of measurements carried out from a single fringe pattern
that includes closed fringes is thus intensely dependent
on the phase distribution of the recorded interferogram
being estimated. Recently, many phase recovering methods
have been developed as combination of genetic algorithms
and parametric methods [2-4], soft computing techniques
applied to Zernike polynomials [5], combination of genetic
algorithms and frequency guided sequential demodulation
[6], particle swarm optimization [7], unwrapping of phase
maps with sign changes [8], two-dimensional regularized
phase-tracking technique [9], and so forth. In general, there
are not particular processes that succeed in obtaining the
phase for any given interferogram, but all of them are limited
to specific features of the fringe pattern.

The phase demodulation trouble has been formulated as
an optimization challenge, where soft computing procedures
may be used to find the phase solution that best matches



the nonlinear equation represented by fringe patterns. Few
years ago, genetic algorithms have been tested [2]; the authors
developed a parametric method for fringe pattern demodula-
tion using a genetic algorithm (GA). A parametric estimation
of the coefficients of a 15th degree Zernike polynomial is
used in order to approximate the phase; a population of chro-
mosomes is programmed within the coefficients to calculate
the phase. A cost function is then employed considering the
number of the observed fringes and the fringes that result
from the recovered phase match, the phase softness, and the
prior knowledge of the object. Normally, the final solution
of the GA is based on a cost function, which is stated as the
comparison between the better individual in the population
and the target (real fringes); a population evolution process
is allowed until a cost function average threshold is achieved.
The authors reported a root mean square (rms) error of 0.12
radians. This method was applied to noisy fringe patterns and
to a single closed fringe image. Additional improvements and
variations of this work were subsequently presented by the
same research team [3, 4].

Another soft computing technique used for phase recon-
struction is particle swarm optimization (PSO). This algo-
rithm was introduced by Kennedy and Eberhart in 1995 [10],
as an evolving optimization technique. In 2012 Jiménez et al.
[7] used PSO for phase recovery; they compared a GA and a
PSO for phase recovery on several fringe patterns, obtaining
errors of 0.4281 and 0.313rad., respectively, showing an
improvement in accuracy of PSO over GA; processing time
improvements were announced, but no results were shown.

As mentioned before, the demodulation of a single
interferogram often involves a combination of methods (GA
+ Zernike, PSO + Zernike, Neuronal networks + others, etc.).
In 2009 Wang and Kemao reported a new hybrid method;
they used frequency guided sequential demodulation (FSD)
as interferogram demodulator, combined with Levenberg
Marquardt (LM) optimization [11], method implemented by
their quickness and efficiency in fringes demodulation.

In this work a FSD with harmony search optimization
(HSO) is investigated in order to test the performance in a
single interferogram with closed fringes. The main motiva-
tion is the advantages of the HSO technique over other soft
computing techniques already reported. The HSO technique
was inspired in the observation of musical composition to
search a perfect harmony and was introduced by Geem et al.
in 2001 [12] and has found its way in several applications as
diverse as engineering, math, industrial process, biology, and
so forth [13-19]. An excellent recent review and categoriza-
tion of the applications of HSO was conducted by Manjarres
et al. in 2013 [20]. Some advantages of this method are that
it uses simple algebraic equations and real values, while the
derivative information is unnecessary unlike GA and other
optimization techniques.

In the following section, the physical theory of the inter-
ferograms is presented as well as the concepts of the HSO and
FSD algorithms. In the next section, the image-processing
techniques and the experimental setup used to implement
the soft computing proposed method are described. Finally,
in the last two sections the results and the conclusions are
presented, respectively.
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FIGURE 1: Interferogram acquisition system with a Twyman-Green
interferometer.

2. Theory

Metrology has techniques such as fringe projection profilom-
etry and optical interferometry to measure physical quantities
in many areas of engineering and science, but the importance
of these methods lies in the fact that they are noninvasive
procedures [21]. Recently, advances in computational tech-
niques have the potential to extend the measuring capabilities
of optical metrology applications. In the present section the
optical metrology basis, the harmony search optimization
model, and the frequency guided sequential demodulation
process are shown.

2.1. Optical Interferometry. Interferometry studies the engage-
ment of two or more light waves, where one of them has
suffered a modification by one characteristic of an object
being tested [22]. Demodulation of the phase is the most
important task in interferometry measurements; the phase is
related to a physical quantity to be measured.

The optical arrangement, shown in Figure 1, is a Twyman-
Green interferometer setup (a Michaelson interferometer
modification). The interference is produced by the difference
of optical path between the two arms of the interferometer.
The interferogram is reordered by a photo detector array
(e.g., a charged coupled display camera) and then digitized
for show on a monitor or stored for further processing
with computational algorithms like unwrapped phase, digital
filtering, demodulation phase, and so forth [23]. The optical
components Lc, Lf, and Bs are a positive collimating lens, a
positive focusing lens, and a beam splinter, respectively. The
fringe pattern intensity is modeled by

I(xy)=a(xy)+b(xy)cos(p(x.y)), O

where I(x, y),a(x, ), b(x, y), ¢(x, ¥),and (x, y) are the inter-
ference fringe pattern intensity, the background illumination,
the modulation amplitude, the phase term, and the spatial
coordinates of the surface under test, respectively.

2.2. Harmony Search Optimization. The harmony search is a
metaheuristic optimization algorithm; it was created by Lee
and Geem in 2005 [24]; it was inspired in music harmony and
is a powerfully soft computing tool to solve many optimiza-
tion problems. The HSO algorithm is structured in five steps
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(i) Generate the solution vector
(ii) Calculate fitness

]

Step 3

[ -]

PAR = PAR(GEN)

Calculate fitness

Step 4

bw = bw(GEN)

Include new harmony

NV = RAND(value between limits)

Exclude worst harmony

RAND < HMCR

Yes

Index = RAND
NV = HM (index, 7)

No

Yes
RAND < 0.5

Result = NV(i) - RAND # bw|

Tterations > SC

&

—|NV(i) = result |

|Result = NV(i) + RAND = bw| NV(i) = result

FIGURE 2: Flow diagram to indicate the structured HSO algorithm.

[25], as shown in Figure 2. Those steps are the following: (1)
initialize the problem and algorithm parameters; (2) initialize
the Harmony Memory (HM) array; (3) improvise a new
harmony from HM; (4) update the HM; and (5) check the
stopping criterion. These steps are described as follows.

Step 1. The optimization problem is specified and initialized
its parameter values as follows:

Mininize f (x)

2)
subject to  x; € X; =1,2,...,NVAR,

where f(x),x, and X; are the objective function, the set of
each decision variable x;, and the set of the possible range of
values for each decision variable, respectively. Also, the search
range of X; is x/ < X; < x7, with x" and x as the lower
and upper bounds for each decision variable, respectively.
The parameters to initialize the algorithm are the number
of decision variables (NVAR); the number of improvisations
or stopping criterion (SC); the number of solution vectors
in the Harmony Memory or the Harmony Memory Size
(HMS); Harmony Memory Considering Rate (HMCR); Pitch
Adjusting Rate (PAR) for each generation; and the arbitrary
distance bandwidth for each generation (bw). In the following
steps the role of some of these parameters is explained.

Step 2. The Harmony Memory (HM) array is complete with
a random solution vectors as the HMS, as can be seen in the
following:

r 1 1 1 A
xl x2 “ e xN
2 2 2
xl x2 .o xN
HM = , (3)
HMS HMS HMS
Lx; X, Xy

where HM acts as a dynamical memory address, where
the sets of decision variables (all the solution vectors) are
saved. This HM is similar to the genetic array in the genetic
algorithm (GA) [26].

Step 3 (improvise a new harmony with parameters adjust-
ment). For this improvisation, a new harmony vector x' =
(x},x5,...,x)) is generated taking into account three basic
considerations [27]: memory consideration, pitch adjust-
ment, and random selection.

In the memory consideration, the value of the first
decision variable x| for the new vector is chosen from any of
the values in the specified HM. The values of other decision
variables xJ,...,x) are chosen in the same manner. The



Mathematical Problems in Engineering

Define the PAR
Define the HMCR

if (rand > HMCR)
else-if (rand > PAR)
else

end if

end while

Generate the HM (initial harmonics as real number arrays)

while (Max number of iterations > SC)
Create new harmonics by accepting better harmonics
Adjust PAR to take new solutions (harmonics)
Choose an existing harmonic randomly
Adjust the pitch randomly within a bandwidth (bw)

Create new harmonics via randomization

Accept the new solutions (harmonics) if better

ALGORITHM I: The improvisation procedure of HSO.

HMCR has a range of values from 0 and 1, while -HMCR
is the possibility of creating a random HM member [27].

In the second consideration, a pitch adjusting is per-
formed only after a value is chosen from the HM. The PAR
considers the possibility of change of some elements of HM.

In the last consideration, a new vector x; is generated with
a pitch adjustment threshold of 0.5, and the definition of this
vector is described by

x| = x; + RAND () * bw, (4)

where bw has an uniform distribution between —1 and 1. The
function RAND() is fed with a random number between
0 and 1 to adjust the PAR. The sign of the addition in (4)
depends of the value obtained with RAND function; if the
value is less than 0.5 the sign is positive, and negative in other
case.

Other parameters used in this step are NV and GEN, a
new vector to improvise HM and for the depuration of the
actual generation, respectively.

Step 4 (update HM). If the new harmony vector is better than
the worst harmony vector in HM, then this latter is replaced
by the new harmony vector. The HM is then sorted by the
objective function value.

Step 5 (check the stopping criterion). If the SC is satisfied,
computation is terminated. Otherwise, Steps 3 and 4 are
repeated.

The HMCR and PAR parameters introduced in Step 3
help the algorithm to find locally and completed improved
solutions, respectively. PAR and bw in HS algorithm are
important parameters in fine-tuning of the optimized solu-
tion vectors and can be potentially useful in adjusting
convergence rate of the algorithm to an optimal solution. The
HSO pseudocode is shown in Algorithm 1.

The traditional HS algorithm uses fixed value for both
PAR and bw. In the HS method PAR and bw values adjusted

in initialization step (Step 1) and cannot be changed during
new generations. Large bw values with small PAR values can
produce poor performance of the algorithm and increased
iterations are needed to find an optimum solution. Although
in early generations bw must take a bigger value to enforce
the algorithm to increase the diversity of solution vectors,
small bw values in final generations increase the fine-tuning
of solution vectors. Also, small bw values with large PAR
values usually cause the improvement of best solutions in
final generations in which the algorithm converges to the
optimal solution vector [28].

2.3. Frequency Guided Sequential Demodulation. The fre-
quency guided sequential demodulation (FSD) method was
created by Kemao and Soon in 2007 [29], and it is used
for recovery from the phase of closed fringe patterns. The
algorithm of this method is explained in the following six
sentences.

The first sentence is fringe denoising. The noise of (1) will
be removed (low-pass filtering).

The second sentence is normalization. The parameters of
resulting closed interferogram are normalized [30]; this is the
background a(x, y) and the amplitude b(x, y); in effect, (1)
is modified in order to find the interference fringe pattern
normalized intensity

L, (x, ) = cos (¢ (x, 7)) (5)

The third sentence is extracting the phase. The direct
phase is extracted by the following equation:

Epwa (X, y) = COS_I (In (.X, )’)) € [Os 77] > (6)

which is used to calculate the iteration frequencies or
intermediate frequencies §,, and £ ,; those frequencies are
temporal, whilst they refine optimization in order to find the
final frequencies w, and w; this is, (w,, w,) = @(x, y); it is
feasible to use exhaustive search algorithm that guarantees a
global minimum [31].
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The fourth sentence is about the extraction of local
frequency. The true phase is to be considered locally linear,
as

6, (5 it )

_ (7)
=q)wa(x’y)+ xa'(x—u)'f'gyu‘()/—v),

where (u,v), (x, y),(Em,fya) and the operator “” are the

coordinates of the pixel under study, neighbors pixel coordi-
nates, the internal frequencies while the optimization process
is being performed, and the dot product, respectively. In other
words p = (§,,, Eyu)T is the intermediate parameter vector.
Then, a virtual fringe pattern can be generated as

1(xu.p) = cos[g, (v ysmvp).  (®

The fitness or energy cost function to be used by the HSO
algorithm is equivalent to the squared difference between the
virtual and the real fringe pattern; that is,

Ewvp) = ) Y [g(x—u)y—V)
Y=—00 X=—00 (9)

[T ysuvp) - 1,0 0)] ]

where g(x, y) is a subimage window function briefly studied.
The local frequency is estimated by minimizing the fitness
function:

p(u,v) = arg ~minE (u, v;P) . (10)
P

The fifth sentence is the extraction of estimated frequen-
cies. Finally, the two coeflicients found for the pixel under
study or the estimated frequencies by HSO are

P v) = @y (7). @, (w,0)] (1)

The sixth sentence is eliminated the ambiguity error. In
order to determine the frequency guided sign, all subimages
were processed to correct the problem of ambiguity sign.
Palpably p(u, v) and ¢, (x, y) have sign ambiguity and the
sign function s(x, ¥) can be determined by forcing the local
frequencies to be continuous; this is,

L if @, (x;,9,) @ (x;1,91) 20
s(x ;) = 12)

-1, if @, (x;, ;) - @ (-1 yi1) <O,

and the ambiguity is indicated by the subindex “a.” The sign
determination is then continued with a pixel that adjoins pixel
(x;, y;) until all of the pixels have been processed. Once the
sign field s(x, y) is determined, both @(x, y) and §(x, y) can
be determined [31] by

[@(x ), 8, (x ¥)]
(13)

=5 (x, y) [Ga (X, y) 7§bwa ('x’ y)] .

The Levenberg-Marquardt optimization is another algo-
rithm that has been applied for this kind of recovery phase;

Subimage, the
studied pixel, and
its 8 neighbors i

Closed fringe pattern

FIGURE 3: Interferogram divided in 5 x 5-pixel subimages.

this algorithm uses the advantages of Gauss-Newton and
gradient-descent methods based on adaptive rules [11].

3. Fringe Pattern Demodulation with
FSD-HSO Algorithm

As explained above, (5) expresses the normalized interfer-
ogram and (6) represents the direct phase extracted. The
process to demodulate a closed fringe pattern applying the
ESD-HSO algorithm consists in splitting the complete closed
fringe pattern into subimages of 5 x 5 pixels (see Figure 3).
Additionally, a pixel is demodulated with the nearest eight
neighbors, and the HSO algorithm is implemented after
selecting the pixel in order to recover the phase for that
element.

Further, the technique FSD is solved applying the HSO
algorithm and taking into consideration (7), where the
true phase is locally linear. Equation (11) expresses the two
calculated frequencies by the HSO algorithm. Equation (8)
describes the interferogram obtained with the estimated
phase. Equation (9) depicts the fitness function for the HSO;
itis the square of the subtraction of the real and the calculated
fringe patterns; hence the proper frequencies cause an energy
cost function minimization. The above process is applied in
all pixels for the subimage. When the process is finished for
all the subimages, (13) corrects the ambiguity error. Figure 4
shows the diagram of the demodulation process for each pixel
applying HSO and FSD.

The pseudocode algorithms necessary to implement the
proposed FSD-HSO procedure are shown in Algorithms 1, 2,
3, 4. First algorithm is the HSO method; second algorithm is
the sign determination, in order to find the sign ambiguities
of the estimate frequencies; third algorithm implements the
procedure to clean the interferograms; fourth algorithm is the
local frequencies calculation.
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I(x, )

Iy L(x, )

Epwa
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Pa
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FIGURE 4: Demodulation process diagram applied to each pixel, using the proposed FSD-HSO algorithm.

forx=1,...,n
fory=1,...,m
Sign determination by coercing the continuity in the local frequencies:
Calculate s(x, y) through neighboring pixels (x;, y;)
Calculate [@(x, y), §,,(x, y)] with the correction of sign
end of y
end of x

ALGORITHM 2: Sign determination.

forx=1,...,n
fory=1,...,m
Fringe denoising (remove the noise without distorting the fringes)
Background removal and amplitude normalization I, (x, y) between [-1, 1]
Phase extraction directly by cos™ (I,,(x, ¥))
end of y
end of x

ALGORITHM 3: Fringe denoising.

forx=1,...,n
fory=1,...,m
foru =1,...,5 (small window)

forv=1,...,5 (small window)
Calculate the energy cost or fitness function, E(u, v; p)
end of v
end of u
end of y
end of x

Minimizing the energy function, p(u, v)
Estimate the local frequencies by [@,, (1, v), @ya(u, n*

ALGORITHM 4: Frequency extraction.
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FIGURE 5: FSD-HSO algorithm applied to demodulate synthetic and real interferograms: (a) normalized interferograms; (b) direct phases
of interferograms; (c-d) calculated frequencies along (x, y) axis, respectively; (e) demodulated phases with ambiguity errors; and (f) correct

demodulated phases without ambiguity error.

4. Results of Closed Fringe Pattern
Demodulation with FSD-HSO Algorithm

A variety of physical quantities can be measured through
the phase; it can be using interferometric techniques. The
method to calculate the phase for a closed fringe pattern is
explained below. Synthetic interferograms (closed fringe) are
demodulated using the FSD-HSO algorithm. The physical
variable associated with the obtained phase is smooth and
continuous.

The HSO algorithm begins its search with HM and in this
case is created by n rows of individuals (HMS = n) with two
elements (NVAR), each with random values that correspond
to the beginning of estimated frequencies by (14); this is

- 1 1 -
wx wy
2 2
w, W,
3 3
HM=| % @, (14)
HMS HMS
L™ x wy _

The values of each parameter in HSO (NVAR, SC, HMS,
PAR, HMCR, and bw) are according to the interferogram to
be demodulated. In this work, four distinct simulated closed

fringe patterns (synthetic interferograms, SIs) and a real
interferogram (RI) are exposed. The first example, synthetic-
interferogram-one (SI1), corresponds to Newton rings inter-
ferogram, that is, classical defocus interference generated
in a Twyman-Green or a Fabry-Perot interferometer; the
synthetic-interferogram-two (SI2) is a pair of symmetrical
positive lobules; the synthetic-interferogram-three (SI3) is a
pair of asymmetrical positive lobules; finally, the synthetic-
interferogram-four (SI4) is a pair of inverse lobules; RI is
a noisy interferogram with defocus aberration. These five
examples are a compendium of different difficulties of closed
fringe demodulation. The normalization of the SIs and RI
were calculated and shown in Figure 5(a). The normalized
interferogram I,(x, y) was partitioned into subimages N,
of 5 x 5 pixels and also is considering the linear phase
to be local. The direct phase is created by inverse cosine
of normalized image; see Figure 5(b). Each subimage was
processed and estimated the frequencies w, and w,, along
x and y directions, respectively; see Figures 5(c) and 5(d).
Equation (10) represents the cost function; it is decreased
close to the selected pixel (x;, y;) and its eight neighbors.
A small value in cost function implies good performance in
the demodulation. The direct phase §,,(x, y) was processed
by the FSD-HSO algorithm described in flow diagram of
Figure 4; as seen in Figure 5(e), the sign ambiguity creates
discontinuities in this step of phase reconstruction process.
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(d)

FIGURE 6: 3D estimated phases of SIs demodulations: (a) ¢, of SII; (b) §,, of SI2; (c) §,, of SI3; and (d) ¢, of SI4.

In Figure 4 a block of sign determination was included
because of the phase ambiguity problem presented in the
function cosine; this is cos(¢,(x, ¥)) = cos(—¢,(x, y)); details
of this method can be found in [31]. Once the subimage is
completed, the HSO starts with other subimages; when the
last subimage is demodulated, the procedure finishes. At last,
the estimated phases @, (x, y) are shown in Figure 5(f).

In order to observe minutiae details of the synthetically
estimated phases, a series of 3D graphs are presented in
Figure 6. The estimated phase of SII is observed as a single
negative paraboloid, as shown in Figure 6(a); in counterpart,
the other three SIs estimated phases have two peaks. The
estimated phase of SI2 is a pair of positive symmetrical
peaks; see Figure 6(b). However, the respective SI3 estimated
phase, is observed as two positive asymmetrical peaks; see
Figure 6(c). At last, two inverse peaks are represented in
Figure 6(d) as SI4 estimated phase. This last interferogram
was the most difficult to demodulate, because the search
process of the HSO algorithm was slow due to the increase
in iterations for the PAR and bw adjustment. It is seen that
the combination of the HSO and FSD methods can handle
interferograms with more complex fringe distribution than
circular fringes.

The average relative error was calculated by the following
equation [3]:

% error
100
= m;;

where ¢,, MN are the original interferogram phase and the
interferogram size, respectively.

In addition to the synthetic analysis, the RI estimated
phase demodulated with FSD-HSO was compared with a
robust unwrapped phase method, implemented by [8], for
this occasion that method is taken to calculate the original
interferogram phase. In order to compare the two results
visually, their 3D phases are shown in Figures 7(a) and 7(b);
these two graphs are very similar; to complement the analysis,
the variance between the original phase and the calculated
phase |¢,(x, y) — @,,(x, )| was obtained, for this RI whose
difference was very small (around ~0.5 radians), as shown in
Figure 7(c). For SI analysis, the original phase is the phase
with which was programmed each synthetic interferogram.

Po (.X', }’) B ¢w (x> )/) (15)
max (9, (x, ) - min (@, (x, y))|’
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150

FIGURE 7: 3D analysis of RI demodulation phase: (a) @, of RI with FSD-HSO demodulation; (b) ¢, of RI with unwrapped phase method; and

() phases difference |p, — @, |.

TaBLE 1: Comparison between GA and HSO optimization techniques. The demodulation method used in both cases was FSD.

p-v deviation (radians)

rms deviation (radians)

% error (radians)

Time processing (seconds)

Interferogram

AG HSO AG HSO AG HSO AG HSO
SI1 4.8740 4.8639 1.9526 1.9009 11729 0.1700 398.63 234.50
SI2 3.0328 3.0031 1.3571 1.3043 2.1474 0.2123 444.83 24713
SI3 4.3100 4.3090 2.1649 2.1110 1.3505 0.1448 407.88 239.93
SI4 4.9980 4.9980 2.7042 2.6344 1.2058 0.3984 5412.98 3026.59
RI 3.485 3.1491 1.346 1.3471 5.2806 1.5610 192.59 87.54

Additionally, the results of HSO algorithm are compared
with genetic algorithm (GA) method, both using FSD as
demodulation technique. Results of this comparison can be
seen in Table 1, where column one contains the five different
interferograms used in the present work. The second column
of Table 1 contains the peak to valley (p-v) deviations, where
column represents the maximal and minimal values obtained
in the respective estimated phases. The third column of
the same table presents the rms deviations of the estimated
phases. In p-v and rms calculus significant differences cannot
be observed between GA and HSO methods, but these data

are presented because of their physical significance. The
average relative errors were presented in fourth column;
it can be observed that HSO algorithm has smaller errors
than GA algorithm; the difficulties presented in SI4 and RI
(pronounced sign peaks asymmetry and/or very noisy image)
increment a little the error in both methods; the biggest
error was 1.561rad.; therefore, the robustness of FSD-HSO
is confirmed. The last column presents the time processing,
where the FSD-HSO demonstrated as a fast method with
symmetrical sign peaks interferograms demodulation (until
1.5 minutes), but the time processing increases as different
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TABLE 2: Parameters used in FSD-HSO optimization algorithm.

Interferogram NVAR SC HMS HMCR PAR bw  Limits
Nt 2 800 1000 0.9 0.75 0.05 [-0.3,0.3]
SI2 2 1000 1500 0.9 0.7 0.08 [-0.2,0.2]
SI3 2 1000 1800 0.85 0.75 0.07 [-0.5,0.5]
S14 2 1500 2200 0.9 09 0.1 [-0.5,0.5]
RI 2 1500 2000 0.85 0.7 0.09 [-0.5,0.5]

sign peak lobules appear in the interferogram. Results of
Table 1 are supported by the plot of Figure 8, in which the
number of iterations for the proposed method is about one
half to achieve convergence.

The selected parameters used in this work are shown
in Table 2. The entire SIs and RI images had MN size of
250 x 250 pixels and 128 x 128 pixels, respectively. In order
to obtain consistent results, all the calculus is made with
the same computational system: Intel Celeron B815 1.6 GHz,
with 2 GB of RAM, 32-bit operative system, Windows 7, and
Matlab R2011a 7120.635. The FSD-GA at its best operation,
used to compare the proposed algorithm, has the following
parameters: individuals 1500-2500; bits by gen 12-15; gens 2;
generations 1000-1500; limits of each coefficient [-0.3,0.3]-
[-0.5,0.5].

Experimentally it is observed that the proposed algo-
rithm’s tuning parameters depend on the interferogram char-
acteristics. The best resolution in the image demodulation
was found experimentally where PAR must approach its
upper limit (one) and bw tends to its lower limit (zero).

5. Conclusions

The use of FSD algorithm to demodulate the phase is a simple
technique of soft computing, because just two variables for
this work, w, and w,, need to be calculated compared to
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other polynomial approaches that calculate more variables or
coeflicients.

Instead, the HSO is a relatively new optimization tech-
nique that requires a few input parameters. The fitness
function used by the HSO is small and the data search is
relational, so convergence is fast and has a low percentage of
error.

Therefore, the combined algorithm FSD-HSO is an
uncomplex algorithm because of its algebraic nature, and,
used in the demodulation of closed fringe patterns, its conver-
gence is fast. The error calculated in synthetic interferograms
simulated was 0.14-0.39 which is a very good approximation.
The method is limited only to demodulation of closed fringe
patterns.

The proposed algorithm is relatively fast compared to the
FSD-AG algorithm; it converges with less iterations. It only
presents difficulties in interferograms with different sign peak
lobules, but this disadvantage is present in both methods.

Other methods to demodulation also shed low error rates,
such as the AG-Zernike algorithm, but, using these two
methods for example, the algorithm becomes very complex,
since it is necessary to perform a lot of computational
processes such as data mutations, data changes from binary
to real, and a lot of variables to be estimated (a minimum of
7 variables).
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