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Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently,
modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological
applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria
influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS) is one of the most accurate models used in
water resource management. Because the membership functions (MFs) possess the characteristics of smoothness and mathematical
components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of
this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level
in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional
ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh
rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance

in daily forecasting.

1. Introduction

Reservoirs and river basins are the most significant com-
ponents of water resource management, providing effective
multipurpose water storage that is employed for irrigation,
water supply, hydropower, and flood drought control; to most
effectively use this stored water, it is essential to optimally
monitor the reservoir level to obtain the desired performance.
The lack of future information regarding the inflow, water
storage, and parameters that influence the reservoir level
(e.g., amount of rainfall, water release, evaporation, soil
moisture, geomorphology of the watershed, and infiltration)
represents uncertainties that must be considered in water
resource operation. In river flow studies, forecasting is
normally forecasting of either water level [1-4] or runoff
[5-9].

In primary attempts, the prediction of reservoir levels
relied on linear mathematical relationships determined on
the basis of the experience of the operators, mathematical
curves, and guidelines [10]. In recent decades, the artificial
neural network (ANN) method was the first method of arti-
ficial intelligence introduced to water resource management
providing better performance in the modeling of the nonlin-
ear systems and making predictions than traditional models,
such as moving average methods. These new approaches
were applied to rainfall-runoff subsets due to a large number
of uncertainties in the watershed parameters, hydrological
aspects, and operational decisions [11-14]. Recently, various
combinations of ANN and other methods, including fuzzy
sets (FS) [15, 16], genetic algorithm programming (GP)
[17, 18], support vector machine (SVM) [19, 20], and types
of swarm intelligence [21], have introduced new modeling
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FIGURE 1: The Sugeno-type fuzzy model.

systems with different strengths that are able to address the
weaknesses of previous methods.

The neurofuzzy modeling system has become a widely
accepted method due to the If-Then rules’ flexibility and
ability to learn from empirical data [22]. Moreover, a major
advantage of the ANFIS model is dividing the input space
into fuzzy subspaces and mapping the output using a set
of linear functions. Because nonlinear relationships and a
large number of data sets existed in hydrological studies,
the new time series methods have become more preferable.
The adaptive network based fuzzy interface system (ANFIS)
was introduced in water resource by L.-C. Chang and E-].
Chang in 2001 [23]. After that, various types of hydrological
modeling, water quality assessment, groundwater issues, and
water resource uncertainties have been modeled by ANFIS
(16, 24-27].

It is noticed that, according to the previous studies done
in estimation the water level in reservoirs and streams, the
ANFIS model provides better accuracy rather than the other
conventional and data-driven methods [28, 29].

In river flow studies, forecasting is divided to forecasting
the water level [1-4, 30] or the amount of discharge the water
[5-9].

Past studies that have used ANFIS for water resource
applications have not taken into account the input criteria
and they have only used one type of membership function
to “fuzzify” the various inputs in the modeling system. The
objective of this study is to evaluate the estimation of water
level in reservoirs and river basins utilizing two case studies,
the Klang Gates Dam (Figure 5) and Rantau Panjang station
on the stream of Kota Tinggi in Malaysia, using different types
of membership functions for fuzzifying each type of crisp
inputs in the adaptive neurofuzzy interface modeling system
to show the influence of considering the specific MF for each
crisp input on the basis of the input criteria in water resource
area.

The data source for training the model can be from same
or different type of data. The data types that are used as data
source for data training are river flow [2, 5, 7, 31], rainfall
[8, 9, 32], water level and rainfall [1, 3, 33], water level and

sea level pressure [4], and flow, rainfall, temperature, and
snowmelt [34, 35].

The following study describes the structure of the ANFIS
model used to forecast the future level of water based on the
historical rainfall and water level data in two different models
for each type of ME. Next, the results and statistical criteria
were examined to compare the models’ accuracies. Finally,
the conclusion of the study evaluates the accurate model, the
Klang Gates Dam and Rantau Panjang station on the stream
of Kota Tinggi in Malaysia.

2. Methodology

In this study a distinct type of membership function considers
for each type of input on the basis of the input criteria
in the ANFIS architecture determining the efficiency of
the new method on forecasting the water level of river
basins and reservoirs. Fundamentally, ANFIS is defined as
a network model representation of the Sugeno-type fuzzy
system employing the aptitudes of the adaptive network to
eliminate the main problem of membership functions in the
procedure of the fuzzy controller [22]. The Sugeno-type fuzzy
model is defined as a mathematical type of fuzzy interface
model explaining the linear input-output relationship defined
in the following form using two inputs [36]:

If x is A and y is B then f = (x,y), (1

where A and B are the fuzzy sets shown in Figurel and
the consequent f(x, y) is the crisp function of the x and
y inputs; {p;,q;,1;} are parameter set provided from the
membership functions equations in Sugeno fuzzy type. The
zero order Sugeno FIS, a constant f(x, y), provides a smooth
function of the input variables by adequate overlapping of the
neighboring MFs to adjust the smoothness of the consequent
crisp function by running the MFs through the ANFIS.

The membership functions are defined in the fuzzy sets
to take into account the normality and convexity properties
through a mathematical expression of the FIS. Based on
the object of interest, the MFs could be linear, quadratic,
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FIGURE 2: ANFIS architecture structure for forecasting the dam level.

or exponential in nature. In the learning phase of ANFIS
method, a hybrid learning rule is employed. The hybrid
learning rule is a combination of the Least-Squares Estimate
(LSE) method aimed at calculating the error measurement
and the backpropagation gradient descent for propagating
from the output end toward the input end and using the error
rate to update the parameters [22].

2.1. Architecture of the Model. The objective of this study is
determining the performance of the new model to forecast
the level of water in two different kinds of water resources,
reservoirs and river basins, using the ANFIS model as a feed-
forward network held neural network learning algorithm and
fuzzy system with different types of MFs for each type of
input. The designed ANFIS architecture includes two inputs,
the daily rainfall at time (t — /) and water level at time (¢ — j),
and one output, the water level at time t, shown in Figure 2, on
the basis of the different time lags (i, j) considered in inputs.
The square nodes demonstrate adaptive nodes representing
the adjustable parameter sets, and the circle nodes are fixed
ones.

The description of the structure of the noticed ANFIS
model, including six layers, is shown as follows.

Layer 1. In this layer, the circle nodes are the input nodes that
transfer the rainfall and the water level data as the inputs to
the next layer. Based on the previous study done by Valizadeh
et al. [37] on the forecasting the reservoir level using ANFIS
used different time lag to determine the best model for the
reservoir using solely two type of data, rainfall (R) and the
level of reservoir (L); the set of inputs, [R(t — 1), L(t — 1)],
notated here as Rt1Lt1, is used as the most evaluated pairs of

sets, where R and L represent the rainfall and the water level
data [37].

Layer 2. The square nodes in the second layer play as an MF in
which the output is the membership grade of the given input
variable, defined as follows:

O} = ps (R)

Us, (L) fori=4,5,6,

fori=1,2,3,
(2)

where R and L are input variables symbolizing the rainfall
and water level, with A; and B,_; describing the linguistic
fuzzy sets (High, Medium, and Low) in different ranges and
shapes of MFs for each type of input. The ordinary procedure
of the second layer of ANFIS in hydrological models uses
the Gaussian or generalized bell shape for all inputs due to
the smoothness and popularity of this distribution; however,
depending on such data characteristics as the range of
numbers, dispersion, and condensation, different MFs could
be defined in ANFIS for each type of input. Notice that the
range of fuzzy rules is specified automatically by program
code on the basis of the range of the data sets and the number
of sets for each input (High, Medium, and Low).

In the ANFIS model with the same types of MFs for
the inputs, the generalized bell-shaped MF produced the
most accurate result and is denoted as model GblGbl. On
the basis of the testing combination of the MFs in ANFIS
modeling, the most precise ANFIS model with different types
of MFs considered in the study was GblGaus, consisting of
the combination of a generalized bell-shaped MF for the
input data representing daily rainfall and the Gaussian MF
for the previous water level data in the case studies. The
characteristics and details of the MFs are described as follows.
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A Gaussian MF is classified as a probability distribution
function (PDF) that creates a smooth boundary transition
depending on the function parameters ¢ and c in the
Gaussian MF formula, where c is the center of the MF and
o0 is a constant related to the width of the function, shown in
Figure 3:

2
gaussmf (x; 0, ¢) = e (", (3)

The Generalized Bell-Shaped MF is a generalization of the
Cauchy distribution employed in probability theory and is
specified by three parameters {a, b, c}:

1

ebelmf(x;a,b,c) = ——,
& L+ (G- o) fal”

(4)

where the parameter ¢ represents the center of the curve.
Notice that the parameter b is almost positive. The advantage
of the G-Bell MF is that it is possible to adjust the width of
the curve by changing the a and ¢ parameters and to control
the slope by changing the parameter b, as shown in Figure 4
(38].
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FIGURE 5: Klang Gate Dam Map.

Layer 3. The output of this layer, firing strength, results from
multiplying the two MFs obtained in the previous layer using
an AND operator:

O,i=wk=;,tAi(R)><yBj(L) k=1,...,9i=j=1,23.
(5)

Layer 4. The purpose of the fourth layer, named normalize
firing strength, is to calculate the weight of the ith rule fringe
strength:

Of == —— i=1,...,9

; Z w, .. . (6)

Layer 5. This layer corresponds to the consequent nodes that
compute the contribution of each ith rule aimed at the model
output:

Oli =wf; =w; (pR+qL+1,), ™)

where w; is the normal firing strength and the parameter set
{p:>q;» 1;} exists from the Sugeno fuzzy model [36].

Layer 6. Output node: this sole circle node computes the
overall output by summing all previous layer signals:

2 2
Of = LEVEL = Y w;f, = Zio Wil (8)

2
i=1 i Wi

2.2. Study of Area and Model Development. The reservoir
of the Klang Gates Dam is located on the west coast of
peninsular Malaysia in Taman Melawati and is influenced
by Kuala Lumpur, Klang, Selangor state, Gombak, Hulu
Langat. The dam location is at latitude 3 13’ 58" N and
longitude 101 45’ 0" E. The dimensions of the reservoir dam
are 138.7m in length and 36.89m in height, providing a
25.1e6 m” reserved water capacity operated for flood control,
hydropower generation, and industrial and domestic water
supply. The Klang Gates Dam is formed by joining the 11
main tributaries that make up the Klang River and has a
1290 km? basin area and a 120 km total length. The upper
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FIGURE 7: Monthly average water level at the Klang Dam and Rantau Panjang.

section of the Klang catchment is covered by forest, although
the lower section consists mostly of a developed urban area,
which is the major source of sediment loads and flood
peaks.

The Rantau Panjang, Johor is located around 42 kilome-
ters north east of Johor Bahru, Malaysia. Rantau Panjang
station that is on the upper stream of the Kota Tinggi has been
selected as a case study area located along the banks of Johor
River. Normal water level at Rantau Panjang is 4 meters while
at Kota Tinggi it is 1 meter. The Johor River is 122.7 km in
length and drains an area of 2,636 km? (Figure 6). The main
tributaries of the river are Sayong River and Linggiu River.
The river flow originates from Mount Gemuruh (109 m) and

discharges the flow into the Straits of Johor. The mouth of the
river is 0 m. Annual average precipitation for the Johor River
catchment is 2,470 mm.

For this study, data observations of the daily rainfall and
Klang Dam level from 1997 to 2008 and Rantau Panjang
station water level and daily rainfall between 1963 and 2008
are employed. Figure 7 shows the average of water level at
the two introduced case studies describing that during May
and August, the water level were fluctuated in their minimum
levels; whereas, the level of the case studies have been
increased from August and reached to the peak on January
and December showing the significance of the operation to
prevent the flood during these months.
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According to the development of the ANFIS model,
the observation data are divided into training, checking,
and testing categories with the grouping ratio of 8:2:2,
respectively [39]. In order to calibrate the ANFIS model,
different number of fuzzy sets and also types of membership
functions are examined to find the optimal model. Moreover,
the most desirable step size to provide smooth tuning in both
models is obtained by examining the most possible set of the
step size resulted, [0.8,0.9, 1.00], which represents the step
size, the step size decrease rate, and the step size increase rate,
respectively.

In order to evaluate the performance of the ANFIS
models, the following four statistical criteria are considered:
(1) the correlation coeflicient (R) defines the weight of the
relationship between the observed and forecasted dam levels,
(2) the root mean square error (RMSE) calculates the residual
value between the actual and forecasted dam levels, (3) the
mean absolute percentage error (MAPE) evaluates the fitness
of the time series data specifically for trending procedures,
and (4) the mean absolute error (MAE):

o (eP-Q0) (@ -Q)
Vo (0-) (@ -3

>

n O _ F\2 05
RMSE:[Z—(Qi Q")] ,

i1 n

1 n
MAPE :;Z

i=1

QF -qP°
IQQI

>

n 1AO _ AF
MAE =ZM
i=1
9

where Q° and QF are the actual and forecasted dam levels,
respectively, and Q represents the average reservoir level.
Values of the correlation coefficient that are closer to unity
illustrate a stronger linear relationship between the actual
and forecasted values and a perfect fit for the observed and
forecasted values is indicated when the MAPE becomes zero.

3. Results and Discussion

On the basis of the basic ANFIS structure model, the level of
water is forecasted by the traditional and the new fuzzification
pattern defined in methodology. Since the model employs
the minimum type of inputs needed the one time lag is
considered for the inputs that provided the most accurate
result in previous study [37]. The comparison between the
actual data and results of the two forecasted models for
the two case studies are shown in Figure 8. The model that
uses a generalized bell-shaped MF for the rainfall input data
and a Gaussian MF for the water level input data provides
a better fit between the actual and forecasted data in both
types of water resources compared with the model that uses
a generalized bell-shaped MF for the two input data sets
and gives unmatched estimation in Klang Gate Dam, when
the water level reached minimum, because of the model
problem in tuning itself in the range of water level. Moreover,
the estimation of water level in Rantau Panjang station
demonstrate more stress in forecasting level of stream using
the generalized bell-shaped MF for the two input data sets.
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In spite of the Figure9 showing the performance of
the two introduced model are almost same, the number of
sudden changes in maximum errors of the GblGaus model
illustrated in Figure 10 are fewer and the errors are in lower
degree rather than the traditional model, GbIGbl. Moreover,
notice that the model employs different MFs for the inputs
not only have less stress compared with the traditional ANFIS
model, but also the weakness of the traditional model in

low water levels has been solved using developed fuzzifying
method in ANFIS.

According to the three statistical evaluations considered
in Figure 11, the model that utilized different types of MFs
achieved much better results; especially the difference of the
coeflicient numbers is greater in Rantau Panjang station than
the Klang Gate Dam. Specifically, the root mean square error
in the GblGaus model was over 0.05 and 0.15 smaller than
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that in the GblGbl model in Klang Gate Dam and in Rantau
Panjang station, respectively, demonstrating the superior
accuracy of the GblGaus model. The significantly smaller
MAPE value of the GblGaus model shows the higher accu-
racy of the data series. Another statistical coeflicient showing
the relationship between the actual and estimated data is
the correlation coefficient (R), as illustrated in Figure 12.
Instead of the difference between the correlation coefficients
of the two models of Klang Dam which were approximately
the same, in Rantau Panjang station the model using a
generalized bell-shaped MF and a Gaussian MF indicates that
the linear relationship between the actual and forecasted data
is considerably improved compared to the model using two
generalized bell-shaped MF inputs.

4. Summary and Conclusions

Forecasting of the water level in two different types of case
studies showing the characteristics of reservoirs and stream
flow is evaluated using two different ANFIS models to exam-
ine the performance of the new fuzzifying pattern in ANFIS
model to identify the precision of the ANFIS model using
different types of MFs in contrast to that of the regular ANFIS
model using the same type of MFs for all inputs in different
water resources. Due to the smoothness and popularity of
the generalized bell-shaped MF and the Gaussian MEF, this
study used a combination of these MFs for the models.
Regarding the results of the model using the generalized bell-
shaped MF for the rainfall input and the Gaussian MF for
the previous water level produced the most accurate results
in two case studies compared with the model that employed
the generalized bell-shaped MF for the two types of inputs.
The statistical criteria also show a better fit and a stronger
linear relationship between the actual and forecasted data in
the model using two different types of MFs for the two types
of inputs. Finally, this study proved the ability of the new
model utilizing the different types of membership functions
in the ANFIS models in different type of water resources and
hydrological conditions helping water resource management
yield results with greater precision in ANFIS model. Future
studies will focus on mathematical proof of the fuzzy section
of the model with different combinations of MFs, comparing
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the new method with the other AI models and utilizing the
method in other different hydrological estimation to support
the results of this study.
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