
Research Article
MUSE: An Efficient and Accurate Verifiable Privacy-Preserving
Multikeyword Text Search over Encrypted Cloud Data

Zhu Xiangyang,1 Dai Hua,1,2 Yi Xun,3 Yang Geng,1,2 and Li Xiao1

1College of Computer Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing 200013, China
2Jiangsu Key Laboratory of Big Data Security and Intelligent Processing, Nanjing 210013, China
3School of Computer Science and IT, RMIT University, Melbourne, VIC 3001, Australia

Correspondence should be addressed to Dai Hua; daihua@njupt.edu.cn

Received 9 February 2017; Accepted 22 May 2017; Published 11 July 2017

Academic Editor: Xiangyang Luo

Copyright © 2017 Zhu Xiangyang et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of cloud computing, services outsourcing in clouds has become a popular business model. However, due to
the fact that data storage and computing are completely outsourced to the cloud service provider, sensitive data of data owners is
exposed, which could bring serious privacy disclosure. In addition, some unexpected events, such as software bugs and hardware
failure, could cause incomplete or incorrect results returned from clouds. In this paper, we propose an efficient and accurate
verifiable privacy-preserving multikeyword text search over encrypted cloud data based on hierarchical agglomerative clustering,
which is namedMUSE. In order to improve the efficiency of text searching, we proposed a novel index structure, HAC-tree, which
is based on a hierarchical agglomerative clustering method and tends to gather the high-relevance documents in clusters. Based
on the HAC-tree, a noncandidate pruning depth-first search algorithm is proposed, which can filter the unqualified subtrees and
thus accelerate the search process. The secure inner product algorithm is used to encrypted the HAC-tree index and the query
vector. Meanwhile, a completeness verification algorithm is given to verify search results. Experiment results demonstrate that the
proposed method outperforms the existing works, DMRS and MRSE-HCI, in efficiency and accuracy, respectively.

1. Introduction

IT resources, such as computing and storage, are treated as
the on-demand services in clouds nowadays, which is shown
as “X as a Service.” In order to reduce the cost of data man-
agement and storage, data owners (DOs) who have a large
amount of data usually choose to outsource their data to
clouds. However, DOs cannot directly control their data
placed in remote cloud servers, which may cause concerns
about their outsourced data being illegally acquired or abused
by the cloud service providers (CSPs), especially for the
privacy-sensitive data, such as medical records, government
documents, and emails. AlthoughmanyCSPs claim that their
cloud services have several security countermeasures, such as
access control, firewall and intrusion detection, doubts about
the security, and privacy of outsourced data that are still the
main obstructions to the wider development of cloud com-
puting [1].

A general approach to protecting data privacy is to
encrypt the data before outsourcing [2]. However, this will
make a significant difficulty and cost in terms of data man-
agement and utilization. In the field of information retrieval
(IR), the existing retrieval technique based on multikeyword
is mainly for the plaintext data and cannot be directly
applied to the encrypted data. It is obviously unrealistic and
wasteful to download all encrypted data from clouds to the
local for decryption. In addition, due to hardware/software
failures, storage device failure, and so forth, the search results
may contain corrupted or incorrect data. If users cannot
verify the completeness and correctness of search results,
the upper-level decisions based on the search results may
be misleading. Therefore, it is a challenge to research and
give a searchable encryption scheme that supports verifiable
privacy-preserving multikeyword text search over encrypted
cloud data, which has become one of the hot issues in cloud
computing recently [3–8].

Hindawi
Security and Communication Networks
Volume 2017, Article ID 1923476, 17 pages
https://doi.org/10.1155/2017/1923476

https://doi.org/10.1155/2017/1923476

2 Security and Communication Networks

In order to deal with the above problems, some encrypted
data search methods [9–12] are proposed which utilize
kinds of cryptographic techniques, such as homomorphic
encryption and public-key cryptography. They are proved
secure in text searching, but they usually need massive math-
ematical operations and cause high computational overhead.
Hence, these methods do not adapt to the cloud computing
scenario where data storage is very large and online data
processing is the basic requirement. Besides, the relationship
between documents is not taken into account during the
search process, such as the category which describes the
classification relationship of documents. In the design of
encrypted documents search scheme, if we consider this
type of documents relationship, it could improve the search
efficiency and accuracy. However, the category relationship
has been concealed by the blind encryption in the traditional
methods. Therefore, it is desirable and helpful to maintain
and utilize the category relationship to perform efficient and
accurate text search for encrypted outsourced documents.

In this paper, we propose an efficient and accurate veri-
fiable privacy-preserving multikeyword text search over
encrypted cloud data (MUSE), which is based on hierarchical
agglomerative clustering tree index (HAC-tree). We use the
TF-IDF model and vector space model to represent every
document and the interested keywords of queries as vectors,
which means that each of them is considered as a point in
a high-dimensional space. The secure inner product compu-
tation, adapted in the secure kNN [13], is used for measur-
ing the relevance score between two documents or a docu-
ment and a query. Based on the hierarchical agglomerative
clustering, we propose a novel index structure, HAC-tree,
which is constructed from the bottom leaf nodes to the upper
root node. Firstly, documents are initialed as leaf nodes.Then
the internal nodes are generated by clustering pairs of child
nodes according to the sequence of their relevance scores
level by level until the root node. Each internal node is with
a pruning vector which is the extract maximum vector of its
child nodes. On the basis of HAC-tree, we propose a non-
candidate pruning depth-first search algorithm (NCP-DFS)
for searching top-k relevance score documents recursively.
The pruning vectors of internal nodes are used to filter
the noncandidate subtrees which impossibly contain search
results; thus the search space is narrowed and the search
process speeds up while the result accuracy is not reduced.
To verify the completeness and correctness of the search
results, digests are generated for documents which are stored
in leaf nodes of the HAC-tree. Upon returning the search
results, a verification object (VO) is constructed for the result
documents which is returned to data user (DU) along with
the results. When DU receives the returned data from CS, a
VO reconstruction procedure is performed to verify the com-
pleteness and correctness of the search results.

Our contributions of this paper are summarized as
follows:

(1) According to the basic idea of hierarchical agglom-
erative clustering, we propose a novel index struc-
ture HAC-tree and the corresponding bottom-up
construction algorithm. The HAC-tree is the lowest

binary tree if the leaf nodes number is fixed. More-
over, documents with higher relevance score between
them (which means those documents may belong to
similar categories) are always clustered.

(2) On the basis of HAC-tree, we propose a noncandidate
pruning depth-first search algorithm (NCP-DFS) for
multikeyword text search. It can prune the subtrees
that surely do not contain any search results; thus the
search efficiency will be improved.

(3) We define digests for documents and propose a result
verification algorithm to check whether the search
results are complete and correct. This algorithm can
detect the damaged or incomplete results caused by
hardware of software faults.

(4) Based on the above methods, we propose two ver-
ifiable privacy-preserving multikeyword text search
schemes over encrypted cloud data, named BMUSE
and EMUSE, respectively. BMUSE is a basic scheme
which can resist known ciphertext threat, while
EMUSE is an enhanced scheme which can resist
known background threat.

(5) We compare the proposed method to DMRS [7] and
MRSE-HCI [8] on a real dataset.Our results show that
(i) the proposedmethod outperformsDMRS in terms
of efficiency without losing accuracy; and (ii) the pro-
posed method consistently gives more accurate
results than MRSE-HCI while it may be less efficient
thanMRSE-HCI, depending on the choices of param-
eter values in MRSE-HCI.

The paper is organized as follows. Section 2 describes
the related work. Section 3 gives the main notations and
necessary preliminaries. Section 4 gives model and problem
statement. Section 5 presents the index structure HAC-tree
and its construction algorithm. On the basis of HAC-tree,
the plaintext multikeyword search algorithm and search
results verification are given. Section 6 presents the basic
and enhanced schemes of the secure multikeyword text
search. In Section 7, we analyze the security of the schemes.
Section 8 carries on the experiment, comparing with the
existing schemes in terms of the search results accuracy and
the search efficiency. Section 9 concludes this paper.

2. Related Work

Searchable encryption (SE) allows data owner to encrypt their
own documents before uploading to the cloud server. In
recent years, searchable encryption has drawn a wide range
of attention, for example, [14–25].

(i) Single Keyword Searchable Encryption. Song et al. [26] first
propose symmetric searchable encryption based on pseudo-
random function and symmetric encryption mechanism
and proof the security rigorously. Goh [14] gives security
definitions for the formalization of the security requirements
of searchable symmetric encryption schemes. Subsequently,
many improvement and novel methods are proposed [27–
29]. Boneh et al. [10] propose a public-key ciphertext search

Security and Communication Networks 3

algorithm named PEKS based on bilinear mapping and IBE
encryption. In this algorithm, encrypted data by the public
key can be authenticated by the gateway and sent to the
corresponding user, but the real content will not be revealed.
However, none of the aboveworks ranks the results.The cloud
server has to return all the results to meet the query request,
resulting in unnecessary bandwidth and processing power
overhead. In order to return only the most relevant search
results, Wang et al. [30] present keyword ranked search over
encrypted data based on TF × IDF and Order-Preserving
Symmetric Encryption (OPSE). However, the above works
only focus on single keyword search and cannot be applied
to the scenario of multikeyword search which is the main
concern of this paper.

(ii) Multikeyword Searchable Encryption. In the typical case
of search over encrypted data in cloud computing, a sin-
gle keyword search cannot express the data user search
intention sufficiently. The cloud server will inevitably return
an excessive number of matches, where most will proba-
bly be irrelevant for the user. Multikeyword search allows
data users to characterize their own requests from multiple
perspectives, ensuring that the search results are the most
relevant documents with the query. Bilinear pairing-based
solutions are presented in [31–33]. The results in bilinear
pairing-based solutions are free from false positives and
false negatives caused by hashing. However, computation
costs of pairing-based solutions are prohibitively high both
on the server and on the user side. Pang et al. [34] pro-
pose a secure search scheme based on vector space model.
Without the security analysis for frequency information and
practical search performance, it is unclear whether there
is keyword privacy disclosure or not. Besides, the practical
search performance is absent from the demonstration of their
experiment. Cao et al. [3] define and solve the challenging
problem of privacy-preserving multikeyword ranked search
over encrypted cloud data (MRSE), which adopt the similar-
itymeasure of “coordinatematching” to capture the relevance
of data documents to the search query and ignore frequency
information, leading to low accuracy in results. Meanwhile,
MRSE needs a huge computational overhead. Sun et al. [4]
use MDB-tree as index structure to improve the efficiency of
MRSE, named MTS. Each level of the MDB-tree represents
a subvector instead of an attribute domain in the database
scenario, which leads to a decrease in accuracy. The index
vector clustering further degrades the retrieval accuracy.
Xia et al. [7] present a secure and dynamic multikeyword
ranked search scheme (DMRS), which conduct a tree-based
index structure to ensure accurate relevance score calculation
between the encrypted document vector and the query
vector. DMRS is significantly superior to MTS in accuracy.
However, owing to neglecting the relationship of documents,
this scheme still brings a lot of calculation cost. Therefore,
there is still much room for improvement in search efficiency.
In this paper, we focus on how to utilize the relationship of
documents to improve the search efficiency.

Obviously, when constructing the index, if the similarity
of documents can be classified and make their access paths
as close as possible, it will make a huge contribution to the

search efficiency through multikeyword of interest. Chen et
al. [8] use the idea to propose a multikeyword ranked search
over encrypted data based on hierarchical clustering index
(MRSE-HCI). This method uses𝐾-means to cluster the doc-
uments based on the minimum relevance threshold and the
maximum size of subcluster. Searching in the most relevant
subcluster can achieve a linear computational complexity
against an exponential size increase of document collection.
Nevertheless, the significant improvement in efficiency is at
the expense of accuracy, which reduces the accuracy and
cannot fulfill user expectation well. In this paper, we not
only improve the top-𝑘 search efficiency but also ensure the
accuracy of search results. Although the search efficiency
of our work may be lower than MRSE-HCI in some cases
depending on the choices of parameter values inMRSE-HCI,
the search result accuracy is much higher than MRSE-HCI.

In addition, Sun et al. [35] useMerkle hash tree and cryp-
tographic signature to build a verifiableMDB-tree. Chen et al.
[8] design a minimum hash subtree as a verifiable structure.
However, their works need to transmit a lot of verification
object. Wan and Deng [36] propose the adapted homomor-
phic MAC technique and random challenge technique with
ordering for verifying top-𝑘 search results. However, the
method requires a linear search of all documents and have
poor efficiency performance. Hence, a proper mechanism
should be adopted which really reduces the transmission cost
of the verification object.

3. Notations and Preliminaries

3.1. Notations. For the sake of clarity, we firstly introduce the
main notations used in this paper:

(i) FS: a plaintext document collection, FS = {𝐹1, 𝐹2,. . . , 𝐹𝑚}
(ii) 𝐸: an encrypted document collection, 𝐸 = {𝐸1, 𝐸2,. . . , 𝐸𝑚}
(iii) 𝑊: a keyword dictionary including 𝑛 keywords,𝑊 =
{𝑤1, 𝑤2, . . . , 𝑤𝑛}

(iv) 𝐼: a binary tree index generated from FS (each leaf
node is associated with a document in FS)

(v) 𝐼: a searchable encrypted index which is generated
from 𝐼

(vi) 𝐼𝑝: a set of plaintext index, 𝐼𝑝 ⊆ 𝐼
(vii) 𝐼𝑝: the encrypted form of 𝐼𝑝
(viii) 𝑢: a node of the index tree 𝐼
(ix) 𝐶𝑢: a cluster whose items are documents represented

by leaf nodes of the subtree with node 𝑢 as its root
(x) 𝑉𝑑: a vector of document 𝐹𝑑
(xi) �̃�𝑑: the encrypted form of 𝑉𝑑
(xii) 𝑆𝑞: a query consisting of a set of the interested key-

words, 𝑆𝑞 = {𝑤1, 𝑤2, . . . , 𝑤𝑡} ⊆ 𝑊
(xiii) 𝑄: the vector of 𝑆𝑞
(xiv) 𝑄: the encrypted form of 𝑄

4 Security and Communication Networks

(xv) 𝑅: a list storing the search results
(xvi) Enc(𝑘𝑓, ∗), Dec(𝑘𝑓, ∗): symmetric encryption and

decryption functions where 𝑘𝑓 is a private key
3.2. Preliminaries

Vector Space Model. Vector space model along with TF-IDF
algorithm is very popular in the information retrieval area,
which is alsowidely used in securemultikeyword search [3, 4,
7, 8, 16, 18].We adopt the classic definitions of term frequency
(TF) and inverse document frequency (IDF). The former
refers to the number of times a given keyword or term exists
in documents while the latter is calculated through dividing
the total number of documents in the collection by the
number of documents having the keyword. Under the vector
spacemodel, each document𝐹𝑑 is denoted as a 𝑛-dimensional
vector 𝑉𝑑. Any element 𝑉𝑑[𝑖] in 𝑉𝑑 stores the normalized TF
value of the keyword 𝑤𝑖 whose calculation formula is shown
in (1). Similar to documents, the interested keywords 𝑆𝑞 are
also denoted as a 𝑛-dimensional vector, named the query
vector𝑄, whose element𝑄[𝑖] stores the normalized IDF value
of the keyword 𝑤𝑖 in 𝑆𝑞. The calculation formula of 𝑄[𝑖] is
shown in (2). Obviously, the lengths of the document vector
and query vector are equal to the capacity of the keywords
dictionary and each element of them is nonnegative.

𝑉𝑑 [𝑖] = TF𝑑,𝑤𝑖

√∑𝑤𝑖∈𝐹𝑑 (TF𝑑,𝑤𝑖)2
, (1)

𝑄 [𝑖] = IDF𝑤𝑖

√∑𝑤𝑖∈𝑆𝑞 (IDF𝑤𝑖)2
, (2)

where TF𝑑,𝑤𝑖 is the TF value of𝑤𝑖 in𝐹𝑑, TF𝑑,𝑤𝑖 = (1+ln𝑓𝑑,𝑤𝑖)/|𝑓𝑑|, IDF𝑤𝑖 is IDF value of 𝑤𝑖 in FS, IDF𝑤𝑖 = ln(1 + 𝑚/𝑓𝑤𝑖),𝑓𝑑,𝑤𝑖 is the frequency of 𝑤𝑖 that appears in 𝐹𝑑, and 𝑓𝑤𝑖 is the
number of documents containing 𝑤𝑖 in FS.

Relevance Score Measurement. In this paper, we use the same
measurements in [8] to quantify the relevance score between
a pair of documents and between a document and a query
(which is represented by the interested keywords of DU). It
is also used to quantify the relevance score between a pair of
cluster centers and between a cluster center and a query. The
calculation of the above relevance score can be unified as the
inner product of two vectors which is shown in

score (𝑝, 𝑞) = 𝑝 ⋅ 𝑞 = 𝑛∑
𝑖=1

𝑝 [𝑖] × 𝑞 [𝑖] . (3)

Secure Inner Product Operation. To achieve the goal of privacy
preserving, we adopt the secure inner product operation
which is proposed in [13]. The operation is able to calculate
the inner product of two vectors without knowing their
plaintext value. Its basic idea is as follows. Assume that 𝑝 and
𝑞 are two 𝑛-dimensional vectors and 𝑀 is a random 𝑛 × 𝑛
invertiblematrix that is treated as a secure key.The encrypted
forms of 𝑝 and 𝑞 are denoted as 𝑝 and 𝑞, respectively, where

𝑝 = 𝑀𝑇𝑝, 𝑞 = 𝑀−1𝑞. The inner product of 𝑝 and 𝑞 is cal-
culated as (4) which indicates that 𝑝 ⋅ 𝑞 = 𝑝 ⋅ 𝑞. Note that we
can get the inner product of two vectors without knowing the
plaintext.

𝑝 ⋅ 𝑞 = (𝑀𝑇𝑝)𝑇 ⋅ (𝑀−1𝑞) = 𝑝𝑇𝑀𝑀−1𝑞 = 𝑝 ⋅ 𝑞. (4)

The space vectormodel, inner product of two vectors, and
secure inner product operation arewidely used in the existing
works [3, 4, 7, 8, 17, 18, 35]. In this paper, we will use them
to design the secure multikeyword text search schemes over
encrypted cloud data.

4. Model and Problem Statement

4.1. SystemModel. The system considered in this paper is the
same as [3–5, 7, 8, 16–18] which consists of three entities: the
data owner (DO), the data user (DU), and the cloud server
(CS). As shown in Figure 1, their collaboration is as follows.

(1) DO Owns the Sensitive Data. To protect the privacy of the
data, DO encrypts FS into ciphertext 𝐸. In order to make 𝐸
searchable in CS, DO constructs a secure index 𝐼 on FS.Then
DO outsources 𝐸 and 𝐼 into CS. Besides, DO can grant the
authorizations of accessing their outsourced data to DU.

(2) CS Provides Services, Such as Data Storage and Manage-
ment. On one hand, CS is in charge of storing the outsourced
data from DOs. On the other hand, upon receiving a search
trapdoor𝑇𝑄 fromDU,CS performs the secure search by 𝐼 and
returns the qualified encrypted documents as search results to
DU.

(3) DU Is the User Authorized by DOWho Can Legally Search
the Data Stored in CS. When DU starts a multikeyword
search, its interested keywords are transformed into a corre-
sponding trapdoor 𝑇𝑄 according to the authorization from
DO.Then𝑇𝑄 is submitted toCS as the search command.After
DU receives search results fromCS, it decrypts the ciphertext
and verifies the completeness and correctness of the result.

4.2. Search Model. Given a set of 𝑡 interested keywords 𝑆𝑞 ={𝑤1, 𝑤2, . . . , 𝑤𝑡}, a multikeyword text search is the process
of calculating relevance scores between all documents in FS
and 𝑆𝑞 and returning the top-𝑘 results from the highest score.
Formally, we define the multikeyword search as follows:

Query = (FS, 𝑆𝑞, 𝑘) , (5)

where 𝑘 is the quantity of requested documents and 𝑘 ≪ 𝑚
generally.

Assuming that 𝑆𝑞 is represented by a query vector𝑄, each
document𝐹𝑖 ∈ FS is represented by a document vector𝑉𝑖, and
the relevance score between 𝑉𝑖 and 𝑄 is calculated according
to (3). Then, the search results 𝑅 of Query = (FS, 𝑆𝑞, 𝑘)
satisfies
|𝑅| = 𝑘 ∧ ∀𝐹𝑖, 𝐹𝑗
(𝐹𝑖 ∈ 𝑅 ∧ 𝐹𝑗 ∈ (FS − 𝑅)) → score (𝑉𝑖, 𝑄) ≥ score (𝑉𝑗, 𝑄) .

(6)

Security and Communication Networks 5

Cloud server (CS)

Data owner (DO) Data users (DUs)

Encrypted
documents

Secure index
Trapdoor of search

request

Authorization control

Top-k documentsCloud server (CS)

Trapdoor of search
request

ToTT p-k documents

Figure 1: System model.

4.3. Threat Model. We consider the same threat model as [3–
5, 7, 8, 16–18], which assumes that DO and DU are trusted,
but CS is considered as “honest-but-curious” model. That is
to say, CS honestly implements protocols and returns search
results, but it is curious about inferring and analyzing the
plaintext outsourced data, searchable index, and messages
that are received during protocol executions. We assume that
CS knows not only ciphertext but also the encryption and
decryption algorithms, but it has no idea of keys. According
to the background information that CS knows, we adopted
two threat models as follows.

Known Ciphertext Threat Model. In this model, CS not only
observes the ciphertext, including the encrypted documents
𝐸, the secure index 𝐼, and the search trapdoor 𝑇𝑄, but
also knows a small part of plaintext index 𝐼𝑝 and the
corresponding encrypted index 𝐼𝑝. The threat model here is
more aggressive than the known ciphertext model adopted in
[3, 7, 8] and is the same as Level 3 adopted in [18].

Known Background Threat Model. In this stronger model,
CS is supposed to possess more knowledge than the known
ciphertext model, such as the term frequency statistics of
document collection.This statistical information records how
many documents are there for each term frequency of a
specific keyword in FS, which can be utilized by CS to
apply TF statistical attacks and hence deduce or even identify
certain keywords through analyzing histogram and value
range of the corresponding frequency distributions [7].

In addition, in some unexpected events, such as software
bugs and internal/external attacks, CSmay behave beyond the
“honest-but-curious” model and return incorrect or incom-
plete search results. Thus, enabling search results verification
mechanism that can detect useless results is also significant
in terms of practicality and worth further investigation.

4.4. Problem Statement. Given a search request Query =
(FS, 𝑆𝑞, 𝑘) and 𝑅 is the corresponding search results returned
from CS. We focus on the multikeyword text search schemes

over encrypted cloud data, whose goal is to achieve the
following functions and security guarantees:

(i) Multikeyword search: CS is able to return 𝑅 which
includes 𝑘most relevant documents with the query.

(ii) Search efficiency and accuracy: the comprehensive
performance of search efficiency and accuracy should
be ensured which means that the search process
should be efficient while the accuracy of search results
should not be reduced.

(iii) Privacy preserving: in the search process, the schemes
should not reveal the confidentiality of documents,
index, query keywords, and trapdoor unlinkability
[3, 7, 8].

(iv) Completeness verification: DO can verify the com-
pleteness and correctness of search results to make
sure that the result documents are right and useful.

4.5. MUSE Framework. To achieve the multikeyword search
scheme over encrypted cloud data (MUSE), we give the
framework of MUSE shown in Figure 2. It consists of
five modules, such as GenKey, BuildIndex, GenTrapdoor,
DoSearch, and Verify, whose functions are described briefly
as follows.

GenKey. DO generates the secure key SK.

BuildIndex. DO constructs the plaintext index tree 𝐼 and then
uses SK to encrypt 𝐼 into the encrypted form 𝐼.
GenTrapdoor. DU transforms its interested query keywords
𝑆𝑞 into the trapdoor 𝑇𝑄. Then DU sends 𝑇𝑄 to CS.
DoSearch. CS performs the secure multikeyword text search
to obtain search results and then return them to DU.

Verify. DU receives the search results from CS and verifies
their completeness and correctness.

6 Security and Communication Networks

BuildIndex

Secure index tree

GenTrapdoor

DoSearch
Verify ResultPlain index tree

GenKey

Interested keywords

DO DUCS

d
{w1, w2, . . . , wt}

F1

F2

Fm

V1
(
(

0.345

0

...

0.321

)
)

Vm
(
(

0.045

0.241

...

0.121

)
)

V2
(
(

0.132

0.282

...

0.321

)
)

...
... · · · · · · · · ·· · ·

d

d

d

Figure 2: Framework of the secure multikeyword search.

5. Index Design and Algorithms

According to the existing works, we know that the index
is the key to realizing the secure multikeyword text search
over encrypted cloud data, and its structural characteristics
directly determine the search efficiency and accuracy of
search schemes. It is reasonable that if documents in the same
category are settled in the nearby access paths in an index,
the search efficiency could be improved. Therefore, we adopt
a hierarchical agglomerative clustering technology to design
a novel index structure HAC-tree and give the construction
algorithm.On the basis ofHAC-tree, an efficient and accurate
multikeyword search algorithm and search results verifica-
tion algorithm are proposed. It is noticeable that the index in
this section is unencrypted.

5.1. Hierarchical Agglomerative Clustering. The hierarchical
agglomerative clustering (HAC) is one of the important and
commonly used clustering methods in data mining area.
In the hierarchical agglomerative clustering procedure, the
lower-level cluster pairs are merged into higher-level clusters
according to the similarity of clusters until the root cluster is
formed. By this way, a binary clustering tree is constructed
from the bottom leaf nodes to the upper root node. A leaf
node of a tree represents an initial cluster containing only one
item while an internal node represents a cluster consisting of
the items stored in the leaf nodes of the subtree whose root is
the internal node.

Here, we use the relevance score to represent the sim-
ilarity between a pair of clusters. The relevance score of a
pair of clusters 𝐶𝑖 and 𝐶𝑗 is score(𝑉𝑖, 𝑉𝑗) where 𝑉𝑖 and 𝑉𝑗
are the cluster center vectors of 𝐶𝑖 and 𝐶𝑗, respectively. The
cluster center vector computation is shown in the following
definition.

Definition 1. One assumes that 𝐶𝑖 = {𝑢1, 𝑢2, . . . , 𝑢𝑚} is a
cluster where 𝑢𝑖 ∈ 𝐶𝑖 is an item and its corresponding vector
is 𝑉𝑖. The cluster center vector of 𝐶𝑖 is denoted as 𝑉0, then we
have

𝑉0 [𝑗] = ∑
𝑚
𝑡=1 𝑉𝑡 [𝑗]
𝑚 . (7)

To describe the HAC method clearly, we give an example
as shown in Figure 3 where items are documents in the
collection FS = {𝐹1, 𝐹2, . . . , 𝐹8}. The relevance scores between
these documents are mapped to point-to-point distances in
the 2-dimensional spacewhere a point represents a document
as shown in Figure 3(a). If the distance of a pair of documents
is closer than the other pair, the relevance score of the former
is higher than the latter. Figure 3(b) shows the clustering
procedure and the corresponding generated clustering tree.
At the beginning, documents in FS are initialized to 8 clusters
that are corresponded to 8 leaf nodes in the clustering tree,
that is, {𝐹1}, {𝐹2}, . . . , {𝐹8}. Then, round 1 of clustering starts
which takes the 8 initial clusters as the current operated
clusters. Their nearest pairs are merged into 4 new clusters
which are corresponded to the parent nodes of the leaf
nodes in the clustering tree, that is, {𝐹4, 𝐹8}, {𝐹3, 𝐹7}, {𝐹2, 𝐹6},{𝐹1, 𝐹5}. After that, the new generated clusters are taken as
the current operated clusters and round 2 of clustering starts
similarly, so does round 3. The clustering process ends when
the new cluster containing all documents of FS is generated
which means that the root of the clustering tree is generated.
It is noticeable that if the number of current operated clusters
is odd, then theremust be one of the current operated clusters
left for the next round clustering.

According to the above example as shown in Figure 3, a
binary tree is constructed which has the following lemma.

Lemma 2. Let the tree constructed by the HAC method be 𝑇
and one assumes there are𝑚 leaf nodes in 𝑇. Thus, we have the
following:

(1) The height of 𝑇 is ⌈log2𝑚⌉ + 1.
(2) The height of any binary tree with 𝑚 leaf nodes is not

lower than ⌈log2𝑚⌉ + 1.
Proof. (1) According to the HAC procedure, there are
𝑚, ⌈𝑚/2⌉, ⌈𝑚/22⌉, . . . , ⌈𝑚/2𝑥−1⌉ current operated nodes
(clusters) in round 1, round 2, round 3, . . ., and round 𝑥
processing, respectively. The construction of 𝑇 is finished
when there is only one current operated node left which is
indeed the root node; that is, ⌈𝑚/2𝑥+1⌉ = 1. Thus, we have

Security and Communication Networks 7

F1

F2

F3

F4

F5

F6

F7

F8

(a) The relevance scores between documents described
by the distances between them in the 2-dimensional
space

F1F2F3F4 F5F6F7F8

F4, F8 F3, F7 F2, F6 F1, F5

F3, F4, F7, F8 F1, F2, F5, F6

F1, F2, F3, F4, F5, F6, F7, F8

round-1

round-2

round-3

(b) The hierarchical agglomerative clustering procedure and the corresponding
constructed tree

Figure 3: An example of hierarchical agglomerative clustering.

𝑥 = ⌈log2𝑚⌉ + 1. Obviously, the height of 𝑇 is equal to the
number of clustering rounds. Therefore, we have that the
height of 𝑇 is ⌈log2𝑚⌉ + 1 and Lemma 2(1) holds.

(2) Then, we give the proof by contradiction for
Lemma 2(2). We assume that there is a binary tree 𝑇, having
the same number of leaf nodes with 𝑇, the height of which is
smaller than ⌈log2𝑚⌉+1. Let us assume that the height of𝑇 is
⌈log2𝑚⌉.We all know that a binary tree, whose height is ℎ, has
at most 2ℎ − 1 nodes and the 0-degree nodes (which are leaf
nodes) are 1more than the 2-degree nodes (which are internal
nodes having both left and right child nodes). Hence, we can
get two observations: (1) 𝑇 has at most 2⌈log2𝑚⌉ − 1 nodes.
Because 2⌈log2𝑚⌉ − 1 < 21+log2𝑚 − 1, then 2⌈log2𝑚⌉ − 1 < 2𝑚− 1.
It means that 𝑇 has less than 2𝑚 − 1 nodes. (2) According
to the given assumption, we known that 𝑇 has 𝑚 0-degree
nodes, thus it has𝑚−1 2-degree nodes. A binary tree only has
three kinds of nodes, 2-degree, 1-degree, and 0-degree nodes.
Because the number of 1-degree nodes is at least 0, 𝑇 has no
less than 2𝑚 − 1 nodes. Obviously, a contradiction appears
between the above two observations. Therefore, the height of
any binary treewith𝑚 leaf nodes is not lower than ⌈log2𝑚⌉+1.
Lemma 2(2) holds.

Lemma 2 indicates that the tree constructed by the HAC
method is the lowest of the binary trees which have the
same number of leaf nodes. Thus, we can have that the time
complexity from the root to any leaf node is no more than
⌈log2𝑚⌉ + 1.
5.2. Index Construction Based on HAC. In this section, we
propose an index structure which is based on the hierarchical
agglomerative clustering method. We name this index as
HAC-tree. The construction algorithm of HAC-tree is also
given.

Definition 3 (extract maximum vector). One assumes that
VS = {𝑉1, 𝑉2, . . . , 𝑉𝑚} is a set of 𝑛-dimensional vectors.

The extract maximum vector of VS is denoted as 𝑉max =→max{𝑉1, 𝑉2, . . . , 𝑉𝑚} and
𝑉max [𝑗] = max {𝑉1 [𝑗] , 𝑉2 [𝑗] , . . . , 𝑉𝑚 [𝑗]} ,

𝑗 ∈ {1, 2, . . . , 𝑛} . (8)

Definition 4 (HAC-tree node structure). Node 𝑢 of HAC-tree
is a five-element tuple ⟨VM,PL,PR, FD, sig⟩, where 𝑢.VM
is the pruning vector, 𝑢.PL and 𝑢.PR, respectively, point to
the left and right child nodes of 𝑢, 𝑢.FD stores the unique
identifier of a document, and 𝑢.sig stores a digest of the 𝑢.FD
document.

In addition, 𝑢.VC is the cluster center vector of cluster 𝐶𝑢
whose items are the documents represented by the leaf nodes
of the subtree with node 𝑢 as its root, and 𝑢.𝑁 is the number
of documents of 𝐶𝑢. It is noticeable that 𝑢.VC and 𝑢.𝑁 are
only used for HAC-tree construction but not needed to store
in HAC-tree.

According to the types of node 𝑢, we give the detailed
description of the HAC-tree node as follows:

(1) If 𝑢 is a leaf node, 𝑢.PL = 𝑢.PR = 0, 𝑢.FD
stores an identifier of a document, 𝑢.VM and 𝑢.VC
both store the vector of 𝑢.FD document, 𝑢.𝑁 = 1,
and 𝑢.sig stores a digest of 𝑢.FD document which is
used for search results verification and illustrated in
Section 5.4.

(2) If 𝑢 is an internal node, 𝑢.FD = 0, 𝑢.sig = 0, 𝑢.PL and
𝑢.PR, respectively, represent the left and right child
nodes of 𝑢, 𝑢.𝑁 = 𝑢.PL.𝑁 + 𝑢.PR.𝑁, and 𝑢.VM is
the extract maximum vector of 𝐶𝑢, while 𝑢.VC is the
cluster center of 𝐶𝑢. We have

𝑢.VM = →max {𝑢.PL.VM, 𝑢.PR.VM} , (9)

𝑢.VC = 𝑢.PL.𝑁 × 𝑢.PL.VC + 𝑢.PR.𝑁 × 𝑢.PR.VC𝑢.PL.𝑁 + 𝑢.PR.𝑁 . (10)

8 Security and Communication Networks

Definition 5 (pruning vector). For node 𝑢 in HAC-tree, we
name 𝑢.VM as the pruning vector of 𝑢 which will be used
to filter the noncandidate subtree and hence improve the
efficiency of the multikeyword text search.

According to Definition 4, each node 𝑢 in HAC-tree
has two kinds of vectors. One is the pruning vector 𝑢.VM,
which is stored in HAC-tree. It can be utilized to filter the
noncandidate subtree for search efficiency improving. The
other is the cluster center vector 𝑢.VC, which is not actually
stored in HAC-tree but only used for HAC-tree construction.

Based on the definition of HAC-tree node structure and
the hierarchical agglomerative clustering, we give the HAC-
tree construction algorithm as in Algorithm 1.

In Algorithm 1,𝐻(𝑘𝑓 ‖ 𝐹𝑖) is a digest generating function
for document which will be introduced in Section 5.4. We
give an example of HAC-tree construction as shown in
Figure 4. Here, we take two leaf nodes 𝑢4,1, 𝑢4,2 and one
internal node 𝑢3.1 to illustrate how the BuildHACTree algo-
rithm works. The nodes of 𝑢4,1 are leaf nodes; according to
BuildHACTree algorithm, we know that 𝑢4,1.PL = 𝑢4,1.PR =0, 𝑢4,1.FD stores the identifier of 𝐹4, 𝑢4,1.sig = 𝐻(𝑘𝑓 ‖ 𝐹4),
and 𝑢4,1.VM stores the vector of 𝐹4 which is (0.5, 0.8, 0.2, 0).
Similarly, 𝑢4,2.PL = 𝑢4,2.PR = 0, 𝑢4,2.FD stores the identifier
of 𝐹8, 𝑢4,2.sig = 𝐻(𝑘𝑓 ‖ 𝐹8), and 𝑢4,2.VM stores the vector
of 𝐹8 which is (0.6, 0.9, 0.1, 0). Then, we construct the parent
node 𝑢3,1 based on 𝑢4,1 and 𝑢4,2. Node 𝑢3,1 is an internal node,
so 𝑢3,1.FD = 0 and 𝑢3,1.sig = 0. Pointer 𝑢3,1.PL points to the
left child node 𝑢4,1 and 𝑢3,1.PR points to the right child node
𝑢4,2. According to (9), we have 𝑢3,1.VM = (0.6, 0.9, 0.2, 0).
Now, we complete the construction of 𝑢3,1. Just following the
above procedures, we can construct the HAC-tree from the
bottom leaf nodes to the top root node, which is shown in
Figure 4. For simplicity, the vectors of documents are not
normalized.

According to the construction process of HAC-tree, we
have the following lemmas.

Lemma 6. Assume that 𝑢 ∈ 𝐼 is an internal node where
𝑢.VM[𝑖] ̸= 0 where 𝑖 ∈ {1, 2, . . . , 𝑛} and the subtree with the
root 𝑢 is denoted as 𝐼𝑢. Then one has the following:

(1) There exists at least one leaf node V ∈ 𝐼𝑢 satisfying that
the keyword𝑤𝑖 appears in the corresponding document
of V.

(2) ∀V ∈ 𝐼𝑢 (𝑢.VM[𝑖] ⩾ V.VM[𝑖]).
Proof. (1) We give the proof of contradiction for Lemma 6(1).
We assume that there is no leaf node V ∈ 𝐼𝑢 satisfying that
𝑤𝑖 appears in its corresponding document. It means that
all the corresponding documents of leaf nodes in 𝐼𝑢 do not
have the keyword 𝑤𝑖. Then we have that for each leaf node
V ∈ 𝐼𝑢, V.VM[𝑖] = 0 holds. According to the pruning vector
computation in the HAC-tree node structure definition, we
can deduce 𝑢.VM[𝑖] = 0 which is conflictive to the given
condition 𝑢.VM[𝑖] ̸= 0. Hence, Lemma 6(1) is true.

(2) According to the pruning vector computation, for any
V ∈ 𝐼𝑢, if 𝑙 and 𝑟 are the left and right child of V, respectively,
we have V.VM[𝑖] = max{𝑙.VM[𝑖], 𝑟.VM[𝑖]} which means

V.VM[𝑖] ⩾ 𝑙.VM[𝑖] and V.VM[𝑖] ⩾ 𝑟.VM[𝑖]. Because 𝑢 is
the root of 𝐼𝑢, we have that ∀V ∈ 𝐼𝑢 (𝑢.VM[𝑖] ⩾ V.VM[𝑖]).
Therefore, Lemma 6(2) holds.

Lemma7. For any leaf node V ∈ 𝐼, assume that𝑢 is an ancestor
of V; the path from 𝑢 to V is 𝑢 → 𝑢1 → 𝑢2 → ⋅ ⋅ ⋅ → 𝑢𝑡 →
V and 𝑄 is a query vector; then one has score(𝑢.VM, 𝑄) ≥
score(𝑢1.VM, 𝑄) ≥ ⋅ ⋅ ⋅ ≥ score(𝑢𝑡.VM, 𝑄) ≥ score(V.VM, 𝑄).
Proof. Assume that 𝑢𝑝 and 𝑢𝑞 are two nodes of the pathwhere𝑢𝑝 is the ancestor of 𝑢𝑞. According to Lemma 6, we can easily
have 𝑢𝑝.VM[𝑖] ≥ 𝑢𝑞.VM[𝑖] where 𝑖 ∈ {1, 2, . . . , 𝑛}. Since ele-
ments in a pruning vector and a query vector are nonnegative,
we have score(𝑢𝑝.VM, 𝑄) ≥ score(𝑢𝑞.VM, 𝑄). Thus, we can
easily deduce score(𝑢.VM, 𝑄) ≥ score(𝑢1.VM, 𝑄) ≥ ⋅ ⋅ ⋅ ≥
score(𝑢𝑡.VM, 𝑄) ≥ score(V.VM, 𝑄). Lemma 7 holds.

5.3. Search Algorithm

Lemma 8. Assuming that 𝑢 ∈ 𝐼 is an internal node, 𝑄 is a
query vector and 𝜏 is a threshold. The subtree with the root 𝑢
is denoted as 𝐼𝑢. If score(𝑢.VM, 𝑄) < 𝜏, then one has ∀V ∈ 𝐼𝑢,
score(V.VM, 𝑄) < 𝜏.
Proof. For any node V ∈ 𝐼𝑢, there must be a leaf node 𝑙 ∈ 𝐼𝑢
satisfying that V is in the path from 𝑢 to 𝑙. According to
Lemma 7, we have score(V.VM, 𝑄) ≤ score(𝑢.VM, 𝑄). If
score(𝑢.VM, 𝑄) < 𝜏 is given, then score(V.VM, 𝑄) < 𝜏 must
hold. Therefore, Lemma 8 is true.

For a given query whose vector is 𝑄, the goal of the
multikeyword text search is to find top-𝑘 documents which
are most relevant to the query. We assume that 𝑅 is a
list storing candidate top-𝑘 result documents and 𝜏 is the
minimum relevance score between the documents of 𝑅 and
the query 𝑄. For any node 𝑢 ∈ 𝐼 which is the root of
subtree 𝐼𝑢, if score(𝑢.VM, 𝑄) < 𝜏, then we have ∀V ∈
𝐼𝑢, score(V.VM, 𝑄) < 𝜏 according to Lemma 8. It means
that all the leaf nodes of 𝐼𝑢 must not be the candidate
result documents. Obviously, it is unnecessary to search 𝐼𝑢
when we perform the query 𝑄 on it. Hence, 𝐼𝑢 can be
directly pruned without further searching which improves
the search efficiency. Based on this idea, we propose the non-
candidate pruning depth-first search algorithm (NCP-DFS)
as in Algorithm 2.

In Algorithm 2, 𝐺𝑒𝑡𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒𝑁𝑜𝑑𝑒(𝑅, 𝑄) is to obtain
the minimum relevance score between the documents cor-
responding to the leaf nodes in 𝑅 and the query 𝑄. When
Algorithm 2 is finished, the corresponding documents of leaf
nodes in 𝑅 are the final search result documents.

An example of NCP-DFS processing is also shown in
Figure 4. A query with the vector 𝑄 = {0.8, 0.6, 0, 0} is given.
The query is to obtain the top 2 relevant documents with
𝑄. The access path is shown by the dotted arrow. The leaf
nodes 𝑢4,1 and 𝑢4,2 are firstly add to 𝑅; then the threshold
𝜏 = 0.88 is calculated. Then, because score(𝑢3,2.VM, 𝑄) and
score(𝑢2,2.VM, 𝑄) are both less than 𝜏, the subtrees with the
roots 𝑢3,2 and 𝑢2,2 are pruned. At the same time, NCP-DFS
execution ends. The search result is {𝐹4, 𝐹8} whose corre-
sponding leaf nodes in 𝑅 are 𝑢4,1 and 𝑢4,2.

Security and Communication Networks 9

Input: the document set FS = {𝐹1, 𝐹2, . . . , 𝐹𝑚} with the respective file description {1, 2, . . . , 𝑚} and
document vector {𝑉1, 𝑉2, . . . , 𝑉𝑚}

Output: the HAC-tree 𝐼
Variables:

CPNS—a set variable for storing the currently processing tree nodes
NGNS—a set variable for storing the newly generated tree nodes

Procedures:
(1) FOR EACH 𝐹𝑖 ∈ FS DO
(2) Construct a new leaf node 𝑢 for documents 𝐹𝑖 where 𝑢.PL = 𝑢.PR = 0, 𝑢.FD = 𝑖, 𝑢.VM = 𝑢.VC = 𝑉𝑖,𝑢.𝑁 = 1 and 𝑢.sig = 𝐻(𝑘𝑓 ‖ 𝐹𝑖);
(3) Add 𝑢 into CPNS;
(4) END FOR
(5)WHILE |CPNS| > 1 DO
(6) WHILE |CPNS| > 1 DO
(7) (𝑢𝑖, 𝑢𝑗) = FindMaxCR(CPNS); //find a pair of nodes which have the maximum relevance score
(8) Construct a new node u as the parent of 𝑢𝑖 and 𝑢𝑗 where 𝑢.PL = 𝑢𝑖, 𝑢.PR = 𝑢𝑗, 𝑢.FD = 0, 𝑢.sig = 0,𝑢.𝑁 = 𝑢𝑖.𝑁 + 𝑢𝑗.𝑁, 𝑢.VM = →max{𝑢𝑖.VM, 𝑢𝑗.VM}, 𝑢.VC = (𝑢𝑖.𝑁 × 𝑢𝑖.VC + 𝑢𝑗.𝑁 × 𝑢𝑗.VC)/(𝑢𝑖.𝑁 + 𝑢𝑗.𝑁);
(9) Add 𝑢 into NGNS and delete 𝑢𝑖 and 𝑢𝑗 from CPNS;
(10) ENDWHILE
(11) IF |NGNS| > 0 THEN
(12) Merge NGNS into CPNS and then clear NGNS;
(13) END IF
(14) ENDWHILE
(15) RETURN the only node left in CPNS which is the root of the HAC-tree 𝐼;

Algorithm 1: 𝐵𝑢𝑖𝑙𝑑𝐻𝐴𝐶𝑇𝑟𝑒𝑒(FS).

PL FD PRsig

PL FD PRsig PL FD PRsig

PL FD PRsig PL FD PRsig PL FD PRsig PL FD PRsig

PL FD PRsig PL FD PRsig PL FD PRsig PL FD PRsig PL FD PRsig PL FD PRsig PL FD PRsig PL FD PRsig

u1,1

u2,1 u2,2

u3,1
u3,2 u3,3 u3,4

u4,8u4,7u4,6u4,5u4,4u4,3u4,2u4,1

F1F2F3F4 F5F6F7F8

(0.7, 0.9, 0.6, 0.1)

(0.7, 0.9, 0.2, 0.2) (0.2, 0.2, 0.6, 1)

(0.2, 0.2, 0.6, 1)(0.6, 0.9, 0.2, 0) (0.7, 0.5, 0, 0.2) (0, 0.1, 0.5, 0.8)

(0.5, 0.8, 0.2, 0) (0.6, 0.9, 0.1, 0) (0.6, 0.5, 0, 0.2) (0.7, 0.5, 0, 0.1) (0, 0, 0.5, 0.8) (0, 0.1, 0.4, 0.8) (0, 0.2, 0.6, 0.9) (0.2, 0.2, 0.6, 1)

Figure 4: An example of HAC-tree where FS = {𝐹1, 𝐹2, . . . , 𝐹8} and the cardinality of the keyword dictionary is 𝑛 = 4.

According to the relevance score definition in Sec-
tion 3, the time complexity of a relevance score computation
between a document and a query is 𝑂(𝑛). Lemma 2 shows
that the height of the HAC-tree is ⌈log2𝑚⌉+1.The number of
leaf nodes is denoted as 𝜔, whose corresponding documents
contain one or more interested keywords in the query.
Then we have that the time complexity of NCP-DFS is

𝑂(𝜔 ⋅ 𝑛 ⋅ log𝑚). It is noticeable that the real search time is
less than 𝜔 ⋅ 𝑛 ⋅ log𝑚 distinctly. The reasons are as follows:
(1) due to subtree pruning in advance, many leaf nodes will
not be accessed even though one or more keywords are
contained. (2) The accessing paths of some different leaf
nodes in the same subtree share the mutual traversed parts.
(3)The documents with higher relevance scores are clustered

10 Security and Communication Networks

Input: 𝑟 is the root of the current searched sub-tree, 𝑄 is the vector of a query and k is the number of requested documents.
Output: the top-𝑘 documents
Variables:
𝑢, 𝑢—a local variable for tree node;
𝜏—a global variable for storing a relevance score threshold which is initialized that 𝜏 = 0;
𝑅—a list variable for storing the leaf node containing candidate result documents which are initialized that 𝑅 = 0.

When NCP-DFS is finished, 𝑅 contains the leaf nodes which stores the top-𝑘 result documents.
Procedures:
(1) 𝑢 = 𝑟;
(2) IF 𝑢 is a leaf node THEN
(3) IF |𝑅| < 𝑘 − 1 THEN
(4) Add 𝑢 into 𝑅;
(5) ELSE IF |𝑅| == 𝑘 − 1 THEN
(6) Add 𝑢 into 𝑅;
(7) 𝜏 = 𝐺𝑒𝑡𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒𝑁𝑜𝑑𝑒(𝑅, 𝑄); //obtain the 𝑘th relevance score in 𝑅 as a threshold
(8) ELSE
(9) IF score(𝑢.VM, 𝑄) > 𝜏 THEN
(10) 𝑢 = 𝐺𝑒𝑡𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒𝑁𝑜𝑑𝑒(𝑅, 𝑄);
(11) Delete 𝑢 from 𝑅 and add 𝑢 into 𝑅;
(12) 𝑢 = 𝐺𝑒𝑡𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒𝑁𝑜𝑑𝑒(𝑅, 𝑄);
(13) 𝜏 = score(𝑢.VM, 𝑄);
(14) END IF
(15) END IF
(16) ELSE //if 𝑢 is the internal node
(17) IF score(𝑢.VM, 𝑄) > 𝜏 THEN
(18) NCP-DFS(𝑢.PL, 𝑄, 𝑘);
(19) NCP-DFS(𝑢.PL, 𝑄, 𝑘);
(20) END IF
(21) END IF

Algorithm 2: NCP-DFS(𝑟, 𝑄, 𝑘).

together and more subtrees will be filtered which reduces the
accessed leaf nodes furtherly. In addition, we can easily have
that NCP-DFS is able to find the accurate search results.

5.4. Search Result Verification. The network instability or
potential hardware/software errors may result in tampering
or even loss of documents, which could make the search
results incomplete and/or incorrect. Therefore, in each leaf
node of HAC-tree, we embed a digest for the corresponding
document. Once a query is performed in CS, digests of the
result documents are used to construct a verification object
(VO) for DU. When DU receives the returned search result
data from CS, DU obtains the result documents and verifies
their completeness and correctness by using the verification
object.

Definition 9 (document digest). One assumes that 𝑢 is a leaf
node ofHAC-tree, whose corresponding document is𝐹𝑢.The
attribute 𝑢.sig is a document digest of 𝐹𝑢 and

𝑢.sig = 𝐻(𝑘𝑓 ‖ 𝐹𝑢) , (11)

where 𝐻(⋅) is a Hash Message Authentication Coding
(HMAC), for example, HMAC-SHA1, 𝑘𝑓 is a key only shared
by DO and DU, and ‖ denotes concatenation.
Definition 10 (verification object). One assumes that the set
of digests of the documents in a search result is denoted

as 𝐺. The verification object (VO) of the search results is
constructed as follows:

VO =⨁
𝑔𝑖∈𝐺

𝑔𝑖. (12)

The completeness and correctness of the search results are
verified by Algorithm 3.

Algorithm 3 indicates that, under the honest-but-curious
model, if a search result is useless because one or more
documents of the search result are dropped or falsified for
some reasons, DU will detect it through the search result
verifications.

The aforementioned works discuss the HAC-tree con-
struction and the corresponding multikeyword text search
algorithm NCP-DFS. However, these are based on plaintext.
In the next section, we will use secure inner product opera-
tion to encryptHAC-tree and give two kinds ofmultikeyword
text search schemes over encrypted cloud data.

6. Secure Multikeyword Text Search Schemes

In this section, two secure search schemes, based on the
framework of MUSE (as shown in Section 4.5), are given to
resist the known ciphertext threat model and known back-
ground threat model, respectively. One is the basic multikey-
word text search over encrypted (BMUSE) cloud data and

Security and Communication Networks 11

Input: 𝑅 is a set of the result documents, VO is the verification object from CS
and 𝑘 is the number requested documents

Output: Whether 𝑅 is correct and complete
Variables: 𝐺 is a set variable for storing document digests
Procedures:
(1) IF |𝑅| ̸= 𝑘 THEN
(2) RETURN FALSE; //𝑅 is incomplete
(3) ELSE
(4) FOR EACH 𝐹𝑖 ∈ 𝑅 DO
(5) Add𝐻(𝑘𝑓 ‖ 𝐹𝑖) into 𝐺;
(6) END FOR
(7) IF VO ̸= ⨁𝑔𝑖∈𝐺𝑔𝑖 THEN
(8) RETURN FALSE; //𝑅 is incorrect
(9) END IF
(10) END IF
(11) RETURN TRUE; //𝑅 is complete and correct

Algorithm 3: 𝑉𝑒𝑟𝑖𝑓𝑦𝑅𝑒𝑠𝑢𝑙𝑡(𝑅,VO, 𝑘).

the other is enhanced secure multikeyword text search over
encrypted (EMUSE) cloud data.

6.1. BMUSE Scheme. We use the BuildHACTree algorithm,
NCP-DFS algorithm, VerifyResult algorithm, and secure
inner product operation to construct the BMUSE scheme
whose details are shown as follows.

𝐺𝑒𝑛𝐾𝑒𝑦(1𝑙(𝑛)). In this initialization phase, DO generates the
secure key SK, which is a four-element tuple as (𝑆,𝑀1,𝑀2, 𝑘𝑓) where 𝑆 is an 𝑛-bit random vector; 𝑀1 and 𝑀2 are
two random 𝑛×𝑛 invertiblematrices; 𝑘𝑓 is a key for symmetric
encryption. SK is only shared between DO and DU while CS
has no idea of it.

𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝐹𝑆, 𝑆𝐾). According to BuildHACTree algorithm,
for each vector 𝑢.VM stored in the node u, the splitting
procedure is applied, and it is split into two random vectors as
{𝑉𝑢, 𝑉𝑢 }with 𝑆 as a splitting indicator.The split rule is shown
as

𝑉𝑢 [𝑖] + 𝑉𝑢 [𝑖] = 𝑢.VM [𝑖] 𝑆 [𝑖] = 0
𝑉𝑢 [𝑖] = 𝑉𝑢 [𝑖] = 𝑢.VM [𝑖] 𝑆 [𝑖] = 1.

(13)

The encrypted vectors of 𝑢.VM are generated as {𝑀𝑇1𝑉𝑢,𝑀𝑇2𝑉𝑢 }. For each node in HAC-tree, u.VM is replaced with
{𝑀𝑇1𝑉𝑢,𝑀𝑇2𝑉𝑢 }; then encrypted tree index 𝐼 is generated.
𝐺𝑒𝑛𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑆𝑞, 𝑘, 𝑆𝐾). Assume that 𝑆𝑞 = {𝑤1, 𝑤2, . . . , 𝑤𝑡}
is a set of interested keywords. The corresponding vector of
𝑆𝑞 is generated as𝑄, each dimension of which is computed as
(14). And then 𝑄 is normalized.

𝑄 [𝑖] = {{{
IDF𝑖, 𝑤𝑖 ∈ 𝑆𝑞
0, other.

(14)

Subsequently, 𝑄 is split into two random vectors as
{𝑄, 𝑄} with the splitting indicator 𝑆, and the split rule is

shown as (15). Then the encrypted vectors of𝑄 are generated
as {𝑀−11 𝑄,𝑀−12 𝑄}. After that, DU transmits the trapdoor
𝑇𝑄 to CS, which consists of {𝑀−11 𝑄,𝑀−12 𝑄} and 𝑘.

𝑄 [𝑖] = 𝑄 [𝑖] = 𝑄 [𝑖] , 𝑆 [𝑖] = 0
𝑄 [𝑖] + 𝑄 [𝑖] = 𝑄 [𝑖] , 𝑆 [𝑖] = 1. (15)

𝐷𝑜𝑆𝑒𝑎𝑟𝑐ℎ(𝐼, 𝑇𝑄, 𝑘). CS executes NCP-DFS algorithm to
obtain the search result 𝑅 and construct a verification object
VO. Then CS returns 𝑅 together with VO to DU. The
relevance score between the encrypted vector of 𝑢.VM and
the encrypted vector of 𝑄 is calculated by (16). Note that the
relevance score calculated from encrypted vectors is equal to
that of unencrypted vectors as follows:

score ({𝑀𝑇1𝑉𝑢,𝑀𝑇2𝑉𝑢 } , {𝑀−11 𝑄,𝑀−12 𝑄})
= (𝑀𝑇1𝑉𝑢)𝑇 ⋅ 𝑀−11 𝑄 + (𝑀𝑇2𝑉𝑢)𝑇 ⋅ 𝑀−12 𝑄
= 𝑉𝑢 ⋅ 𝑄 + 𝑉𝑢 ⋅ 𝑄 = 𝑢.VM ⋅ 𝑄.

(16)

𝑉𝑒𝑟𝑖𝑓𝑦(𝑅, 𝑉𝑂, 𝑆𝐾). DU utilizes the key 𝑘𝑓 to decrypt the
search result and verifies it through the VerifyResult algo-
rithm.

6.2. EMUSE Scheme. According to [3, 7], BMUSE may leak
the privacy of keywords. The cloud server is able to link
the same search requests according to the same visited path
and the same relevance scores. So CS may find some high-
frequency keywords and deduce whether a certain keyword
exists in a document by analyzing the correlation of trap-
doors. In consideration of this, it is a practical and effective
method to extend dimension by adding some phantom terms
into document vectors and query vectors to break such
equality, and then the keyword privacy and trapdoor unlink-
abilitywill be protected. Following the above idea, we propose
the enhanced MUSE which is named EMUSE.

12 Security and Communication Networks

𝐺𝑒𝑛𝐾𝑒𝑦(1𝑙(𝑛)). CS generates the secure key SK, which is four-
element tuple, SK = (𝑆,𝑀1,𝑀2, 𝑘𝑓). 𝑆 is (𝑛 + 𝑒)-bit random
vector;𝑀1 and𝑀2 are two random (𝑛+ 𝑒) × (𝑛+ 𝑒) invertible
matrices; 𝑘𝑓 is a key for symmetric encryption.

𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝐹𝑆, 𝑆𝐾).Through adding the phantom terms, we
extend 𝑢.VM from 𝑛 dimension to (𝑛 + 𝑒) dimension. Each
element of phantom terms is filled by a random value 𝜗𝑖, 𝜗𝑖 ∼𝑈(𝜇 − 𝜃, 𝜇 + 𝜃). Then we adopt the same vector encryption
method as BMUSE to encrypt 𝑢.VM for every vector in the
HAC-tree.

𝐺𝑒𝑛𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑆𝑞, 𝑘, 𝑆𝐾). We extend 𝑄 from 𝑛 dimension to
(𝑛 + 𝑒) dimension to generate the query vector. A part of
elements in the extended dimensions of𝑄 are set to 1 and the
left are set to 0.

𝐷𝑜𝑆𝑒𝑎𝑟𝑐ℎ(𝐼, 𝑇𝑄, 𝑘) and𝑉𝑒𝑟𝑖𝑓𝑦(𝑅,VO, SK) are the same as the
ones in Section 6.1.

According to the detailed steps of the above schemes,
we discuss the deployment of our schemes. Obviously, DO
is the manager for deploying the schemes. DO generated
security information SK firstly which is utilized to encrypt
the documents and generate the corresponding secure index.
After that the encrypted documents and index are outsourced
in CS. To process secure multikeyword search, the search
algorithm on the basis of the outsourced data should also be
deployed in CS by DO. Meanwhile, the trapdoor generating
algorithm designed by DO is granted to the authorized
DU together with SK. When the authorized DU performs
a search, a trapdoor is firstly generated and submitted to
CS. After that, CS performs the secure multikeyword search
algorithm designed by DO and returns the corresponding
encrypted documents and verification object to DU. AndDU
applies the decryption to get the plaintext search result.

7. Security Analysis

7.1. Privacy-Preserving Analysis. In this section, we analyze
the privacy-preserving property of BMUSE and EMUSE,
which depends on the security of secure inner production
firstly proposed in the secure 𝑘-nearest neighbor (kNN) tech-
nique [13]. All vectors in HAC-tree are encrypted by random
invertible matrices and all documents in FS are encrypted
by symmetric encryption. According to [3], CS is impossible
to deduce the concrete random matrices on the basis of
grasping existing data, including the encrypted documents,
the encrypted HAC-tree, and the trapdoor of queries. That is
to say, the keys for HAC-tree encryption are secure. Besides,
the other security information in SK, such as the symmetric
encryption key and splitting indicator, is only shared between
DO and DU but private to CS.Thus, BMUSE can protect the
confidentiality of documents, index, and queries. Therefore,
BMUSE can resist the attack of known ciphertext threats.
However, if the given interested multikeyword are the same,
the corresponding generated trapdoors and the access paths
are the same too. BMUSE cannot resist the attack of known
background threats, which means that BMUSE may leak the
trapdoor unlinkability [7] and keyword privacy.

In EMUSE, we add phantom terms on the basis of
BMUSE, which are equivalent to adding random values to
the relevance scores between documents and queries. The
security is enhanced. Therefore, EMUSE is able to with-
stand known ciphertext threats. That is to say, EMUSE
satisfies all the privacy-preserving requirements described in
Section 4.4.

We denote that the document vector 𝑉𝑑 is expanded to
𝑉𝑒 through adding phantom terms, and the query vector𝑄 is
expanded to 𝑄𝑒. We have 𝑉𝑒 ⋅ 𝑄𝑒 = 𝑉𝑑 ⋅ 𝑄 + ∑0.5𝑒𝑖=1 𝜗𝑖, so the
added random value 𝜉 = ∑0.5𝑒𝑖=1 𝜗𝑖. According to the central-
limit theorem, we have that if 𝜗𝑖 ∼ 𝑈(𝜇 − 𝜃, 𝜇 + 𝜃), then𝜉 ∼ 𝑁(𝜇, 𝜎2), where 𝜇 = 0.5𝑒𝜇, 𝜎 = √(1/6)𝑒 ⋅ 𝜃.

Because of adding a random value 𝜉 to the relevance
score between a document and a query, the accuracy of the
search result slightly decreases but the privacy preservation is
enhanced. Therefore, we need to control 𝜉 to get the balance
of the accuracy and security. Practically, we set 𝜇 = 0 and
balance the accuracy and security by adjusting the standard
deviation 𝜎.
7.2. Completeness Analysis. In the HAC-tree leaf node, 𝑢.sig
is document digest of document 𝐹𝑖 represented by 𝑢.FD
constructed by the key of 𝑘𝑓 and the context of 𝐹𝑖 based
on HMAC. Both the avalanche effect [37] and one-way
irreversibility guarantee the cryptographic strength of the
HMAC, thus ensuring the safety of 𝑢.sig.

Assume that 𝑟 = {𝑓1, 𝑓2, . . . , 𝑓𝑘} and vo are returned from
CSwhere 𝑟 is the result document set and vo is the verification
object. After receiving the search result, DU recalculates the
document digests as sig1, sig2, . . . , sig𝑘 and reconstructs the
verification object, denoted as vo. If the content of 𝑓𝑖 is
tampered into 𝑓𝑖 , then vo ̸= vo will happen. Besides, for
each document digest, it is constructed by the key of 𝑘𝑓 and
the plaintext of 𝐹𝑢. Both of them are private to CS. Hence,
it is impossible for CS to falsify a correct document digest
successfully without being detected. AndMUSE is capable of
supporting the search result completeness verification.

8. Performance Evaluation

In this section, we evaluate the performance of our proposed
scheme MUSE and compare it with the schemes presented
in [7, 8] which are denoted as DMRS and MRSE-HCI, res-
pectively. We implement MUSE, DMRS, and MRSE-HCI
and perform evaluations on the precision (Δ 𝑝) and search
time (Δ 𝑡) on the real data set of NSF Research Award
Abstracts provided by UCI [38]. We use BMUSE, BDMRS,
and BMRSE-HCI to represent the basic schemes of MUSE,
DMRS, and BMRSE-HCI, respectively. Meanwhile, we
use EMUSE, EDMRS, and EMRSE-HCI to represent the
enhanced schemes of MUSE, DMRS, and BMRSE-HCI,
respectively.

The real dataset includes about 129000 abstracts, from
which we random choose 20000 abstracts as our experi-
mental data and extract about 10000 keywords. The experi-
mental hardware environment is Intel Xeon E3-1225v,
3.3 GHz 4 core CPU, 16G memory, and 1 T hard disk; and

Security and Communication Networks 13

Table 1: Default evaluation parameters.

Para. 𝜇 𝜎 𝑚 𝑛 𝑘 𝑡 TH
Val. 0 0.02 20000 10000 20 10 100

 = 0.02

 = 0.03

 = 0.05

100 150 20050

k

70

75

80

85

90

95

100

Δ
p

(%
)

Figure 5: The impact of 𝑘 on precision by choosing different
standard deviation 𝜎.

software environment is CentOS6.4 server operating system
and Eclipse development platform. Default parameters are
summarized in Table 1. Parameter 𝑡 denotes the number of
keywords of interest. TH donates the maximum number of
cluster size in MRSE-HCI.

8.1. Search Precision Evaluation. Due to adding phantom
terms in EMUSE, the relevance score between a document
and a query is affected by the randomvalue 𝜉, 𝜉 ∼ 𝑁(0, 𝜎2). In
order to evaluate the impact of𝜎 on the accuracy of the search
results, we adopt the definition of precision in [3] which is
defined as Δ𝑝 = 𝑘/𝑘, where 𝑘 is the number of the real top-
𝑘 result documents that are returned by CS.

Figure 5 shows that the precisions fluctuate within a small
scope when 𝜎 = 0.02, 𝜎 = 0.03, and 𝜎 = 0.05, respectively.
Note that the smaller the standard deviation 𝜎 is, the higher
the precision becomes. In the experiment, when 𝜎 is 0.02,
0.03, and 0.05, the value of Δ 𝑝 is 93.37%, 89.39%, and 81.62%,
respectively. The reason is that when 𝜎 grows, the impact
of 𝜉 on relevance score between a document and a query
becomes greater. In our proposed scheme, DU can balance
the precision and security by adjusting the standard deviation
𝜎. The default value of 𝜎 is 0.02 in the experiment.

As shown in Figures 6(a) and 6(b), for MUSE, DMRS,
and MRSE-HCI, Δ 𝑝 does not change significantly, when 𝑘

increases from 20 to 200. However, nomatter with or without
adding phantom terms, the MUSE’s Δ𝑝 is significantly larger
than MRSE-HCI and approximately equal to DMRS, which
means that MUSE outperforms MRSE-HCI in terms of
accuracy. Δ𝑝 of BMUSE is 100% which is the same as
BDMRS because both BMUSE and BDMRS perform the
exact calculation of document vectors and query vectors.The
precision of BMRSE-HCI is about 81.71% which is obviously
lower than the others.The reason is that BMRSE-HCI clusters
the relevant documents into the same cluster by dynamic
𝑘-means during index construction, and then the search
involves only the most relevant subclusters, which will cause
some more relevant documents to be ignored, and inaccu-
rate search results are generated. Due to adding phantom
terms, the EMUSE’s Δ𝑝 is no longer 100% and about 93.37%.
Compared with EMRSE-HCI, the EMUSE’s Δ𝑝 is still 16.52%
higher. The reason is the same as the basic scheme. In
conclusion, the experimental result demonstrates that MUSE
can achieve higher accuracy thanMRSE-HCI and the similar
accuracy with DMRS both in the basic and in enhanced
scheme.

8.2. Search Time Evaluation. For the convenience of descrip-
tion, we use MRSE-HCI-100 and MRSE-HCI-300 to repre-
sent the maximum numbers of cluster size TH = 100 and
TH = 300 in MRSE-HCI, respectively. In this section, we
evaluate and analysis the impact of 𝑚, 𝑘, 𝑡 on Δ 𝑡 in the basic
and enhanced scheme.

(1) The Impact of 𝑚. As shown in Figures 7(a) and 7(b),
the search time Δ 𝑡 of MUSE is obviously lower than DMRS
in both basic and enhanced scheme. Figures 7(a) and 7(b)
both reveal that Δ 𝑡 in MUSE and DMRS increase with 𝑚
growing up. In addition, Δ 𝑡 of MUSE is about half of DMRS
for the same dataset. The reason is that the documents with
high relevance are clustered inHAC-tree. HAC-tree is helpful
to maintain and utilize the category relationship to perform
efficient and accurate text search on encrypted documents.
This feature can ensure the efficiency of NCP-DFS algorithm.
However, DMRS does not use the relationship between
documents, so it is obviously slower than MUSE.

Besides, as shown in Figures 7(a) and 7(b), Δ 𝑡 of MRSE-
HCI grows very slowly as 𝑚 grows. For the basic and
enhanced schemes of MRSE-HCI, the value of TH has great
influence on search efficiency. When TH is 100, Δ 𝑡 of MRSE-
HCI is lower than others. AndwhenTH is 300,Δ 𝑡 ofMUSE is
firstly lower than MRSE-HCI but the former becomes larger
than the later as 𝑚 grows. The improvement of efficiency in
MRSE-HCI is at the expense of sacrificing the search result
precision as shown in Figures 6(a) and 6(b).

In addition, we have that the plot of EMUSE is very likely
to the plot of BMUSE, and the search time of EMUSE is
slightly higher than BMUSE, about 5.67%. It indicates that

14 Security and Communication Networks

BMUSE
BDMRS
BMRSE-HCI

70

75

80

85

90

95

100

100 150 20050

k

Δ
p

(%
)

(a) Top-𝑘 search without adding phantom terms

EMUSE
EDMRS
EMRSE-HCI

100 150 20050

k

70

75

80

85

90

95

100

Δ
p

(%
)

(b) Top-𝑘 search with adding phantom terms

Figure 6: The impact of 𝑘 on the precision of search results.

BMUSE
BDMRS

×104

0

50

100

150

200

250

300

350

Δ
t

(m
s)

1 1.5 20.5

m

BMRSE-HCI-100
BMRSE-HCI-300

(a) The basic scheme

EMUSE
EDMRS

×104

0

50

100

150

200

250

300

350

Δ
t

(m
s)

1 1.5 20.5

m

EMRSE-HCI-100
EMRSE-HCI-300

(b) The enhanced scheme

Figure 7: The impact of𝑚 on search efficiency.

there is just a little impact on the search time by adding
phantom terms into vectors.

(2) The Impact of 𝑘. As shown in Figures 8(a) and 8(b),
no matter before or after adding phantom terms, Δ 𝑡 of all
schemes increase as 𝑘 grows. The reason is that more result

documents will be determined as 𝑘 grows, which consumes
more time. The increments of Δ 𝑡 in MUSE and DMRS
are more obvious than MRSE-HCI. The search times of
BMUSE and EMUSE are about 47.71% and 40.30% less than
BDMRS and EDMRS, respectively. While Δ 𝑡 of MRSE-HCI
is less than the other schemes. But the better performance

Security and Communication Networks 15

BMUSE
BDMRS

0

50

100

150

200

250

300

350
Δ

t
(m

s)

100 150 20050

k

BMRSE-HCI-100
BMRSE-HCI-300

(a) The basic scheme

EMUSE
EDMRS

0

50

100

150

200

250

300

350

Δ
t

(m
s)

100 150 20050

k

EMRSE-HCI-100
EMRSE-HCI-300

(b) The enhanced scheme

Figure 8: The impact of 𝑘 on search efficiency.

BMUSE
BDMRS

0

50

100

150

200

250

300

350

Δ
t

(m
s)

20 30 40 5010

t

BMRSE-HCI-100
BMRSE-HCI-300

(a) The basic scheme

EMUSE
EDMRS

0

50

100

150

200

250

300

350

Δ
t

(m
s)

20 30 40 5010

t

EMRSE-HCI-100
EMRSE-HCI-300

(b) The enhanced scheme

Figure 9: The impact of 𝑡 on search efficiency.

in search efficiency of MRSE-HCI sacrifices the search result
accuracy, and the reduction of accuracymay not satisfy users’
expectations.

(3) The Impact of 𝑡. According to Figure 9, Δ 𝑡 of MUSE,
DMRS, and MRSE-HCI have little changes no matter with

or without adding phantom terms. This means that the
search times of MUSE, DMRS, and MRSE-HCI are affected
slightly by the number of keywords of interest. As shown
in Figure 9(a), in terms of efficiency, BMUSE is better than
BDMRS and saves about 51.12% in Δ 𝑡. It also reveals that
BMUSE is superior to BMRSE-HCI-300 and inferior to

16 Security and Communication Networks

BMRSE-HCI-100. BMUSE puts accuracy as a prerequisite to
obtaining efficiency asmuch as possible. In contrast, BMRSE-
HCI-100 improves the efficiency of result retrieval by the cost
of reducing accuracy. In Figure 9(b), Δ 𝑡 of EMUSE is almost
a half of EDMRS but during between EMRSE-HCI-100 and
EMRSE-HCI-300.The reason is the same as the basic scheme.

According to (1), (2), and (3), the experimental results
demonstrate that MUSE can achieve higher search efficiency
than DMRS. While MUSE may be less efficient than MRSE-
HCI depending on the setting of the maximum number of
cluster size parameter in MRSE-HCI.

Compared toDMRS andMRSE-HCI on a real dataset, the
experimental results show that (i)MUSE outperformsDMRS
in terms of efficiency and achieves the similar accuracy
with DMRS; and (ii) MUSE consistently gives more accurate
results than MRSE-HCI while it may be less efficient than
MRSE-HCI, depending on the choices of parameter values
in MRSE-HCI.

9. Conclusion

The multikeyword text search over encrypted data is a com-
mon problem in cloud computing services. There are urgent
requirements in such important fields as e-mail, electronic
medical records, and bank transaction information, which
is a hot issue in cloud computing service. It is challenge
to ensure the efficiency of the search under the premise of
ensuring the accuracy of the search results. In this paper,
we propose an efficient and accurate verifiable privacy-
preserving multikeyword text search over encrypted cloud
data based on hierarchical agglomerative clustering called
MUSE. According to hierarchical agglomerative clustering,
we construct a binary tree structure as the index, which is
named HAC-tree. Based on HAC-tree, we provide a non-
candidate pruning depth-first search algorithm to improve
search efficiency. Besides, we utilize secure inner product
algorithm against two threat models. The experimental
results show that the scheme proposed in this paper has
better comprehensive performance in terms of efficiency and
accuracy compared with the existing methods.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the National Natural Sci-
ence Foundation of China under the Grants nos. 61402014,
61572263, 61672297, and 61472193; the Natural Science Foun-
dation of Jiangsu Province under Grant nos. BK20151511,
BK20141429, and BK20161516; the Project of Natural Science
Research of JiangsuUniversity under Grant 15KJB520027; the
Postdoctoral Science Foundation of China under Grants nos.
2015M581794 and 2016M601859; the Postdoctoral Science
Foundation of Jiangsu Province under Grant no. 1501023C;
NUPTSF (NY214127); the Six Talent Peaks Project in Jiangsu
Province (no. JNHB-062); the Natural Science Foundation
of Anhui Province under Grant no. 1608085MF127; the

Chuzhou University Scientific Research Fund under Grant
no. 2015QD02.

References

[1] S. Grzonkowski, P. M. Corcoran, and T. Coughlin, “Security
analysis of authentication protocols for next-generation mobile
and CE cloud services,” in Proceedings of the IEEE International
Conference on Consumer Electronics, pp. 83–87, Berlin, Ger-
many, 2011.

[2] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in
Proceedings of the International Conference on Financial Cryp-
tography and Data Security, pp. 136–149.

[3] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserv-
ing multi-keyword ranked search over encrypted cloud data,”
in Proceedings of the IEEE INFOCOM, pp. 829–837, Shanghai,
China, April 2011.

[4] W. Sun, B. Wang, N. Cao et al., “Privacy-preserving multi-key-
word text search in the cloud supporting similarity-based
ranking,” in Proceedings of the the 8th ACMSIGSAC symposium,
pp. 71–82, Hangzhou, China, 2013.

[5] R. Li, Z. Xu, W. Kang, K. C. Yow, and C.-Z. Xu, “Efficient
multi-keyword ranked query over encrypted data in cloud com-
puting,” Future Generation Computer Systems, vol. 30, no. 1, pp.
179–190, 2014.

[6] C. Orencik, A. Selcuk, E. Savas, and M. Kantarcioglu, “Multi-
Keyword search over encrypted data with scoring and search
pattern obfuscation,” International Journal of Information Secu-
rity, vol. 15, no. 3, pp. 251–269, 2016.

[7] Z. Xia, X. Wang, X. Sun, Q. Liu, and Q. Wang, “A secure and
dynamic multi-keyword ranked search scheme over encrypted
cloud data,” IEEE Transactions on Parallel and Distributed
Systems, 2015.

[8] C. Chen, X. Zhu, P. Shen et al., “An Efficient Privacy-Preserving
Ranked Keyword Search Method,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 27, no. 4, pp. 951–963, 2016.

[9] C. Gentry, A fully homomorphic encryption scheme [Ph.D dis-
sertation], Stanford University, Calif, USA, 2009.

[10] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano,
“Public key encryption with keyword search,” in International
Conference on the Theory and Applications of Cryptographic
Techniques, pp. 506–522, Springer Berlin Heidelberg, Berlin,
Germany, 2004.

[11] D. Cash, S. Jarecki, C. Jutla et al., “Highly-scalable searchable
symmetric encryption with support for Boolean queries,” in
Advances in Cryptology, pp. 353–373, Springer Berlin Heidel-
berg, Berlin, Germany, 2013.

[12] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic search-
able symmetric encryption,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS
2012, pp. 965–976, usa, October 2012.

[13] W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis, “Secure
kNN computation on encrypted databases,” in Proceedings of
the International Conference on Management of Data and 28th
Symposium on Principles of Database Systems (SIGMOD-PODS
’09), pp. 139–152, Providence, RI, USA, July 2009.

[14] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive 2003/
216, 2003.

Security and Communication Networks 17

[15] H. Li, H. Ren, H. Yao, H. Chen, G. Xu, and Y. Dai, “Diverse
multi-keyword ranked search over encrypted cloud data sup-
porting range query,” in Proceedings of the IEEE/CIC Interna-
tional Conference on Communications in China, ICCC 2015,
China, November 2015.

[16] Z. Fu, X. Sun, Z. Xia, L. Zhou, and J. Shu, “Multi-keyword
ranked search supporting synonym query over encrypted data
in cloud computing,” in Proceedings of the 2013 IEEE 32nd Inter-
national Performance Computing and Communications Confer-
ence, IPCCC 2013, USA, December 2013.

[17] Z. Fu, X. Sun, N. Linge, and L. Zhou, “Achieving effective cloud
search services: Multi-keyword ranked search over encrypted
cloud data supporting synonym query,” IEEE Transactions on
Consumer Electronics, vol. 60, no. 1, pp. 164–172, 2014.

[18] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling person-
alized search over encrypted outsourced data with efficiency
improvement,” Parallel and Distributed Systems, vol. 27, no. 9,
pp. 2546–2559, 2015.

[19] M. Alewiwi, C. Orencik, and E. Savaş, “Efficient top-k similarity
document search utilizing distributed file systems and cosine
similarity,” Cluster Computing, vol. 19, no. 1, pp. 109–126, 2016.

[20] M. Strizhov and I. Ray, “Multi-keyword similarity search over
encrypted cloud data,” IACR Cryptology ePrint Archive, vol. 137,
2015.

[21] H. Li, Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. S. Shen,
“Enabling fine-grained multi-keyword search supporting class-
ified sub-dictionaries over encrypted cloud data,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 13, no. 3, pp.
312–325, 2016.

[22] C. Orencik, M. Kantarcioglu, and E. Savas, “A practical and
secure multi-keyword search method over encrypted cloud
data,” in Proceedings of the 2013 IEEE 6th International Con-
ference on Cloud Computing, CLOUD 2013, pp. 390–397, Santa
Clara, Calif, USA, July 2013.

[23] D. Mashauri, R. Li, H. Han, X. Gu, Z. Xu, and C.-Z. Xu,
“Adaptive multi-keyword ranked search over encrypted cloud
data,” Lecture Notes of the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering, LNICST, vol.
163, pp. 3–13, 2016.

[24] M. Strizhov and I. Ray, “Securemulti-keyword similarity search
over encrypted cloud data supporting efficient multi-user set-
up,” Transactions on Data Privacy, vol. 9, no. 2, pp. 131–159, 2016.

[25] D. Thiyagaraja and R. Ganesan, “Cryptographically imposed
model for efficient multiple keyword-based search over
encrypted data in cloud by secure index using bloom filter and
false random bit generator,” I. J. Network Security, vol. 19, no. 3,
pp. 413–420, 2017.

[26] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques
for searches on encrypted data,” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P ’00), pp. 44–55, IEEE,
Berkeley, Calif, USA, May 2000.

[27] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving key-
word searches on remote encrypted data,” in Proceedings of the
Third International Conference on Applied Cryptography and
Network Security, ACNS 2005, pp. 442–455, usa, June 2005.

[28] D. Boneh, D. Di Crescenzo, R. Ostrovsky, and G. Persiano,
“Public Key Encryption with Keyword Search,” in Proceedings
of the Annual International Conference on theTheory and Appli-
cations of Cryptographic Techniques (EUROCRYPT), 2004.

[29] Z.-Y. Shao and B. Yang, “On security against the server in
designated tester public key encryption with keyword search,”
Information Processing Letters, vol. 115, no. 12, pp. 957–961, 2015.

[30] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and
efficient ranked keyword search over outsourced cloud data,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23,
no. 8, pp. 1467–1479, 2012.

[31] B. Zhang and F. Zhang, “An efficient public key encryption with
conjunctive-subset keywords search,” Journal of Network and
Computer Applications, vol. 34, no. 1, pp. 262–267, 2011.

[32] Z. Chen, C. Wu, D. Wang et al., “Conjunctive keywords search-
able encryption with efficient pairing, constant ciphertext and
short trapdoor,” PAISI, pp. 176–189, 2012.

[33] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Roşu, and
M. Steiner, “Highly-scalable searchable symmetric encryption
with support for Boolean queries,” in Advances in Cryptology
– CRYPTO 2013, R. Canetti and J. A. Garay, Eds., vol. 8042 of
LectureNotes inComputer Science, pp. 353–373, Springer, Berlin,
Heidelberg, 2013.

[34] H. Pang, J. Shen, and R. Krishnan, “Privacy-preserving simi-
larity-based text retrieval,” ACM Transactions on Internet Tech-
nology, vol. 10, no. 1, article 4, 2010.

[35] W. Sun, B. Wang, N. Cao et al., “Verifiable privacy-preserving
multi-keyword text search in the cloud supporting similarity-
based ranking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 11, pp. 3025–3035, 2014.

[36] Z. Wan and R. H. Deng, “VPSearch: achieving verifiability for
privacy-preservingmulti-keyword search over encrypted cloud
data,” IEEE Transactions on Dependable and Secure Computing,
vol. PP, no. 99, 1 page.

[37] V. R. Pallipamu, K.Thammi Reddy, and P. Suresh Varma, “ASH-
160: A novel algorithm for secure hashing using geometric con-
cepts,” Journal of Information Security and Applications, vol. 21,
pp. 52–63, 2015.

[38] M. Lichman, UCI Machine Learning Repository, University
of California, School of Information and Computer Science,
Irvine, Calif, USA, 2013, http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

