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This paper investigates the problem of𝐻
∞
fuzzy control for a class of nonlinear singular Markovian jump systems with time delay.

This class of systems under consideration is described by Takagi-Sugeno (T-S) fuzzy models. Firstly, sufficient condition of the
stochastic stabilization by the method of the augmented matrix is obtained by the state feedback. And a designed algorithm for the
state feedback controller is provided to guarantee that the closed-loop system not only is regular, impulse-free, and stochastically
stable but also satisfies a prescribed 𝐻

∞
performance for all delays not larger than a given upper bound in terms of linear matrix

inequalities. Then 𝐻
∞

fuzzy control for this kind of systems is also discussed by the static output feedback. Finally, numerical
examples are given to illustrate the validity of the developed methodology.

1. Introduction

Singular systems, also known as descriptor systems, have
been widely studied in the past several decades. They have
broad applications and can be found in many practical
systems, such as electrical circuits, power systems, network,
economics, and other systems [1, 2]. Due to their extensive
applications, many research topics on singular systems have
been extensively investigated such as the stability and sta-
bilization [3, 4] and 𝐻

∞
control problem [5, 6]. A lot of

attention has been paid to the investigation of Markovian
jump systems (MJSs) over the past decades. Applications
of such class of systems can be found representing many
physical systems with random changes in their structures
and parameters. Many important issues have been studied
for this kind of physical systems, such as the stability
analysis, stabilization, and𝐻

∞
control [7–10].When singular

systems experience abrupt changes in their structures, it is
natural to model them as singular Markovian jump systems
(SMJSs) [11–13]. Time delay is one of the instability sources
for dynamical systems and is a common phenomenon in

many industrial and engineering systems such as those in
communication networks, manufacturing, and biology [14].
So the study of SMJSs with time delay is of theoretical and
practical importance [15, 16].

The fuzzy control has been proved to be a powerful
method for the control problem of complex nonlinear sys-
tems. Specially, the Takagi-Sugeno (T-S) fuzzy model has
attracted much attention due to the fact that it provides
an efficient approach to take full advantage of the linear
control theory to the nonlinear control. In recent years, this
fuzzy-model-based technique has been used to deal with
nonlinear time delay systems [17, 18] and nonlinear MJSs [19,
20]. But singular Markovian jump fuzzy systems (SMJFSs)
are not fully studied [21, 22], which motivates the main
purpose of our study. In this paper, a new method using the
augmented matrix will be given to the control of SMJFSs.
By this method the number of LMIs will be decreased, so
the complexity of the calculation will be greatly reduced
when the number of fuzzy rulers is relatively large. And,
at the same time, some new relaxation matrices added will
reduce the conservation of control conditions compared with
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previous literatures. And when using the augmented matrix
to design the static output feedback control, there are not
any crossing terms between system matrices and controller
gains, so assumptions for the output matrix [23], the equality
constraint for the output matrix [24], and the bounding
technique for crossing terms are not necessary; therefore, the
conservatism brought by them will not exist.

In this paper, the𝐻
∞
fuzzy control problem for a class of

nonlinear SMJSs with time delay which can be represented
by T-S fuzzy models is considered. Our aim is to design
fuzzy state feedback controllers and static output feedback
controllers for SMJFSs with time delay, such that closed-loop
systems are stochastically admissible (regular, impulse-free,
and stochastically stable) with a prescribed𝐻

∞
performance

𝛾. Sufficient criterions are presented in forms of LMIs which
are simple and easy to implement compared with previous
literatures. Finally, numerical examples are given to illustrate
themerit andusability of the approach proposed in this paper.

Notations. Throughout this paper, notations used are fairly
standard; for real symmetric matrices 𝐴 and 𝐵, the notation
𝐴 ≥ 𝐵 (𝐴 > 𝐵) means that the matrix 𝐴 − 𝐵 is positive
semidefinite (positive definite). 𝐴𝑇 represents the transpose
of the matrix 𝐴, and 𝐴−1 represents the inverse of the matrix
𝐴. 𝜆max𝐵 (𝜆min𝐵) is themaximal (minimal) eigenvalue of the
matrix 𝐵. diag{⋅} stands for a block-diagonal matrix. 𝐼 is the
unit matrix with appropriate dimensions, and, in a matrix,
the term of symmetry is stated by the asterisk “∗.” Let R𝑛

stand for the 𝑛-dimensional Euclidean space, R𝑛×𝑚 is the set
of all 𝑛 × 𝑚 real matrices, and ‖ ⋅ ‖ denotes the Euclidean
norm of vectors. E{⋅} denotes the mathematics expectation
of the stochastic process or vector. 𝐿𝑛

2
[0,∞) stands for the

space of 𝑛-dimensional square integrable functions on [0,∞).
𝐶
𝑛,𝑑

= 𝐶([−𝑑, 0],R𝑛

) denotes Banach space of continuous
vector functions mapping the interval [−𝑑, 0] into R𝑛 with
the norm ‖𝜙‖

𝑑
= sup

−𝑑≤𝑠≤0
‖𝜙(𝑠)‖.

2. Basic Definitions and Lemmas

Consider a SMJFS; its 𝑖th fuzzy rule is given by

𝑅
𝑖
: if 𝜉1(𝑡) is𝑀𝑖1, 𝜉2(𝑡) is𝑀𝑖2, . . ., and 𝜉𝑙(𝑡) is𝑀𝑖𝑙

, then

𝐸�̇� (𝑡) = 𝐴
𝑖
(𝑟

𝑡
) 𝑥 (𝑡) + 𝐴

𝑑,𝑖
(𝑟

𝑡
) 𝑥 (𝑡 − 𝑑) + 𝐵

𝑖
(𝑟

𝑡
) 𝑢 (𝑡)

+ 𝐵
𝑤,𝑖
(𝑟

𝑡
) 𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑖
(𝑟

𝑡
) 𝑥 (𝑡) + 𝐶

𝑑,𝑖
(𝑟

𝑡
) 𝑥 (𝑡 − 𝑑) + 𝐷

𝑖
(𝑟

𝑡
) 𝑢 (𝑡)

+ 𝐶
𝑤,𝑖
(𝑟

𝑡
) 𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) ,

∀𝑡 ∈ [−𝑑, 0] , 𝑖 ∈ T ≜ {1, 2, . . . , 𝑘} ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the control
input,𝑤(𝑡) ∈ RV is the exogenous disturbance which belongs
to 𝐿V

2
[0,∞), and 𝑧(𝑡) ∈ R𝑝 is the controlled output. 𝜙(𝑡) ∈

𝐶
𝑛,𝑑

is a compatible vector-valued initial function, and 𝑑 is an
unknown but constant delay satisfying 𝑑 ∈ [0, 𝑑]. The scalar

𝑘 is the number of If-Then rules.𝑀
𝑖𝑗
(𝑖 ∈ T, 𝑗 = 1, 2, . . . , 𝑙)

are fuzzy sets. 𝜉
1
(𝑡) − 𝜉

𝑙
(𝑡) are premise variables. 𝐸 ∈ R𝑛×𝑛

may be a singular matrix with rank𝐸 = 𝑟 ≤ 𝑛. 𝐴
𝑖
(𝑟

𝑡
),

𝐴
𝑑,𝑖
(𝑟

𝑡
), 𝐵

𝑖
(𝑟

𝑡
), 𝐵

𝑤,𝑖
(𝑟

𝑡
), 𝐶

𝑖
(𝑟

𝑡
), 𝐶

𝑑,𝑖
(𝑟

𝑡
), 𝐷

𝑖
(𝑟

𝑡
), and 𝐶

𝑤,𝑖
(𝑟

𝑡
)

are known constant matrices with appropriate dimensions.
{𝑟

𝑡
, 𝑡 ≥ 0} is a continuous-time Markovian process with right

continuous trajectories taking values in a finite set given by
S = {1, 2, . . . , 𝑁} with the transition rate matrix Π ≜ {𝜋

𝑝𝑞
}

satisfying

Pr {𝑟
𝑡+ℎ
= 𝑞 | 𝑟

𝑡
= 𝑝} =

{

{

{

𝜋
𝑝𝑞
ℎ + 𝑜 (ℎ) 𝑝 ̸= 𝑞

1 + 𝜋
𝑝𝑝
ℎ + 𝑜 (ℎ) 𝑝 = 𝑞,

(2)

where ℎ > 0, lim
ℎ→0

𝑜(ℎ)/ℎ = 0, and 𝜋
𝑝𝑞
≥ 0, for 𝑞 ̸= 𝑝, is

the transition rate frommode 𝑝 at time 𝑡 to 𝑞 at time 𝑡+ℎ and
𝜋
𝑝𝑝
= −∑

𝑁

𝑞=1,𝑞 ̸=𝑝
𝜋
𝑝𝑞
.

By fuzzy blending, the overall fuzzy model is inferred as
follows:

𝐸�̇� (𝑡) =

𝑘

∑

𝑖=1

𝜆
𝑖
(𝜉 (𝑡)) (𝐴

𝑖
(𝑟

𝑡
) 𝑥 (𝑡) + 𝐴

𝑑,𝑖
(𝑟

𝑡
) 𝑥 (𝑡 − 𝑑)

+ 𝐵
𝑖
(𝑟

𝑡
) 𝑢 (𝑡) + 𝐵

𝑤,𝑖
(𝑟

𝑡
) 𝑤 (𝑡)) ,

𝑧 (𝑡) =

𝑘

∑

𝑖=1

𝜆
𝑖
(𝜉 (𝑡)) (𝐶

𝑖
(𝑟

𝑡
) 𝑥 (𝑡) + 𝐶

𝑑,𝑖
(𝑟

𝑡
) 𝑥 (𝑡 − 𝑑)

+ 𝐷
𝑖
(𝑟

𝑡
) 𝑢 (𝑡) + 𝐶

𝑤,𝑖
(𝑟

𝑡
) 𝑤 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) ,

∀𝑡 ∈ [−𝑑, 0] , 𝑖 ∈ T ≜ {1, 2, . . . , 𝑘} ,

(3)

where 𝜉(𝑡) = [𝜉
1
(𝑡) 𝜉

2
(𝑡) ⋅ ⋅ ⋅ 𝜉

𝑙
(𝑡)]

𝑇, 𝛽
𝑖
(𝜉(𝑡)) =

∏
𝑙

𝑗=1
𝑀

𝑖𝑗
(𝜉

𝑗
(𝑡)). Letting 𝜆

𝑖
(𝜉(𝑡)) = 𝛽

𝑖
(𝜉(𝑡))/∑

𝑘

𝑖=1
𝛽
𝑖
(𝜉(𝑡)), it

follows that 𝜆
𝑖
(𝜉(𝑡)) ≥ 0, ∑𝑘

𝑖=1
𝜆
𝑖
(𝜉(𝑡)) = 1.

For the notational simplicity, in the sequel, for each
possible 𝑟

𝑡
= 𝑝 ∈ S, 𝐴

𝑖
(𝑟

𝑡
) ≜ 𝐴

𝑝𝑖
, 𝐵

𝑑,𝑖
(𝑟

𝑡
) ≜ 𝐵

𝑑,𝑝𝑖
, 𝐶

𝑑,𝑖
(𝑟

𝑡
) ≜

𝐶
𝑑,𝑝𝑖

, 𝜆
𝑖
(𝜉(𝑡)) ≜ 𝜆

𝑖
, and so on.

Definition 1 (see [15, 25]). (i) For a given scalar 𝑑 > 0, the
SMJS with time delay

𝐸�̇� (𝑡) = 𝐴 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐴

𝑑
(𝑟

𝑡
) 𝑥 (𝑡 − 𝑑) ,

𝑥 (𝑡) = 𝜙 (𝑡) ,

𝑡 ∈ [−𝑑, 0]

(4)

is said to be regular and impulse-free for any constant time
delay satisfying 𝑑 ∈ [0, 𝑑], if pairs (𝐸, 𝐴(𝑟

𝑡
)) and (𝐸, 𝐴(𝑟

𝑡
) +

𝐴
𝑑
(𝑟

𝑡
)) are regular and impulse-free.

(ii) System (4) is said to be stochastically stable if there
exists a finite number 𝑀(𝜙(𝑡), 𝑟

0
) such that the following

inequality holds:

lim
𝑡→∞

E{∫
𝑡

0

‖𝑥 (𝑠)‖
2 d𝑠 | 𝑟

0
, 𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝑑, 0]}

< 𝑀(𝜙 (𝑡) , 𝑟
0
) .

(5)
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(iii) System (4) is said to be stochastically admissible if it
is regular, impulse-free, and stochastically stable.

Lemma 2 (see [26]). Given matrices 𝐸,𝑋 > 0, 𝑌, if 𝐸𝑇𝑋 +

𝑌Λ
𝑇 is nonsingular, there exist matrices 𝑆 > 0, 𝐿, such that

𝐸𝑆+𝐿Θ
𝑇

= (𝐸
𝑇

𝑋+𝑌Λ
𝑇

)
−1, where Λ,Θ ∈ R𝑛×(𝑛−𝑟), such that

𝐸
𝑇

Λ = 0, 𝐸Θ = 0, rankΛ = rankΘ = 𝑛 − 𝑟,𝑋, 𝑆 ∈ R𝑛×𝑛, and
𝑌, 𝐿 ∈ R𝑛×(𝑛−𝑟).

Lemma 3 (see [27]). For matrices 𝑄 > 0, 𝑃, and 𝑅 with
appropriate dimensions, the following inequality holds:

𝑃𝑅
𝑇

+ 𝑅𝑃
𝑇

≤ 𝑅𝑄𝑅
𝑇

+ 𝑃𝑄
−1

𝑃
𝑇

. (6)

Lemma 4 (see [28]). For any constant matrix 𝑋 ∈ R𝑛×𝑛, 𝑋 =
𝑋

𝑇

> 0, scalar 𝑟 > 0, and vector function �̇� : [−𝑟, 0] → R𝑛

such that the following integration is well defined; then

− 𝑟∫

0

−𝑟

�̇�
𝑇

(𝑡 + 𝑠)𝑋�̇� (𝑡 + 𝑠) 𝑑𝑠

≤ [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑟)] [

−𝑋 𝑋

𝑋 −𝑋

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑟)

] .

(7)

Lemma 5 (see [29]). Suppose there are piecewise continuous
real square matrices 𝐴(𝑡), 𝑋, and 𝑄 > 0 satisfying 𝐴𝑇

(𝑡)𝑋 +

𝑋
𝑇

𝐴(𝑡) < 0 for all 𝑡. Then the following conditions hold:
(i) 𝐴(𝑡) and 𝑋 are nonsingular.
(ii) ‖𝐴−1

(𝑡)‖ ≤ 𝛿 for some 𝛿 > 0.

Lemma 6 (see [30]). If the following conditions hold:

𝑀
𝑖𝑖
< 0, 1 ≤ 𝑖 ≤ 𝑟;

1

𝑟 − 1

𝑀
𝑖𝑖
+

1

2

(𝑀
𝑖𝑗
+𝑀

𝑗𝑖
) < 0, 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑟,

(8)

then the following parameterized matrix inequality holds:
𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝛼
𝑖
(𝑡) 𝛼

𝑗
(𝑡)𝑀

𝑖𝑗
< 0, (9)

where 𝛼
𝑖
(𝑡) ≥ 0 and ∑𝑟

𝑖=1
𝛼
𝑖
(𝑡) = 1.

Based on the parallel distributed compensation, the
following state feedback controller will be considered here:

𝑢
𝑝
(𝑡) =

𝑘

∑

𝑖=1

𝜆
𝑖
𝐾

𝑝𝑖
𝑥 (𝑡) , (10)

where𝐾
𝑝𝑖
(𝑝 ∈ S, 𝑖 ∈ T) are local controller gains, such that

the closed-loop system

𝐸�̇� (𝑡) =

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
((𝐴

𝑝𝑖
+ 𝐵

𝑝𝑖
𝐾

𝑝𝑗
) 𝑥 (𝑡)

+ 𝐴
𝑑,𝑝𝑖
𝑥 (𝑡 − 𝑑) + 𝐵

𝑤,𝑝𝑖
𝑤 (𝑡)) ,

𝑧 (𝑡) =

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
((𝐶

𝑝𝑖
+ 𝐷

𝑝𝑖
𝐾

𝑝𝑗
) 𝑥 (𝑡)

+ 𝐶
𝑑,𝑝𝑖
𝑥 (𝑡 − 𝑑) + 𝐶

𝑤,𝑝𝑖
𝑤 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) ,

𝑡 ∈ [−𝑑, 0]

(11)

is stochastically admissible.

3. The Design of the State
Feedback 𝐻

∞
Controller

Firstly, the sufficient condition will be given such that
system (11) is stochastically admissible. Combining (4) and
(10), fuzzy closed-loop system (11) can be rewritten in the
following form:

𝐸
̇
�̃� (𝑡)

=

𝑘

∑

𝑖=1

𝜆
𝑖
(𝐴

𝑝𝑖
𝑥 (𝑡) + 𝐴

𝑑,𝑝𝑖
𝑥 (𝑡 − 𝑑) + 𝐵

𝑤,𝑝𝑖
𝑤 (𝑡)) ,

𝑧 (𝑡) =

𝑘

∑

𝑖=1

𝜆
𝑖
(𝐶

𝑝𝑖
𝑥 (𝑡) + 𝐶

𝑑,𝑝𝑖
𝑥 (𝑡 − 𝑑) + 𝐶

𝑤,𝑝𝑖
𝑤 (𝑡)) ,

𝑥 (𝑡) =
̃
𝜙 (𝑡) ,

𝑡 ∈ [−𝑑, 0] ,

(12)

where

𝐸 = [

𝐸 0

0 0

] ∈ R
(𝑛+𝑚)×(𝑛+𝑚)

,

𝐴
𝑝𝑖
= [

𝐴
𝑝𝑖

𝐵
𝑝𝑖

𝐾
𝑝𝑖
−𝐼

𝑚

] ∈ R
(𝑛+𝑚)×(𝑛+𝑚)

,

𝑥 (𝑡) = [

𝑥 (𝑡)

𝑢 (𝑡)

] ∈ R
𝑛+𝑚

,

𝐴
𝑑,𝑝𝑖

= [

𝐴
𝑑,𝑝𝑖

0

0 0

] ∈ R
(𝑛+𝑚)×(𝑛+𝑚)

,

𝐵
𝑤,𝑝𝑖

= [

𝐵
𝑤,𝑝𝑖

0

] ∈ R
(𝑛+𝑚)×V

,

𝐶
𝑝𝑖
= [𝐶

𝑝𝑖
𝐷

𝑝𝑖
] ∈ R

𝑝×(𝑛+𝑚)

,

𝐶
𝑑,𝑝𝑖

= [𝐶
𝑑,𝑝𝑖

0] ∈ R
𝑝×(𝑛+𝑚)

,

̃
𝜙 (𝑡) =

𝑘

∑

𝑖=1

𝜆
𝑖
[

𝜙 (𝑡)

𝐾
𝑝𝑖
𝜙 (𝑡)

] .

(13)
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Remark 7. For systems (11) and (12), it can be seen that

det(𝑠𝐸 −
𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
(𝐴

𝑝𝑖
+ 𝐵

𝑝𝑖
𝐾

𝑝𝑗
))

= det(𝑠[
𝐸 0

0 0

] −

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
[

𝐴
𝑝𝑖

𝐵
𝑝𝑖

𝐾
𝑝𝑗
−𝐼

𝑚

])

= det(𝑠[
𝐸 0

0 0

] −

𝑘

∑

𝑖=1

𝜆
𝑖
[

𝐴
𝑝𝑖

𝐵
𝑝𝑖

𝐾
𝑝𝑖
−𝐼

𝑚

])

= det(𝑠𝐸 −
𝑘

∑

𝑖=1

𝜆
𝑖
𝐴

𝑝𝑖
) ,

det(𝑠𝐸 −
𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
(𝐴

𝑝𝑖
+ 𝐵

𝑝𝑖
𝐾

𝑝𝑗
+ 𝐴

𝑑,𝑝𝑖
))

= det(𝑠[
𝐸 0

0 0

] −

𝑘

∑

𝑖=1

𝜆
𝑖
[

𝐴
𝑝𝑖
+ 𝐴

𝑑,𝑝𝑖
𝐵
𝑝𝑖

𝐾
𝑝𝑖

−𝐼
𝑚

])

= det(𝑠𝐸 −
𝑘

∑

𝑖=1

𝜆
𝑖
(𝐴

𝑝𝑖
+ 𝐴

𝑑,𝑝𝑖
)) .

(14)

By rank𝐸 = rank𝐸 and Definition 1, it can be obtained that
the regularity and nonimpulse of system (11) are equal to the
regularity and nonimpulse of system (12). So the stochastic
admissibility of system (11) can be studied by system (12).

Theorem 8. For a prescribed scalar 𝑑 > 0, there exists a state
feedback controller (10) with 𝑢

𝑝
(𝑡) = ∑

𝑘

𝑖=1
𝜆
𝑖
𝐿
𝑝𝑖
𝑌
−1

𝑝
𝑥(𝑡) such

that system (11) when 𝑤(𝑡) = 0 is stochastically admissible for
any constant time delay 𝑑 satisfying 𝑑 ∈ [0, 𝑑], if there exist
matrices 𝑃

𝑝
> 0, 𝑄

𝑝
> 0, 𝑄 > 0, 𝑍 > 0, 𝐿

𝑝𝑖
, 𝑆

𝑝
, 𝑌

𝑝2
, and 𝑌

𝑝3
,

𝑖 ∈ T, 𝑝 ∈ S, such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
1𝑝𝑖

∗ ∗ ∗ ∗ ∗ ∗

𝐿
𝑝𝑖
+ 𝑌

𝑇

𝑝3
𝐵
𝑇

𝑝𝑖
+ 𝑌

𝑝2
−𝑌

𝑇

𝑝3
− 𝑌

𝑝3
∗ ∗ ∗ ∗ ∗

(

𝑌
𝑇

𝑝
𝐴
𝑇

𝑑,𝑝𝑖
+ 𝐸𝑌

𝑝

+𝑌
𝑇

𝑝
𝐸
𝑇

− 𝑍

) 0 (

−𝑌
𝑇

𝑝
− 𝑌

𝑝
+ 𝑄

𝑝

−𝑌
𝑇

𝑝
𝐸
𝑇

− 𝐸𝑌
𝑝
+ 𝑍

) ∗ ∗ ∗ ∗

𝑑𝐴
𝑝𝑖
𝑌
𝑝
− 𝑑𝐵

𝑝𝑖
𝑌
𝑝2

𝑑𝐵
𝑝𝑖
𝑌
𝑝3

𝑑𝐴
𝑑,𝑝𝑖
𝑌
𝑝

−𝑍 ∗ ∗ ∗

𝑌
𝑝

0 0 0 −𝑄
𝑝

∗ ∗

𝑑𝑌
𝑝

0 0 0 0 −𝑑𝑄 ∗

[𝐼
𝑟
0]𝐻

−1

𝑀
𝑇

𝑝
0 0 0 0 0 −𝐽

𝑝

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (15)

[

[

(𝜋
𝑝𝑝
− 1)𝑌

𝑝
+ (𝜋

𝑝𝑝
− 1)𝑌

𝑇

𝑝
+ 𝑄 − 𝜋

𝑝𝑝
𝑄

𝑝
∗

𝑀
𝑇

𝑝
−𝑇

𝑝

]

]

< 0, (16)

where Γ
1𝑝𝑖

= 𝜋
𝑝𝑝
𝑌
𝑇

𝑝
𝐸
𝑇

+ 𝐴
𝑝𝑖
𝑌
𝑝
+ 𝑌

𝑇

𝑝
𝐴
𝑇

𝑝𝑖
−

𝑌
𝑇

𝑝2
𝐵
𝑇

𝑝𝑖
− 𝐵

𝑝𝑖
𝑌
𝑝2
− 𝑌

𝑇

𝑝
𝐸
𝑇

− 𝐸𝑌
𝑝
+ 𝑍, 𝑌

𝑝
= (𝐸𝑃

𝑝
+

𝑆
𝑝
𝑅

𝑇

)
𝑇, 𝐿

𝑝𝑖
= 𝐾

𝑝𝑖
𝑌
𝑝
, 𝑌

𝑝2
= 𝑌

𝑝3
�̃�
𝑝2
𝑌
𝑝
, 𝑀

𝑝
=

[√𝜋𝑝1
𝑌
𝑇

𝑝
⋅ ⋅ ⋅ √𝜋𝑝𝑝−1

𝑌
𝑇

𝑝 √𝜋𝑝𝑝+1
𝑌
𝑇

𝑝
⋅ ⋅ ⋅ √𝜋𝑝𝑁

𝑌
𝑇

𝑝
], 𝑇

𝑝
=

diag{𝑄
1
, . . . , 𝑄

𝑝−1
, 𝑄

𝑝+1
, . . . , 𝑄

𝑁
}, 𝐽

𝑝
= diag{Φ

1
, . . . , Φ

𝑝−1
,

Φ
𝑝+1
, . . . , Φ

𝑁
}, Φ

𝑡
= [𝐼

𝑟
0] 𝐺𝐸𝑌

𝑡
𝐺
𝑇

[
𝐼
𝑟

0
], 𝑅 ∈ R𝑛×(𝑛−𝑟) is any

matrix with full column rank and satisfies 𝐸𝑅 = 0, and 𝐺,𝐻
are nonsingular matrices that make 𝐺𝐸𝐻 = [

𝐼
𝑟
0

0 0
].

Proof. From ??, it can be concluded that 𝑌
𝑝
and 𝑌

𝑝3
are

nonsingular matrices. Because 𝑌
𝑝
= (𝐸𝑃

𝑝
+ 𝑆

𝑝
𝑅

𝑇

)
𝑇,

𝑌
𝑇

𝑝
𝐸
𝑇

= 𝐸𝑌
𝑝
= 𝐸𝑃

𝑝
𝐸
𝑇

≥ 0. (17)

Denote𝐻−1

𝑌
𝑝
𝐺
𝑇

= [

𝑌
𝑝11

𝑌
𝑝12

𝑌
𝑝21

𝑌
𝑝22

]; from (17), it is easy to obtain
that 𝑌

𝑝12
= 0 and 𝑌

𝑝11
is symmetric; then 𝐻−1

𝑌
𝑝
𝐺
𝑇

=

[

𝑌
𝑝11

0

𝑌
𝑝21

𝑌
𝑝22

]. So it can be concluded that 𝑌
𝑝11

and 𝑌
𝑝22

are non-

singular; furthermore, 𝐺−𝑇

𝑌
−1

𝑝
𝐻 = [

𝑌
−1

𝑝11
0

−𝑌
−1

𝑝22
𝑌
𝑝21

𝑌
−1

𝑝11
𝑌
−1

𝑝22

]. Let

�̃�
𝑝
= [

𝑌
𝑝

0

−𝑌
𝑝2

𝑌
𝑝3

]. So [𝐼
𝑟
0] diag{𝐺, 𝐼

𝑚
}𝐸�̃�

𝑞
diag{𝐺𝑇

, 𝐼
𝑚
} [

𝐼
𝑟

0
] =

𝑌
𝑞11

is nonsingular. By Lemma 2, 𝑋
𝑝
= 𝑌

−1

𝑝
= (𝐸

𝑇

𝑃
𝑝
+

𝑆
𝑝
𝑅
𝑇

)
𝑇, where 𝑃

𝑝
> 0, 𝑆

𝑝
∈ R𝑛×(𝑛−𝑟), and 𝑅 ∈ R𝑛×(𝑛−𝑟) is a

matrix with full column rank and satisfies 𝐸𝑇𝑅 = 0. Denote
𝑋

𝑝3
≜ 𝑌

−1

𝑝3
, 𝑋

𝑝2
≜ �̃�

𝑝2
= 𝑌

−1

𝑝3
𝑌
𝑝2
𝑌
−1

𝑝
, and 𝑋

𝑝
≜ �̃�

−1

𝑝
=

[

𝑋
𝑝

0

𝑋
𝑝2

𝑋
𝑝3

]. So

[

[

[

𝐻
−𝑇

[

𝐼
𝑟

0

]

0
𝑚×𝑟

]

]

]

([𝐼
𝑟
0] 𝐺𝐸𝑌

𝑞
𝐺
𝑇

[

𝐼
𝑟

0

])

−1

⋅ [[𝐼
𝑟
0]𝐻

−1

0
𝑟×𝑚
] = diag {𝐻−𝑇

, 𝐼
𝑚
}
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⋅
[

[

[

[

𝑌
−1

𝑞11
0

0 0

] 0

0 0
𝑚

]

]

]

diag {𝐻−1

, 𝐼
𝑚
} = 𝐸

𝑇

�̃�
−1

𝑞

= 𝐸
𝑇

𝑋
𝑞
.

(18)

Denote 𝑄
𝑝
≜ 𝑄

−1

𝑝
, 𝑄 ≜ 𝑄

−1, and 𝑍 ≜ 𝑍

−1

. By Lemma 3, it
can be obtained that

[

−𝐸
𝑇

𝑍𝐸 𝐸
𝑇

𝑍𝐸

𝐸
𝑇

𝑍𝐸 −𝐸
𝑇

𝑍𝐸

]

= [

𝐼
𝑛

−𝐼
𝑛

] (−𝐸
𝑇

𝑍𝐸) [𝐼
𝑛
−𝐼

𝑛
]

≤ [

𝐼
𝑛

−𝐼
𝑛

] (−𝐸
𝑇

𝑋
𝑝
− 𝑋

𝑇

𝑝
𝐸 + 𝑋

𝑇

𝑝
𝑍𝑋

𝑝
) [𝐼

𝑛
−𝐼

𝑛
] .

(19)

Now pre- and postmultiplying ?? by diag{𝑋𝑇

𝑝
, 𝑋

𝑇

𝑝
, 𝑍, 𝐼

𝑛
,

𝐼
𝑛
, 𝐼

𝑟
, . . . , 𝐼

𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁−1

} and its transpose, by Schur complement lemma,

and (18)-(19), it is easy to see that

[

[

[

[

Γ̃
1𝑝𝑖

∗ ∗

𝐸
𝑇

[𝑍 0] 𝐸 + [𝐴
𝑇

𝑑,𝑝𝑖
0]𝑋

𝑝
−𝐸

𝑇

𝑍𝐸 − 𝑄
𝑝
∗

𝑑𝑍 [𝐴
𝑝𝑖
𝐵
𝑝𝑖
] 𝑑𝑍𝐴

𝑑,𝑝𝑖
−𝑍

]

]

]

]

< 0,

(20)

where Γ̃
1𝑝𝑖
= ∑

𝑁

𝑞=1
𝜋
𝑝𝑞
𝐸
𝑇

𝑋
𝑝
+𝑋

𝑇

𝑝
𝐴

𝑝𝑖
+𝐴

𝑇

𝑝𝑖
𝑋

𝑝𝑖
+diag{𝑄

𝑝
, 0}+

𝑑 diag{𝑄, 0} − 𝐸𝑇 diag{𝑍, 0}𝐸. Pre- and postmultiplying ?? by
diag{𝑋𝑇

𝑝
, 𝐼

𝑟
, . . . , 𝐼

𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁−1

} and its transposition by Schur comple-

ment lemma, it can be seen that

𝑁

∑

𝑞=1

𝜋
𝑝𝑞
𝑄

𝑞
< 𝑄. (21)

From (20), it can be concluded that

𝑘

∑

𝑖=1

𝜆
𝑖
(𝜋

𝑝𝑝
𝐸
𝑇

𝑋
𝑝
+ 𝐴

𝑇

𝑝𝑖
𝑋

𝑝
+ 𝑋

𝑇

𝑝
𝐴

𝑝𝑖

− 𝐸
𝑇 diag {𝑍, 0} 𝐸) < 0.

(22)

On the other hand, diag{𝐺, 𝐼
𝑚
}𝐸 diag{𝐻, 𝐼

𝑚
} = [

[
𝐼
𝑟
0

0 0

] 0

0 0
𝑚

].
Then

𝐸
𝑇

𝑋
𝑝
= 𝑋

𝑇

𝑝
𝐸 = [

𝐸
𝑇

0

0 0

][

𝑋
𝑝

0

𝑋
𝑝2
𝑋

𝑝3

] = [

𝐸
𝑇

𝑋
𝑝
0

0 0

]

= [

𝐸
𝑇

𝑃
𝑝
𝐸 0

0 0

] ≥ 0.

(23)

Denote 𝐴
𝑝
(𝑡) ≜ (∑

𝑘

𝑖=1
𝜆
𝑖
𝐴

𝑝𝑖
) = [

̃
𝐴
𝑝1
(𝑡)

̃
𝐴
𝑝2
(𝑡)

̃
𝐴
𝑝3
(𝑡)

̃
𝐴
𝑝4
(𝑡)

]; from (22), it
can be obtained that

𝑋
𝑇

𝑝3
𝐴

𝑝4
(𝑡) + 𝐴

𝑇

𝑝4
(𝑡) 𝑋

𝑝3
< 0, (24)

for every 𝑝 ∈ S, which implies that 𝐴
𝑝4
(𝑡) is nonsingular.

Thus, the pair (𝐸, ∑𝑘

𝑖=1
𝜆
𝑖
𝐴

𝑝𝑖
) is regular and impulse-free for

every 𝑝 ∈ S. By (20), it is easy to see that

[

Γ̃
1𝑝𝑖

∗

𝐸
𝑇

[𝑍 0] 𝐸 + [𝐴
𝑇

𝑑,𝑝𝑖
0]𝑋

𝑝
−𝐸

𝑇

𝑍𝐸 − 𝑄
𝑝

] < 0. (25)

Pre- and postmultiplying (25) by [ 𝐼
𝑛+𝑚

[
𝐼
𝑛

0

]

0 𝐼
𝑛

] and its trans-
pose, it can be obtained that

𝑁

∑

𝑞=1

𝜋
𝑝𝑞
𝐸
𝑇

𝑋
𝑝
+ 𝑋

𝑇

𝑝
(𝐴

𝑝𝑖
+ 𝐴

𝑑,𝑝𝑖
)

+ (𝐴
𝑝𝑖
+ 𝐴

𝑑,𝑝𝑖
)

𝑇

𝑋
𝑝
< 0.

(26)

Hence,

𝑘

∑

𝑖=1

𝜆
𝑖
(𝜋

𝑝𝑝
𝐸
𝑇

𝑋
𝑝
+ 𝑋

𝑇

𝑝
(𝐴

𝑝𝑖
+ 𝐴

𝑑,𝑝𝑖
)

+ (𝐴
𝑝𝑖
+ 𝐴

𝑑,𝑝𝑖
)

𝑇

𝑋
𝑝
) < 0.

(27)

Equation (27) implies that the pair (𝐸, ∑𝑘

𝑖=1
𝜆
𝑖
(𝐴

𝑝𝑖
+ 𝐴

𝑑,𝑝𝑖
))

is regular and impulse-free for every 𝑝 ∈ S. Thus, by
Definition 1, system (12) is regular and impulse-free. By
Remark 7, this implies that system (11) is regular and impulse-
free.

Now, it will be shown that system (11) is stochastically
stable. Define a new process {(𝑥

𝑡
, 𝑟

𝑡
), 𝑡 ≥ 0} by {𝑥

𝑡
= 𝑥(𝑡 +

𝜃), −2𝑑 ≤ 𝜃 ≤ 0}; then {(𝑥
𝑡
, 𝑟

𝑡
), 𝑡 ≥ 𝑑} is a Markovian process

with the initial state (𝜙(⋅), 𝑟
0
). Now, for 𝑡 ≥ 𝑑, choose the

following stochastic Lyapunov-Krasovskii candidate for this
system:

𝑉 (𝑥
𝑡
, 𝑝, 𝑡) =

4

∑

𝑚=1

𝑉
𝑚
(𝑥

𝑡
, 𝑝, 𝑡) , (28)

where

𝑉
1
(𝑥

𝑡
, 𝑝, 𝑡) = 𝑥

𝑇

(𝑡) 𝐸
𝑇

𝑃
𝑝
𝐸𝑥 (𝑡) = 𝑥

𝑇

(𝑡) 𝐸
𝑇

𝑋
𝑝
𝑥 (𝑡)

= 𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑋
𝑝
𝑥 (𝑡) ,

𝑉
2
(𝑥

𝑡
, 𝑝, 𝑡) = ∫

𝑡

𝑡−𝑑

𝑥
𝑇

(𝑠) 𝑄
𝑝
𝑥 (𝑠) d𝑠,

𝑉
3
(𝑥

𝑡
, 𝑝, 𝑡) = 𝑑∫

0

−𝑑

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝐸
𝑇

𝑍𝐸�̇� (𝑠) d𝑠 d𝜃,

𝑉
4
(𝑥

𝑡
, 𝑝, 𝑡) = ∫

0

−𝑑

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠 d𝜃.

(29)



6 Mathematical Problems in Engineering

Let L be the weak infinitesimal generator of the random
process {(𝑥

𝑡
, 𝑝), 𝑡 ≥ 0}. Then, for each 𝑝 ∈ S,

L𝑉 (𝑥
𝑡
, 𝑝, 𝑡) ≤ 2𝑥

𝑇

(𝑡) 𝑋
𝑇

𝑝
𝐸
̇
�̃� (𝑡)

+ 𝑥
𝑇

(𝑡) (

𝑁

∑

𝑞=1

𝜋
𝑝𝑞
𝐸
𝑇

𝑋
𝑞
)𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑄
𝑝
𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝑑)𝑄
𝑝
𝑥 (𝑡 − 𝑑)

+ ∫

𝑡

𝑡−𝑑

𝑥
𝑇

(𝑠) (

𝑁

∑

𝑞=1

𝜋
𝑝𝑞
𝑄

𝑞
)𝑥 (𝑠) d𝑠

+ 𝑑𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡)

− ∫

𝑡

𝑡−𝑑

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠

+ 𝑑

2

�̇�
𝑇

(𝑡) 𝐸
𝑇

𝑍𝐸�̇� (𝑡)

− 𝑑∫

𝑡

𝑡−𝑑

�̇�
𝑇

(𝑠) 𝐸
𝑇

𝑍𝐸�̇� (𝑠) d𝑠.

(30)

From (21), it is clear that

∫

𝑡

𝑡−𝑑

𝑥
𝑇

(𝑠) (

𝑁

∑

𝑞=1

𝜋
𝑝𝑞
𝑄

𝑞
)𝑥 (𝑠) d𝑠

< ∫

𝑡

𝑡−𝑑

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠.

(31)

From Lemma 4, it follows that

− 𝑑∫

𝑡

𝑡−𝑑

�̇�
𝑇

(𝑠) 𝐸
𝑇

𝑍𝐸�̇� (𝑠) d𝑠

≤ [

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)

]

𝑇

[

−𝐸
𝑇

𝑍𝐸 𝐸
𝑇

𝑍𝐸

𝐸
𝑇

𝑍𝐸 −𝐸
𝑇

𝑍𝐸

][

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)

] .

(32)

So it can be concluded that

L𝑉 (𝑥
𝑡
, 𝑝, 𝑡) ≤

𝑘

∑

𝑖=1

𝜂
𝑇

(𝑡) Φ
𝑝𝑖
𝜂 (𝑡) , (33)

where

𝜂
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑑)] ,

Φ
𝑝𝑖
= [

Υ
1𝑝𝑖

∗

Υ
2𝑝𝑖

Υ
3𝑝𝑖

] ,

Υ
1𝑝𝑖
= Γ̃

1𝑝𝑖
+ [

𝐴
𝑇

𝑝𝑖

𝐵
𝑇

𝑝𝑖

]𝑑

2

𝑍 [𝐴
𝑝𝑖
𝐵
𝑝𝑖
] ,

Υ
3𝑝𝑖
= −𝑄

𝑝
− 𝐸

𝑇

𝑍𝐸 + 𝐴
𝑇

𝑑,𝑝𝑖
𝑑

2

𝑍𝐴
𝑑,𝑝𝑖
,

Υ
2𝑝𝑖
= 𝐸

𝑇

[𝑍 0] 𝐸 + [𝐴
𝑇

𝑑,𝑝𝑖
0]𝑋

𝑝

+ 𝐴
𝑇

𝑑,𝑝𝑖
𝑑

2

𝑍 [𝐴
𝑝𝑖
𝐵
𝑝𝑖
] .

(34)

Using (20), it is easy to see that there exists a scalar 𝜅 > 0

such that, for every 𝑝 ∈ S, L𝑉(𝑥
𝑡
, 𝑝, 𝑡) ≤ −𝜅‖𝑥(𝑡)‖

2, where
𝜅 = min

𝑖∈T,𝑝∈S(𝜆min(−Φ𝑝𝑖
)).

So, for 𝑡 ≥ 𝑑, by Dynkin’s formula, it can be obtained that

E {𝑉 (𝑥
𝑡
, 𝑝, 𝑡)} −E {𝑉 (𝑥

𝑑
, 𝑟

𝑑
, 𝑑)}

≤ −𝜅E{∫
𝑡

𝑑

‖𝑥 (𝑠)‖
2 d𝑠} ,

(35)

which yields

E{∫
𝑡

𝑑

‖𝑥 (𝑠)‖
2 d𝑠} ≤ 𝜅−1E {𝑉 (𝑥

𝑑
, 𝑟

𝑑
, 𝑑)} . (36)

Because 𝐺𝐸𝐻 = [
𝐼
𝑟
0

0 0
], denote

𝐴
𝑝
(𝑡) ≜

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
(𝐴

𝑝𝑖
+ 𝐵

𝑝𝑖
𝐾

𝑝𝑗
)

= [

𝐴
𝑝1
(𝑡) 𝐴

𝑝2
(𝑡)

𝐴
𝑝3
(𝑡) 𝐴

𝑝4
(𝑡)

]

=

[

[

[

[

[

[

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
𝐴

𝑝𝑖𝑗1

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
𝐴

𝑝𝑖𝑗2

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
𝐴

𝑝𝑖𝑗3

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
𝐴

𝑝𝑖𝑗4

]

]

]

]

]

]

,

𝐴
𝑑,𝑝
(𝑡) ≜

𝑘

∑

𝑖=1

𝜆
𝑖
𝐴

𝑑,𝑝𝑖
= [

𝐴
𝑑,𝑝1

(𝑡) 𝐴
𝑑,𝑝2

(𝑡)

𝐴
𝑑,𝑝3

(𝑡) 𝐴
𝑑,𝑝4

(𝑡)

]

=

[

[

[

[

[

[

𝑘

∑

𝑖=1

𝜆
𝑖
𝐴

𝑑,𝑝𝑖1

𝑘

∑

𝑖=1

𝜆
𝑖
𝐴

𝑑,𝑝𝑖2

𝑘

∑

𝑖=1

𝜆
𝑖
𝐴

𝑑,𝑝𝑖3

𝑘

∑

𝑖=1

𝜆
𝑖
𝐴

𝑑,𝑝𝑖4

]

]

]

]

]

]

.

(37)

By the regularity and nonimpulse of system (11), 𝐴
𝑝4
(𝑡) is

nonsingular; for each 𝑝 ∈ S, set 𝐺
𝑝
= [

𝐼
𝑟
−𝐴
𝑝2
(𝑡)𝐴
−1

𝑝4
(𝑡)

0 𝐴
−1

𝑝4
(𝑡)

]𝐺.
It is easy to obtain

𝐺
𝑝
𝐸𝐻 = [

𝐼
𝑟
0

0 0

] ,

𝐺
𝑝
𝐴

𝑝
(𝑡)𝐻 = [

𝐴
𝑝1
(𝑡) 0

𝐴
𝑝3
(𝑡) 𝐼

𝑛−𝑟

] ,

𝐺
𝑝
𝐴

𝑝
(𝑡)𝐻 = [

𝐴
𝑝1
(𝑡) 0

𝐴
𝑝3
(𝑡) 𝐼

𝑛−𝑟

] ,

(38)
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where

𝐴
𝑝1
(𝑡) = 𝐴

𝑝1
(𝑡) − 𝐴

𝑝2
(𝑡) 𝐴

−1

𝑝4
(𝑡) 𝐴

𝑝3
(𝑡) ,

𝐴
𝑝3
(𝑡) = 𝐴

−1

𝑝4
(𝑡) 𝐴

𝑝3
(𝑡) ,

𝐴
𝑑,𝑝1

(𝑡) = 𝐴
𝑑,𝑝1

(𝑡) − 𝐴
𝑝2
(𝑡) 𝐴

−1

𝑝4
(𝑡) 𝐴

𝑑,𝑝3
(𝑡) ,

𝐴
𝑑,𝑝2

(𝑡) = 𝐴
𝑑,𝑝2

(𝑡) − 𝐴
𝑝2
(𝑡) 𝐴

−1

𝑝4
(𝑡) 𝐴

𝑑,𝑝4
(𝑡) ,

𝐴
𝑑,𝑝3

(𝑡) = 𝐴
−1

𝑝4
(𝑡) 𝐴

𝑑,𝑝3
(𝑡) ,

𝐴
𝑑,𝑝4

(𝑡) = 𝐴
−1

𝑝4
(𝑡) 𝐴

𝑑,𝑝4
(𝑡) .

(39)

Then, for each 𝑝 ∈ S, system (11) is equal to

�̇�
1
(𝑡) = 𝐴

𝑝1
(𝑡) 𝜓

1
(𝑡) + 𝐴

𝑑,𝑝1
(𝑡) 𝜓

1
(𝑡 − 𝑑)

+ 𝐴
𝑑,𝑝2

(𝑡) 𝜓
2
(𝑡 − 𝑑) ,

−𝜓
2
(𝑡) = 𝐴

𝑝3
(𝑡) 𝜓

1
(𝑡) + 𝐴

𝑑,𝑝3
(𝑡) 𝜓

1
(𝑡 − 𝑑)

+ 𝐴
𝑑,𝑝4

(𝑡) 𝜓
2
(𝑡 − 𝑑) ,

𝜓 (𝑡) = 𝜑 (𝑡) = 𝐻
−1

𝑥 (𝑡) ,

𝑡 ∈ [−𝑑, 0] ,

(40)

where 𝜓(𝑡) = [ 𝜓1(𝑡)
𝜓
2
(𝑡)
] = 𝐻

−1

𝑥(𝑡).
For any 𝑡 ≥ 0, using Lemma 5, there exists a scalar 𝛿

𝑝
> 0

such that ‖𝐴
𝑝4
(𝑡)‖ < 𝛿

𝑝
, and 𝜆

𝑖
(𝜉(𝑡)) ≥ 0, and∑𝑘

𝑖=1
𝜆
𝑖
(𝜉(𝑡)) =

1; it follows from (40) that




𝜓
1
(𝑡)





≤




𝜓
1
(0)





+ 𝑘
1
∫

𝑡

0

[




𝜓
1
(𝑠)




+




𝜓
1
(𝑠 − 𝑑)





+




𝜓
2
(𝑠 − 𝑑)





] d𝑠,

(41)

where

𝑘
1
= max

𝑝∈S
{max
𝑖,𝑗∈T






𝐴

𝑝𝑖𝑗1







+ 𝛿
𝑝
max
𝑖,𝑗∈T






𝐴

𝑝𝑖𝑗2






max
𝑖,𝑗∈T






𝐴

𝑝𝑖𝑗3






,max
𝑖∈T






𝐴

𝑑,𝑝𝑖1







+ 𝛿
𝑝
max
𝑖,𝑗∈T






𝐴

𝑝𝑖𝑗2






max
𝑖,𝑗∈T






𝐴

𝑑,𝑝𝑖3






,max
𝑖∈T






𝐴

𝑑,𝑝𝑖2







+ 𝛿
𝑝
max
𝑖,𝑗∈T






𝐴

𝑝𝑖𝑗2






max
𝑖,𝑗∈T






𝐴

𝑑,𝑝𝑖4






} .

(42)

Then, for any 0 ≤ 𝑡 ≤ 𝑑,





𝜓
1
(𝑡)




≤ (2𝑘

1
𝑑 + 1)





𝜑



𝑑
+ 𝑘

1
∫

𝑡

0





𝜓
1
(𝑠)




d𝑠. (43)

Applying the Gronwall-Bellman lemma, it can be obtained,
for any 0 ≤ 𝑡 ≤ 𝑑, that





𝜓
1
(𝑡)




≤ (2𝑘

1
𝑑 + 1)





𝜑



𝑑
𝑒
𝑘
1
𝑑

. (44)

Thus,

sup
0≤𝑠≤𝑑





𝜓
1
(𝑠)





2

≤ (2𝑘
1
𝑑 + 1)

2 



𝜑





2

𝑑
𝑒
2𝑘
1
𝑑

. (45)

It can be seen from (40) that

sup
0≤𝑠≤𝑑





𝜓
2
(𝑠)





2

≤ 𝑘
2

2
[(2𝑘

1
𝑑 + 1) 𝑒

𝑘
1
𝑑

+ 2]

2




𝜑





2

𝑑
, (46)

where 𝑘
2
= max

𝑝∈S{𝛿𝑝max
𝑖,𝑗∈T‖𝐴𝑝𝑖𝑗3

‖, 𝛿
𝑝
max

𝑖∈T‖𝐴𝑑,𝑝𝑖3
‖,

𝛿
𝑝
max

𝑖∈T‖𝐴𝑑,𝑝𝑖4
‖}. Hence,

sup
0≤𝑠≤𝑑





𝜓 (𝑠)






2

≤ sup
0≤𝑠≤𝑑





𝜓
1
(𝑠)





2

+ sup
0≤𝑠≤𝑑





𝜓
2
(𝑠)





2

≤ 𝑘
3





𝜑





2

𝑑
,

(47)

where 𝑘
3
= (2𝑘

1
𝑑+1)

2

𝑒
2𝑘
1
𝑑

+𝑘
2

2
[(2𝑘

1
𝑑+1)𝑒

𝑘
1
𝑑

+2]
2.Therefore,

sup
0≤𝑠≤𝑑

‖𝑥 (𝑠)‖
2

≤ 𝑘
3
‖𝐻‖

2





𝐻

−1






2 



𝜙





2

𝑑
. (48)

Note that

∫

0

−𝑑

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠 d𝜃 ≤ 𝑑∫
𝑡

𝑡−𝑑

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠,

∫

0

−𝑑

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝐸
𝑇

𝑍𝐸�̇� (𝑠) d𝑠 d𝜃

≤ 𝑑∫

𝑡

𝑡−𝑘𝑑

�̇�
𝑇

(𝑠) 𝐸
𝑇

𝑍𝐸�̇� (𝑠) d𝑠.

(49)

Then, from (48) and (28), it can be obtained that there exists
a scalar 𝜌 such that

𝑉 (𝑥
𝑑
, 𝑟

𝑑
, 𝑑) ≤ 𝜌





𝜙





2

𝑑
. (50)

This together with (36) and (48) implies that there exists a
scalar ] such that

E{∫
𝑡

0

‖𝑥 (𝑠)‖
2 d𝑠} = E{∫

𝑑

0

‖𝑥 (𝑠)‖
2 d𝑠}

+E{∫
𝑡

𝑑

‖𝑥 (𝑠)‖
2 d𝑠}

≤ ]E {

𝜙





2

𝑑
} .

(51)

Considering this andDefinition 1, system (11) is stochastically
stable for any constant delay 𝑑 satisfying 𝑑 ∈ [0, 𝑑].Therefore,
system (11) is stochastically admissible. This completes the
proof.

In the following, a set of sufficient conditions will be
developed under which the considered system is guaranteed
to be stochastically admissible with an𝐻

∞
performance.

Definition 9. System (11) is said to be stochastically admissible
with an 𝐻

∞
performance 𝛾, if it is stochastically admissible

when 𝑤(𝑡) = 0, and under zero initial condition, for nonzero
𝑤(𝑡) ∈ 𝐿

V
2
[0,∞),

E{∫
∞

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) d𝑡} ≤ 𝛾2 ∫
∞

0

𝑤
𝑇

(𝑡) 𝑤 (𝑡) d𝑡. (52)

The following result can be presented.
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Theorem 10. For a prescribed scalar 𝑑 > 0, there exists a
state feedback controller (10) with 𝑢

𝑝
(𝑡) = ∑

𝑘

𝑖=1
𝜆
𝑖
𝐿
𝑝𝑖
𝑌
−1

𝑝
𝑥(𝑡)

such that system (11) is stochastically admissible with an 𝐻
∞

performance 𝛾 for any constant time delay 𝑑 satisfying 𝑑 ∈

[0, 𝑑], if there exist matrices 𝑃
𝑝
> 0, 𝑄

𝑝
> 0, 𝑄 > 0, 𝑍 > 0,

𝐿
𝑝𝑖
, 𝑆

𝑝
, 𝑌

𝑝2
, and 𝑌

𝑝3
, 𝑖 ∈ T, 𝑝 ∈ S, such that ?? and

[

Ξ
𝑝𝑖1

∗

Ξ
𝑝𝑖2

Ξ
𝑝3

] < 0, (53)

where

Ξ
𝑝𝑖1
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
1𝑝𝑖

∗ ∗ ∗ ∗ ∗

𝐿
𝑝𝑖
+ 𝑌

𝑇

𝑝3
𝐵
𝑇

𝑝𝑖
+ 𝑌

𝑝2
−𝑌

𝑇

𝑝3
− 𝑌

𝑝3
∗ ∗ ∗ ∗

(

𝑌
𝑇

𝑝
𝐴
𝑇

𝑑,𝑝𝑖
+ 𝐸𝑌

𝑝

+𝑌
𝑇

𝑝
𝐸
𝑇

− 𝑍

) 0 (

−𝑌
𝑇

𝑝
− 𝑌

𝑝
+ 𝑄

𝑝

−𝑌
𝑇

𝑝
𝐸
𝑇

− 𝐸𝑌
𝑝
+ 𝑍

) ∗ ∗ ∗

𝑑𝐴
𝑝𝑖
𝑌
𝑝
− 𝑑𝐵

𝑝𝑖
𝑌
𝑝2

𝑑𝐵
𝑝𝑖
𝑌
𝑝3

𝑑𝐴
𝑑,𝑝𝑖
𝑌
𝑝

−𝑍 ∗ ∗

𝐵
𝑇

𝑤,𝑝𝑖
0 0 0 −𝛾

2

𝐼 ∗

𝐶
𝑝𝑖
𝑌
𝑝
− 𝐷

𝑝𝑖
𝑌
𝑝2

𝐷
𝑝𝑖
𝑌
𝑝3

𝐶
𝑑,𝑝𝑖
𝑌
𝑝

0 𝐶
𝑤,𝑝𝑖

−𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Ξ
𝑝2
=

[

[

[

[

𝑌
𝑝

0 0 0 0 0

𝑑𝑌
𝑝

0 0 0 0 0

[𝐼
𝑟
0]𝐻

−1

𝑀
𝑇

𝑝
0 0 0 0 0

]

]

]

]

,

Ξ
𝑝3
= diag {−𝑄

𝑝
, −𝑑𝑄, −𝐽

𝑝
} ,

(54)

and the other notations are the same as in Theorem 8.

Proof. FromTheorem 8 when𝑤(𝑡) = 0 system (11) is stochas-
tically admissible. Let

𝐽
𝑧𝑤
(𝑡) = E{∫

𝑡

0

[𝑧
𝑇

(𝑠) 𝑧 (𝑠) − 𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)] d𝑠} . (55)

Under zero initial condition, it is easy to see that

𝐽
𝑧𝑤
(𝑡) ≤ E{∫

𝑡

0

[𝑧
𝑇

(𝑠) 𝑧 (𝑠) − 𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)

+L𝑉 (𝑥
𝑠
, 𝑝, 𝑠)] d𝑠}

≤ E{∫
𝑡

0

𝑘

∑

𝑖=1

𝜆
𝑖
[𝜍

𝑇

(𝑠) (Ω
𝑝𝑖
+ Θ

𝑇

𝑝𝑖
Θ

𝑝𝑖
) 𝜍 (𝑠)] d𝑠} ,

(56)

where

𝜍
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑑) 𝑤
𝑇

(𝑡)] ,

Ω
𝑝𝑖
=

[

[

[

[

Υ
1𝑝𝑖

∗ ∗

Υ
2𝑝𝑖

Υ
3𝑝𝑖

∗

[𝐵
𝑇

𝑤,𝑝𝑖
0]𝑋

𝑝
0 −𝛾

2

𝐼

]

]

]

]

,

Θ
𝑝𝑖
= [𝐶

𝑝𝑖
𝐶
𝑑,𝑝𝑖

𝐶
𝑤,𝑝𝑖
] ,

(57)

and notations of Υ
1𝑝𝑖

, Υ
2𝑝𝑖

, and Υ
3𝑝𝑖

are the same as in
Theorem 8. Hence, by Schur complement lemma and using

the similar method in the proof of Theorem 8, from ?? and
(53), it can be obtained that 𝐽

𝑧𝑤
(𝑡) < 0 for all 𝑡 > 0.

Therefore, for any nonzero 𝑤(𝑡) ∈ 𝐿
V
2
[0,∞), (52) holds.

Hence, according to Definition 9, the system is stochastically
admissible with an 𝐻

∞
performance 𝛾. This completes the

proof.

Remark 11. Compared with methods in [21, 22], because of
the method of the augmented matrix adopted in Theorems
8 and 10, the number of LMIs needed to solve is relatively
small in this paper. When the value of 𝑘 is relatively large,
the quality of the computation is greatly reduced. some new
relaxation matrices added will reduce the conservatism of
control conditions compared with previous literatures, which
can be seen from Example 2.

4. The Design of the Static Output
Feedback Controller

When 𝑟
𝑡
= 𝑝 ∈ S, consider the overall SMJFS as follows:

𝐸�̇� (𝑡) =

𝑘

∑

𝑖=1

𝜆
𝑖
(𝐴

𝑝𝑖
𝑥 (𝑡) + 𝐴

𝑑,𝑝𝑖
𝑥 (𝑡 − 𝑑) + 𝐵

𝑝𝑖
𝑢 (𝑡)

+ 𝐵
𝑤,𝑝𝑖
𝑤 (𝑡)) ,

𝑦 (𝑡) =

𝑘

∑

𝑖=1

𝜆
𝑖
𝐶
𝑦,𝑝𝑖
𝑥 (𝑡) ,



Mathematical Problems in Engineering 9

𝑧 (𝑡) =

𝑘

∑

𝑖=1

𝜆
𝑖
(𝐶

𝑝𝑖
𝑥 (𝑡) + 𝐶

𝑑,𝑝𝑖
𝑥 (𝑡 − 𝑑) + 𝐷

𝑝𝑖
𝑢 (𝑡)

+ 𝐶
𝑤,𝑝𝑖
𝑤 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) ,

∀𝑡 ∈ [−𝑑, 0] , 𝑖 ∈ T ≜ {1, 2, . . . , 𝑘} ,

(58)

where 𝑦(𝑡) ∈ R𝑝
1 is the system output, 𝐶

𝑑,𝑝𝑖
(𝑖 ∈ S) are

known constant matrices with appropriate dimensions, and
the other notations are the same as in (3).

The following static output feedback controller will be
considered here:

𝑢
𝑝
(𝑡) =

𝑘

∑

𝑖=1

𝜆
𝑖
𝐾

𝑝𝑖
𝑦 (𝑡) , (59)

where𝐾
𝑝𝑖
(𝑝 ∈ S, 𝑖 ∈ T) are local controller gains, such that

the closed-loop system is

𝐸�̇� (𝑡) =

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝑘

∑

𝑠=1

𝜆
𝑖
𝜆
𝑗
𝜆
𝑠
((𝐴

𝑝𝑖
+ 𝐵

𝑝𝑖
𝐾

𝑝𝑗
𝐶
𝑦,𝑝𝑠
) 𝑥 (𝑡) + 𝐴

𝑑,𝑝𝑖
𝑥 (𝑡 − 𝑑) + 𝐵

𝑤,𝑝𝑖
𝑤 (𝑡)) ,

𝑧 (𝑡) =

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝑘

∑

𝑠=1

𝜆
𝑖
𝜆
𝑗
𝜆
𝑠
((𝐶

𝑝𝑖
+ 𝐷

𝑝𝑖
𝐾

𝑝𝑗
𝐶
𝑦,𝑝𝑠
) 𝑥 (𝑡) + 𝐶

𝑑,𝑝𝑖
𝑥 (𝑡 − 𝑑) + 𝐶

𝑤,𝑝𝑖
𝑤 (𝑡)) .

(60)

It is difficult to drive LMI-based conditions of the stochas-
tic stabilization by employing the static output feedback
control approach due to the appearance of crossing terms
between system matrices and control gains. And system (60)
can be rewritten in the following form:

𝐸𝑥 (𝑡) =

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
(Λ

𝑝,𝑖𝑗
𝑥 (𝑡) + 𝐵

𝑤,𝑝𝑖
𝑤 (𝑡)) ,

𝑧 (𝑡) =

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
(𝐶

𝑝,𝑖𝑗
𝑥 (𝑡) + 𝐶

𝑤,𝑝𝑖
𝑤 (𝑡)) ,

(61)

where

𝐸 = [

𝐸 0

0 0

] ∈ R
(𝑛+𝑝
1
)×(𝑛+𝑝

1
)

,

𝐶
𝑝,𝑖𝑗
= [𝐶

𝑝𝑖
𝐷

𝑝𝑖
𝐾

𝑝𝑗
] ,

𝐴
𝑑,𝑝𝑖

= [

𝐴
𝑑,𝑝𝑖

0

0 0

] ∈ R
(𝑛+𝑝
1
)×(𝑛+𝑝

1
)

,

𝑥 (𝑡) = [

𝑥 (𝑡)

𝑦 (𝑡)

] ,

𝐵
𝑤,𝑝𝑖

= [

𝐵
𝑤,𝑝𝑖

0

] ∈ R
(𝑛+𝑝
1
)×V
,

Λ
𝑝,𝑖𝑗
= [

𝐴
𝑝𝑖

𝐵
𝑝𝑖
𝐾

𝑝𝑗

𝐶
𝑦,𝑝𝑖

−𝐼

] .

(62)

Remark 12. For systems (60) and (61), it can be seen that

det(𝑠𝐸 −
𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝑘

∑

𝑠=1

𝜆
𝑖
𝜆
𝑗
𝜆
𝑠
(𝐴

𝑝𝑖
+ 𝐵

𝑝𝑖
𝐾

𝑝𝑗
𝐶
𝑦,𝑝𝑠
))

= det(𝑠𝐸 −
𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
Λ

𝑝,𝑖𝑗
) ,

det(𝑠𝐸

−

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝑘

∑

𝑠=1

𝜆
𝑖
𝜆
𝑗
𝜆
𝑠
(𝐴

𝑝𝑖
+ 𝐵

𝑝𝑖
𝐾

𝑝𝑗
𝐶
𝑦,𝑝𝑠

+ 𝐴
𝑑,𝑝𝑖
))

= det(𝑠𝐸 −
𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
(Λ

𝑝,𝑖𝑗
+ 𝐴

𝑑,𝑝𝑖
)) .

(63)

As the discussion in Remark 7, the stochastic admissibility of
system (60) can be studied by means of system (61).

Theorem 13. There exists an output feedback controller (59)
with controller gains 𝐾

𝑝𝑖
= 𝐿

𝑝𝑖
𝑌
−1

𝑝2
(𝑝 ∈ S, 𝑖 ∈ T) such that

system (60) with 𝑤(𝑡) = 0 is stochastically admissible, if there
exist matrices 𝑃

𝑝
> 0, 𝑄

𝑝
> 0, 𝑄 > 0, 𝑍 > 0, 𝐿

𝑝𝑖
, 𝑆

𝑝
, and 𝑌

𝑝2
,

𝑝 ∈ S, 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑘, such that ?? and

Θ
𝑝,𝑖𝑖
< 0,

1

𝑘 − 1

Θ
𝑝,𝑖𝑖
+

1

2

(Θ
𝑝,𝑖𝑗
+ Θ

𝑝,𝑗𝑖
) < 0,

(64)

where
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Θ
𝑝,𝑖𝑗
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ̂
𝑝,𝑖𝑗

∗ ∗ ∗ ∗ ∗ ∗

𝐿
𝑇

𝑝𝑗
𝐵
𝑇

𝑝𝑖
+ 𝐶

𝑦,𝑝𝑖
𝑌
𝑝

−𝑌
𝑇

𝑝2
− 𝑌

𝑝2
∗ ∗ ∗ ∗ ∗

(

𝑌
𝑇

𝑝
𝐴
𝑇

𝑑,𝑝𝑖
+ 𝐸𝑌

𝑝

𝑌
𝑇

𝑝
𝐸
𝑇

− 𝑍

) 0 Σ
𝑝

∗ ∗ ∗ ∗

𝑑𝐴
𝑝𝑖
𝑌
𝑝

𝑑𝐵
𝑝𝑖
𝐿
𝑝𝑗

𝑑𝐴
𝑑,𝑝𝑖
𝑌
𝑝
−𝑍 ∗ ∗ ∗

𝑌
𝑝

0 0 0 −𝑄
𝑝

∗ ∗

𝑑𝑌
𝑝

0 0 0 0 −𝑑𝑄 ∗

[𝐼
𝑟
0]𝐻

−1

𝑀
𝑇

𝑝
0 0 0 0 0 −𝐽

𝑝

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (65)

Γ̂
𝑝,𝑖𝑗

= 𝜋
𝑝𝑝
𝑌
𝑇

𝑝
𝐸
𝑇

+ 𝐴
𝑝𝑖
𝑌
𝑝
+ 𝑌

𝑇

𝑝
𝐴
𝑇

𝑝𝑖
− 𝑌

𝑇

𝑝
𝐸
𝑇

− 𝐸𝑌
𝑝
+ 𝑍,

Σ
𝑝
= −𝑌

𝑇

𝑝
− 𝑌

𝑝
+ 𝑄

𝑝
− 𝑌

𝑇

𝑝
𝐸
𝑇

− 𝐸𝑌
𝑝
+ 𝑍, 𝐿

𝑝𝑖
= 𝐾

𝑝𝑖
𝑌
𝑝2
,

𝑌
𝑝
= (𝐸𝑃

𝑝
+ 𝑆

𝑝
𝑅

𝑇

)
𝑇, 𝑅 ∈ R𝑛×(𝑛−𝑟) is any matrix with

full column rank and satisfies 𝐸𝑅 = 0, 𝐺,𝐻 are nonsingular
matrices that make 𝐺𝐸𝐻 = [

𝐼
𝑟
0

0 0
], and the other notations are

the same as in Theorem 8.

Proof. Let �̃�
𝑝
= [

𝑌
𝑝

0

0 𝑌
𝑝2

]. Using Lemma 6, the proof process
is similar to Theorem 8.

Theorem 14. For a prescribed scalar 𝑑 > 0, there exists an
output feedback controller (59) with controller gains 𝐾

𝑝𝑖
=

𝐿
𝑝𝑖
𝑌
−1

𝑝2
(𝑝 ∈ S, 𝑖 ∈ T) such that system (60) is stochastically

admissible with an 𝐻
∞

performance 𝛾 for any constant time
delay 𝑑 satisfying 𝑑 ∈ [0, 𝑑], if there exist matrices 𝑃

𝑝
> 0,

𝑄
𝑝
> 0, 𝑄 > 0, 𝑍 > 0, 𝐿

𝑝𝑖
, 𝑆

𝑝
, and 𝑌

𝑝2
, 𝑝 ∈ S, 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑘,

such that ?? and

Δ
𝑝,𝑖𝑖
< 0,

1

𝑘 − 1

Δ
𝑝,𝑖𝑖
+

1

2

(Δ
𝑝,𝑖𝑗
+ Δ

𝑝,𝑗𝑖
) < 0,

(66)

where

Δ
𝑝,𝑖𝑗
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ̂
𝑝,𝑖𝑗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

𝐿
𝑇

𝑝
𝐵
𝑇

𝑝𝑖
+ 𝐶

𝑦,𝑝𝑖
𝑌
𝑝

−𝑌
𝑇

𝑝2
− 𝑌

𝑝2
∗ ∗ ∗ ∗ ∗ ∗ ∗

(

𝑌
𝑇

𝑝
𝐴
𝑇

𝑑,𝑝𝑖
+ 𝐸𝑌

𝑝

+𝑌
𝑇

𝑝
𝐸
𝑇

− 𝑍

) 0 Σ
𝑝

∗ ∗ ∗ ∗ ∗ ∗

𝑑𝐴
𝑝𝑖
𝑌
𝑝

𝑑𝐵
𝑝𝑖
𝐿
𝑝𝑗

𝑑𝐴
𝑑,𝑝𝑖
𝑌
𝑝
−𝑍 ∗ ∗ ∗ ∗ ∗

𝐵
𝑇

𝑤,𝑝𝑖
0 0 0 −𝛾

2

𝐼 ∗ ∗ ∗ ∗

𝐶
𝑝𝑖
𝑌
𝑝

𝐷
𝑝𝑖
𝐿
𝑝𝑗

𝐶
𝑑,𝑝𝑖
𝑌
𝑝

0 𝐶
𝑤,𝑝𝑖

−𝐼 ∗ ∗ ∗

𝑌
𝑝

0 0 0 0 0 −𝑄
𝑝

∗ ∗

𝑑𝑌
𝑝

0 0 0 0 0 0 −𝑑𝑄 ∗

[𝐼
𝑟
0]𝐻

−1

𝑀
𝑇

𝑝
0 0 0 0 0 0 0 −𝐽

𝑝

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (67)

and the other notations are the same as in Theorem 13.

Remark 15. Compared with the method in [31, 32], because
of the augmented matrix adopted in Theorems 13 and 14, the
number of LMIs needed to solve is greatly decreased. When
the value of 𝑘 is relatively large, the computational complexity
will be reduced. On the other hand, by the augmentedmatrix,
there are not any crossing terms between system matrices
and controller gains, so assumptions for the output matrix

[23], the equality constraint for the output matrix [24], and
the bounding technique for crossing terms are not necessary
here; therefore, the conservatism brought by them will not
happen.

5. Numerical Examples

Two examples will be given to illustrate the validity of
developed methods.
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Example 1. To illustrate the 𝐻
∞

controller synthesis, the
following nonlinear time delay system is considered:

(1 + 𝑎 cos 𝜃 (𝑡)) ̈𝜃 (𝑡) = −𝑏 ̇𝜃3 (𝑡) + 𝑐𝜃 (𝑡) + 𝑐
𝑑
(𝑡 − 𝑑)

+ 𝛿 (𝑟
𝑡
) 𝑒𝑢 (𝑡) + 𝑓𝑤 (𝑡) .

(68)

The range of ̇
𝜃(𝑡) is assumed to satisfy | ̇𝜃(𝑡)| < 𝜓, 𝜓 = 2,

𝑎 = 𝑏 = 𝑒 = 𝑓 = 1, 𝑐 = −1, 𝑐
𝑑
= 0.8, 𝑑 ∈ [0, 𝑑], 𝑑 = 0.3,

and 𝑢(𝑡) is the control input. 𝑤(𝑡) = cos(0.5𝑡)𝑒−0.01𝑡 is the
disturbance input. 𝑟

𝑡
is a Markovian process taking values in

a finite set {1, 2, 3}, 𝛿(1) = 1, 𝛿(2) = 0.8, 𝛿(3) = 0.5, and the
output vector 𝑧(𝑡) = 𝜃(𝑡).

Choose the vector 𝑥(𝑡) = [𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)]

𝑇 with
𝑥
1
(𝑡) = 𝜃(𝑡), 𝑥

2
(𝑡) =

̇
𝜃(𝑡), and 𝑥

3
(𝑡) =

̈
𝜃(𝑡). Then, the system

is described by

[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

�̇� (𝑡)

=

[

[

[

[

0 1 0

0 0 1

𝑐 −𝑏𝑥
2

2
(𝑡) −1 − 𝑎 cos𝑥

1
(𝑡)

]

]

]

]

𝑥 (𝑡)

+
[

[

[

0 0 0

0 0 0

𝑐
𝑑
0 0

]

]

]

𝑥 (𝑡 − 𝑑) +
[

[

[

0

0

𝛿 (𝑟
𝑡
) 𝑒

]

]

]

𝑢 (𝑡)

+
[

[

[

0

0

𝑓

]

]

]

𝑤 (𝑡) .

(69)

It can be expressed exactly by the following fuzzy singular
Markovian jump form:

𝐸�̇� (𝑡) =

3

∑

𝑖=1

𝜆
𝑖
(𝐴

𝑝𝑖
𝑥 (𝑡) + 𝐴

𝑑,𝑝𝑖
𝑥 (𝑡 − 𝑑) + 𝐵

𝑝𝑖
𝑢 (𝑡)

+ 𝐵
𝑤,𝑝𝑖
𝑤 (𝑡)) ,

𝑧 (𝑡) =

3

∑

𝑖=1

𝜆
𝑖
𝐶
𝑝𝑖
𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) ,

𝑡 ∈ [−𝑑, 0] , 𝑝 ∈ {1, 2, 3} ,

(70)

where

𝐸 =
[

[

[

1 0 0

0 1 0

0 0 0

]

]

]

,

𝐴
𝑝1
=

[

[

[

[

0 1 0

0 0 1

𝑐 −𝑏 (𝜓
2

+ 2) 𝑎 − 1

]

]

]

]

,

𝐴
𝑝2
=

[

[

[

[

0 1 0

0 0 1

𝑐 0 −𝑎 − 1 − 𝑎𝜓
2

]

]

]

]

,

𝐴
𝑝3
=
[

[

[

0 1 0

0 0 1

𝑐 0 𝑎 − 1

]

]

]

,

𝐴
𝑑,𝑝1

= 𝐴
𝑑,𝑝2

= 𝐴
𝑑,𝑝3

=
[

[

[

0 0 0

0 0 0

𝑐
𝑑
0 0

]

]

]

,

𝐵
11
= 𝐵

12
= 𝐵

13
=
[

[

[

0

0

𝑒

]

]

]

,

𝐵
21
= 𝐵

22
= 𝐵

23
=
[

[

[

0

0

0.8𝑒

]

]

]

,

𝐵
31
= 𝐵

32
= 𝐵

33
=
[

[

[

0

0

0.5𝑒

]

]

]

,

𝐵
𝑤,𝑝1

= 𝐵
𝑤,𝑝2

= 𝐵
𝑤,𝑝3

=
[

[

[

0

0

𝑓

]

]

]

,

𝐶
𝑝1
= 𝐶

𝑝2
= 𝐶

𝑝3
= [1 0 0] ,

𝜆
1
=

𝑥
2

2
(𝑡)

𝜓
2
+ 2

,

𝜆
2
=

1 + cos𝑥
1
(𝑡)

𝜓
2
+ 2

,

𝜆
3
=

𝜓
2

− 𝑥
2

2
(𝑡) + 1 − cos𝑥

1
(𝑡)

𝜓
2
+ 2

.

(71)

It is seen that 0 ≤ 𝜆
𝑖
≤ 1,∑3

𝑖=1
𝜆
𝑖
= 1. Let Π = [ −0.2 0.2 0

0.1 −0.3 0.2

0.2 0.3 −0.5

],
𝛾 = 1; by solving ?? and (53) in Theorem 10, controller gains
are given by

𝐾
11
= [−14.2939 −14.0620 −3.6426] ,

𝐾
12
= [−14.2911 −14.4082 −3.2860] ,
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Figure 1: State responses of the open-loop system.

𝐾
13
= [−14.2988 −14.4111 −3.6425] ,

𝐾
21
= [−17.9535 −17.7012 −4.4471] ,

𝐾
22
= [−17.9509 −17.9806 −4.1585] ,

𝐾
23
= [−17.9578 −17.9828 −4.4470] ,

𝐾
31
= [−28.6360 −28.3641 −6.9941] ,

𝐾
32
= [−28.6344 −28.5420 −6.8118] ,

𝐾
33
= [−28.6377 −28.5436 −6.9941] .

(72)

To demonstrate the effectiveness, assuming the initial
condition 𝜙(𝑡) = [−1.2 0.8 −0.5]

𝑇, Figures 1 and 2 show
state responses of the open-loop system and the closed-loop
system controlled by (10), respectively. From Figure 1, it can
be seen that the open-loop system is not stochastically admis-
sible, and Figure 2 shows that when the controller obtained
by Theorem 10 is exerted to this system it is stochastically
admissible.

Example 2. Consider the example without uncertainties in
[6].

Mode 1: 𝐴
1
= [

1.5 1.4

−3.5 −4.5
], 𝐴

𝑑1
= [

0.2 𝑎

−0.24 −0.4
], 𝐵

1
= [

1

1
],

𝐵
𝑤1
= [

1.5

1.4
], 𝐶

1
= [0.5 1], 𝐶

𝑑1
= [−0.2 0.2], 𝐷

1
= 0.2, and

𝐶
𝑤1
= 0.2.
Mode 2: 𝐴

2
= [

1.7 1.5

−1.3 −2.5
], 𝐴

𝑑2
= [

𝑏 1.1

−0.21 −0.3
], 𝐵

2
= [

0.9

0.9
],

𝐵
𝑤2
= [

1.4

1.5
], 𝐶

2
= [0.4 0.3], 𝐶

𝑑2
= [−0.1 0.2],𝐷

2
= 0.3, and

𝐶
𝑤2
= 0.3.
Π = [

−1 1

1 −1
], 𝐸 = [

1 0

0 0
], 𝑑 = 0.3, 𝛾 = 2.6, and in [6]

𝑎 = −0.5, 𝑏 = 2.1, but in this paper −2.4 ≤ 𝑎 ≤ 2, −2 ≤ 𝑏 ≤ 4.8
are taken.

In Figure 3, “o” represents the range of the feasible
solutions using Theorem 10 in this paper, and “∗” represents
the range of the feasible solutions using Theorem 3 in [6].
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Figure 2: State responses of the closed-loop system.
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Figure 3: Comparison of the feasible regions.

This illustrates that themethod obtained in this paper has less
conservatism.

6. Conclusions

In this paper, the problem of mode-dependent 𝐻
∞

control
for singular Markovian jump fuzzy systems with time delay
is considered. This class of systems under consideration
is described by T-S fuzzy models. The main contribution
of this paper is to design state feedback controllers and
static output feedback controllers which can guarantee that
resulting closed-loop systems are stochastically admissible
with an𝐻

∞
performance 𝛾 by the method of the augmented

matrix. Finally, two examples are given to demonstrate the
effectiveness of main results obtained here.
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