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This paper is concerned with the identification of linear parameter varying (LPV) systems by utilizing a multimodel structure. To
improve the approximation capability of the LPV model, asymmetric Gaussian weighting functions are introduced and compared
with commonly used symmetric Gaussian functions. By this mean, locations of operating points can be selected freely. It has been
demonstrated through simulations with a high purity distillation column that the identified models provide more satisfactory
approximation.Moreover, an experiment is performed on realHVAC (heating, ventilation, and air-conditioning) to further validate
the effectiveness of the proposed approach.

1. Introduction

In nonlinear system identification, numerous black box
modeling structures have been developed in pieces of litera-
ture. Among them, nonlinear AR(MA)X and neural-network
models are often used by researchers, due to their mature
theoretical results. However, the complexity in those struc-
tures and calculation cost limit their applicability especially
in process control applications. Meanwhile, block-oriented
nonlinear models such as Hammerstein models and Wiener
models consisting of linear time invariant (LTI) dynamics
and static (memoryless) nonlinearities have been studied
widely. Although they are comparatively simpler, only the
model nonlinearity in static gains is integrated, which cannot
ensure the accuracy and efficiency of the model, particularly
for nonlinear plants operating over a large number of differ-
ent operating points.

Recently, linear parameter varying (LPV) model iden-
tification has attracted great attention from both academia
and practitioners [1]. Many significant breakthroughs have
taken place in the intervening years to mature the underlying
theory. According to [2], the existing LPV identification

approaches can be categorized in terms of their LPV model
structures. Subspace approaches are studied by Verdult and
Verhaegen [3, 4] andFelici et al. [5]; orthonormal basis related
functions are used by Tóth et al. [6]; transfer function LPV
models are discussed by Bamieh and Giarré [7], Previdi and
Lovera [8], Wei [9], Butcher et al. [10], and Laurain et al. [1].
On the other hand, the practicality of the LPV approaches
has caught the attention of practitioners outside of academia,
and interests in the LPV approach are evidenced by the
applications of such methods to aerospace systems including
high performance aircraft,missiles, and turbofan engines [11].

In studying input-output LPV methods, most available
references are parameter interpolation based, which consider
the parameters of the transfer function as nonlinear func-
tions of the scheduling variable. Because complex nonlinear
functions appear in the denominator of the transfer function,
model stability cannot be guaranteed, which may result
in numerical problems during model identification [12].
Besides, the input excitation signal for this representation
results in too much upset, which can be costly or even
unrealistic in practice [13]. To circumvent these difficulties,
Zhu andXu [12] proposed amultimodel LPVmodel based on
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blended linearmodels.The identificationmethod is relatively
simple and the stability of this kind of LPV models has been
proved in Huang et al. [2].

Proper weighting functions are required to combine all
the local linear models into a global LPV model in the
multimodel LPV structure. Several options are available in
the literature, namely, linear weight function [14], polynomial
function [12], cubic spline function [15], and Gaussian weight
function [13]. However, due to large number of parameters
to be estimated and unconstrained shapes for polynomial
or cubic spline function, they will easily lead to an ill-
conditioned and may not be suitable for identification of
complex nonlinear processes [2]. Meanwhile, the linear
weight function is not accurate enough to capture the full
dynamic behaviors of a nonlinear process. In the realm of
multimodel structures [16] and fuzzy sets [17], Gaussian
weighting functions have been widely adopted, which have
relative small number of parameters and naturally better
functions than linear functions. However, a disadvantage of
Gaussian weighting functions is that the operating points
should have an equal distance with respect to a scheduling
variable, while other functions do not have this restriction,
which brings large inconveniences and limits their capabili-
ties for usage in actual applications.

Therefore, this paper aims at improving the performance
in identifying multimodel LPV models by adopting the
asymmetricGaussianweighing function, such thatmultilocal
models can be smoothly interpolated to approximate the
global dynamical behaviors of the process. This means that
the locations of the operating points can be freely selected.
The parameters of the proposed LPV models are estimated
by using Levenberg-Marquardt method. The LPV model
with two scheduling variables using asymmetric Gaussian
weighing is also discussed. Simulation study is employed
to demonstrate the efficiency of the proposed LPV model
identification scheme. Further, the experiment is conducted
on an HVAC system in our lab. It should be noted that there
are some references available in the literature [18] about the
modeling of the HVAC system. However, the identification
withmultimodel LPV structure is very rare.The experimental
results also show that the asymmetric Gaussian weighing
function can obtain improved results for multi model LPV
identification in real industrial processes.

The rest of the paper is organized as follows. A brief revisit
of the LPV model identification is given in Section 2. The
identification of multimodel LPV approach with asymmetric
Gaussian is developed in Section 3. In Sections 4 and 5,
simulation example and experiment studies are given to
demonstrate the effectiveness of the proposed approach.
Section 6 gives the conclusion.

2. LPV Model Identification

2.1. System Description of LPV Model. Given a multiinput
single-output (MISO) LPV system, denote the 𝑚 inputs as
{𝑢
1
(𝑡), . . . , 𝑢

𝑚
(𝑡)} at time 𝑡 and output as 𝑦(𝑡). Denote𝑤(𝑡) as

the scheduling variable which is a measured process variable
from the process or can be calculated from measurable

process variables. Throughout this paper, it is assumed that
𝑤(𝑡) ∈ [𝑤min 𝑤max], where 𝑤min and 𝑤max are the low and
high limits of𝑤(𝑡).The data generating the input-output LPV
system can be described by the following equation [1]:

𝑦 (𝑡) =

𝑚

∑

𝑖=1

𝐺
𝑖
(𝑞, 𝑤) 𝑢

𝑖
(𝑡) + V (𝑡) , (1)

where

𝐺
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𝑖
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(2)

where 𝐺
𝑖
(𝑞, 𝑤) is a LPV transfer function from the 𝑖th input

to the output. 𝐵
𝑖
(𝑞, 𝑤) and 𝐴

𝑖
(𝑞, 𝑤) are polynomials of 𝑞−1,

which denotes unit delay operator. 𝑑
𝑖
is the delay from the

𝑖th input to the output, V(𝑡) is a stationary stochastic process
with zero mean and bounded variance, and 𝑛 is the order of
the model.

Moreover, polynomial method is a commonly used
parameterization method to represent the LPV model; that
is, the parameters 𝑏𝑖

𝑗
(𝑤) and 𝑎𝑖

𝑗
(𝑤) are replaced by polynomial

functions of 𝑤(𝑡) as follows:
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(3)

where 𝑛
𝛼
and 𝑛
𝛽
are the order of the polynomial functions.

Therefore, (1)–(3) formulate the input-output LPVmodel,
which is called parameter-interpolation input-output LPV
model by Zhao et al. [19].

2.2. Revisit of Multimodel LPVModel Identification. Zhu and
Xu [12] pointed out that the LPV model in (1)–(3) is not easy
to identify due to its complex structure and thus proposed a
simpler LPV model structure, which is in a form of blended
local linear models. The basic principle of the approach is
to first identify several local linear models at fixed operating
points. The global model is then obtained by interpolation
via certain weighting functions, which is called multimodel
LPV model by Huang et al. in [2] or model interpolation
based input-output LPV (MI-IO-LPV) by Zhao et al. in
[19]. This model also falls into the multimodel structure or
operating regimebased model studied by many authors; see,
for example, Johansen and Foss [20] and Boukhris et al. [16].

To identify the multimodel LPV model, local linear
models at each fixed operating point should be determined
first. Assume that 𝑙 operating points are firstly set as

𝑤min ≤ 𝑤
1
< 𝑤
2
< ⋅ ⋅ ⋅ < 𝑤

𝑙
≤ 𝑤max. (4)
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Obviously, the choice of 𝑙 is a tradeoff of computing cost
and model accuracy. Then, the corresponding local linear
models can be represented as

𝑦
𝑘
(𝑡) =

𝑚

∑

𝑖=1

𝐺
𝑘

𝑖
(𝑞) 𝑢
𝑖
(𝑡) , 𝑘 = 1, 2, . . . , 𝑙, (5)

where 𝑦𝑘(𝑡) denotes the output of the linear model at 𝑤(𝑡) =
𝑤
𝑘
. The transfer function 𝐺

𝑘

𝑖
(𝑞), 𝑖 = 1, 2, . . . , 𝑚 of the 𝑘th

local linear model in (5) can be expressed in the following
form:

𝐺
𝑘

𝑖
(𝑞) =
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𝑘

𝑖
(𝑞)
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=
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1
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+ ⋅ ⋅ ⋅ + 𝑏
𝑖,𝑘

𝑛
𝑞
−𝑛
] 𝑞
−𝑑𝑖,𝑘

1 + 𝑎
𝑖,𝑘

1
𝑞
−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑖,𝑘

𝑛
𝑞
−𝑛

. (6)

The parameters to be estimated for each local model can
be written as

̂
𝜃
𝑖

𝑘
= [𝑎
𝑖,𝑘

1
⋅ ⋅ ⋅ 𝑎
𝑖,𝑘

𝑛
𝑏
𝑖,𝑘

1
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𝑖,𝑘

𝑛
𝑑
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]
(𝑛+𝑛+1)×1

. (7)

Parameters to be estimated for all 𝑙 local linearmodels can
be denotes as

Θ
𝐿
= [̂𝜃
1

1
⋅ ⋅ ⋅

̂
𝜃
𝑚

1

̂
𝜃
1

2
⋅ ⋅ ⋅

̂
𝜃
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2
⋅ ⋅ ⋅

̂
𝜃
1

𝑙
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̂
𝜃
𝑚

𝑙
] . (8)

Then, instead of building the complex LPVmodel in form
of (1)–(3), the multimodel global LPV model is adopted to
represent the process along the operating trajectory as

𝑦 (𝑡) =

𝑙

∑

𝑘=1

𝜂
𝑘
(𝑤 (𝑡)) 𝑦

𝑘
(𝑡) + V (𝑡) , (9)

where 𝜂
𝑘
(𝑤(𝑡)), 𝑘 = 1, 2, . . . , 𝑙, are weight functions of

corresponding local linear models which are essentially static
functions of the scheduling variable 𝑤(𝑡). V(𝑡) is the white
noise as defined in (1).

For multiinput multioutput (MIMO) processes, the pro-
cedure can be repeated for each output. As a matter of fact,
this representation is more suitable for modeling processes
which operate on a few fixed operating points with quick
transition between neighboring operating points. Essentially,
with the use of local linear models and model interpolating
philosophy, the identification method is relatively simple
and the stability of this kind of LPV models can be guar-
anteed readily [2]. Therefore, the multimodel LPV model
considerably simplifies the task of the input-output LPV
method identification. Several pieces of literatures [2, 13, 19]
have verified that the multimodel LPV in (5)–(9) can be a
good approximation of the real process along its operating-
trajectory, while the commonly used parameter-interpolation
LPV models in (1)–(3) fail to obtain an acceptable result in a
case study [2]. To combine all the local linear models into a
global multimodel LPV model, proper weighting functions
are required for interpolation, which post a large impact on
the accuracy of the global model.

Several common weighting functions are available in the
literature, for example, linear weight function [14], polyno-
mial function [12], cubic spline function [15], and Gaussian
weight function [13]. By comparison, Gaussian weighting

functions can achieve the best performance in terms of good
input-output fit and accurate step responses [2]. However, a
disadvantage of the Gaussian weighting functions is that the
operating points for local linear models should have identical
distance with respect to a scheduling variable, which involves
large inconvenience in practical usage. To overcome this
drawback, developing the multimodel LPV approach with a
more suitableweighting functionmotivates us to conduct this
research.Hence, this paper can be considered as an important
extension of the work by Huang et al. [2].

Before proceeding, identification test methods for multi-
model LPVmodel utilized herewill be briefly discussed. Tests
are performed at some fixed operating points plus transition
tests, which only cover the trajectory of the process operation.
Through the whole operating range, small test signals should
be added to the inputs or set points to persistently excite the
system.

3. Multimodel LPV Model with
Asymmetric Gaussian Weights

A preferable choice of determining the model weights is
Gaussian function.The representation of Gaussian weighting
functions can be written as

𝜂
𝑘
(𝑤 (𝑡)) =

�̃�
𝑘
(𝑤 (𝑡))

∑
𝑙

𝑗=1
�̃�
𝑗
(𝑤 (𝑡))

, 𝑘 = 1, 2, . . . , 𝑙, (10)

where

�̃�
𝑘
(𝑤 (𝑡)) = exp[−1

2

(

𝑤 (𝑡) − 𝑤
𝑘

𝜎
𝑘

)

2

] (11)

and 𝜎
𝑘
represents the width coefficients of the 𝑘th local linear

model.

3.1. Identification of Multimodel LPV Model with Asymmetric
Gaussian Weights. To overcome the drawback of the Gaus-
sian weights, asymmetric Gaussian functions are introduced
here. The weights can be written as

𝜂
𝑘
(𝑤 (𝑡)) =

𝛼
𝑘
(𝑤 (𝑡))

∑
𝑙

𝑗=1
𝛼
𝑗
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, 𝑘 = 1, 2, . . . , 𝑙, (12)

where

𝛼
𝑘
(𝑤 (𝑡))

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

exp[−1
2

(

𝑤 (𝑡) − 𝑤
𝑘

𝜎
1

𝑘

)

2

] , 𝑤 (𝑡) < 𝑤
𝑘
,

exp[−1
2

(

𝑤 (𝑡) − 𝑤
𝑘

𝜎
2

𝑘

)

2

] , 𝑤 (𝑡) ≥ 𝑤
𝑘
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= exp[−1
2

× (

− sign (𝑤 (𝑡) − 𝑤
𝑘
) + 1

2

)

×(

𝑤 (𝑡) − 𝑤
𝑘

𝜎
1

𝑘

)

2

]

+ exp[−1
2

× (

sign (𝑤 (𝑡) − 𝑤
𝑘
) + 1

2

)

×(

𝑤 (𝑡) − 𝑤
𝑘

𝜎
2

𝑘

)

2

] − 1,

(13)

where 𝜎1
𝑘
and 𝜎

2

𝑘
called left and right variances, respectively,

are the width coefficients of the scheduling variable; sign(⋅) is
the sign function.

The asymmetric Gaussian function in (12) are normalized
is in the range of zero to one which prevents negative
values. Essentially, this maintains the constrained shape and
smooth properties of the Gaussian function. Since asymmet-
ric Gaussian function has different left and right variances,
the operating points for local linearmodels can have different
distances with respect to a scheduling variable. While for
traditional symmetric Gaussian functions, the range in 𝑤(𝑡)

should be divided with equal intervals.

Remark 1. For a given number of operating points and a
given operating range, the selection of the operating points is
based on trial-and-errors. By combing the prior knowledge
of empirical data, if we can locate operate points to the
place where the process exhibits strong nonlinearity and
parameter varying properties, a more accuracy model can be
obtained. In the meantime, even though the model accuracy
can be improved by selecting more operating points, it
inevitably means more local linear models and more test
costs. Moreover, in many industrial processes, the process
cannot run around some “favorable” operating points for test
purpose due to safety and economic consideration.Therefore,
the selection of operation points with unequal distances
provides an effective and convenient way to improve the
accuracy of the LPV model.

Obviously, only two parameters need to be estimated
for each weighting function. The parameter vector to be
estimated for all 𝑙 weighting functions can be defined as

Θ
𝐺
= [𝜎
1

1
𝜎
1

2
⋅ ⋅ ⋅ 𝜎
1

𝑙
𝜎
2

1
𝜎
2

2
⋅ ⋅ ⋅ 𝜎
2

𝑙
] . (14)

Then, all the parameters to be estimated can now be
written in a compact form:

Θ = [Θ𝐺
Θ
𝐿]

𝑇

. (15)

To estimate the Θ in (15), nonlinear optimization algo-
rithm is desired which can minimize the following output
error loss function:

𝑓 (Θ) =

𝑁

∑

𝑡=1

[𝑦 (𝑡) −

𝑙

∑

𝑘=1

𝜂
𝑘
(𝑤 (𝑡)) 𝑦

𝑘
(𝑡)]

2

. (16)

3.2. Parameter Estimation Scheme. Several nonlinear numer-
ical optimization algorithms are available for this pur-
pose, such as Gauss-Newton algorithm, steepest descent
method, expectation-maximization algorithms and Leven-
berg-Marquardt method [2, 21, 22]. In this work, the
Levenberg-Marquardt algorithm is used. The iterative opti-
mization flow is as follows.

Step 1. Initialize Θ as Θ
0

= [Θ
𝐺0

Θ
𝐿0
]
𝑇. Denote the

convergence criterion ‖Θ̂
(𝑝+1)

− Θ̂
(𝑝)
‖

2

≤ 𝜓 and set the
iteration count 𝑝 = 0.

Step 2. Calculate simulated prediction output as

𝑦 (𝑡, Θ̂
(𝑝)
) =

𝑙

∑

𝑘=1

𝜂
𝑘
(𝑤 (𝑡) | Θ̂

(𝑝)
)

𝑚

∑

𝑖=1

𝐵
𝑘

𝑖
(𝑞)

𝐴
𝑘

𝑖
(𝑞)

𝑢
𝑖
(𝑡) . (17)

Step 3. Calculate the gradient matrix of 𝑦(𝑡, Θ̂(𝑝))

𝐽 (𝑡, Θ̂
(𝑝)
)

=

𝜕

𝜕Θ

𝑦 (𝑡, Θ̂
(𝑝)
) =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜕

𝜕𝜎
1

𝑘

𝑦 (𝑡, Θ̂
(𝑝)
)

𝜕

𝜕𝜎
2

𝑘

𝑦 (𝑡, Θ̂
(𝑝)
)

𝜕

𝜕𝑎
𝑖

𝑗

𝑦 (𝑡, Θ̂
(𝑝)
)

𝜕

𝜕𝑏
𝑖

𝑗

𝑦 (𝑡, Θ̂
(𝑝)
)

𝜕

𝜕𝑑
𝑖
𝑦 (𝑡, Θ̂

(𝑝)
)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

](2𝑙+2𝑚𝑛+𝑚)×1

,

(𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . . , 𝑙) ,

(18)

where each one of the entries can be readily obtained by using
basic calculus.

Thereafter, negative gradient vector is represented as

𝑑
(𝑝)

= − [

1

𝑁

𝑁

∑

𝑡=1

[𝐽 (𝑡 | Θ̂
(𝑝)
) ⋅ 𝐽(𝑡 | Θ̂

(𝑝)
)

𝑇

] + 𝜇
(𝑝)
𝐼]

−1

⋅ [−

1

𝑁

𝑁

∑

𝑡=1

[𝐽 (𝑡 | Θ̂
(𝑝)
) ⋅ 𝑒 (𝑡 | Θ̂

(𝑝)
)]] ,

(19)

where 𝑒(𝑡 | Θ̂
(𝑝)
) = 𝑦(𝑡) − 𝑦(𝑡, Θ̂

(𝑝)
), 𝐼 is a unit matrix

with proper dimension, and the scalar 𝜇(𝑝) is the Levenberg-
Marquardt parameter.

Step 4. Calculate 𝛼
(𝑝) in min

𝛼
(𝑝)
>0
𝑓(Θ̂
(𝑝)

+ 𝛼
(𝑝)

× 𝑑
(𝑝)
) and

update the parameters by Θ̂(𝑝+1) = Θ̂
(𝑝)

+𝛼
(𝑝)

×𝑑
(𝑝),𝑝 = 𝑝+1.

Step 5. If ‖Θ̂(𝑝+1) − Θ̂
(𝑝)
‖

2

≤ 𝜓 is satisfied, stop iteration and
Θ̂
(𝑝) is the optimized parameters in (16); otherwise, go to

Step 2.
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It is noticed that in terms of the nonlinear numeri-
cal optimization problems, the initial values have a great
influence on the estimation results. Hence, it is desirable
to have a few appropriate initial guesses in order to secure
the optimality of the algorithm. In order to circumvent the
problem of local minimum, in the proposed method, the
proper initial values of all the parameters Θ

𝐿
in the local

linear models can be obtained by utilizing several linear
identification methods [23] using the process input-output
data collected around each corresponding operating point
firstly. Afterwards, genetic algorithm (GA) is employed in
attempt to search for the appropriate initial guess for the
parameters Θ

𝐺
for each weighting function associated with

relevant local models.
Following the procedure in the literature [24, 25], a pool

of candidates (chromosomes) is randomly selected first and
the fitness of each individual in the population is evaluated
through certain fitness calculation function. Afterwards,
different genetic operators including selection, reproduction,
and mutation are applied to maintain the genetic diver-
sity. The algorithm is implemented iteratively until certain
termination criterion is met. Out of all the procedures
adopted in GA, fitness measurement of the candidates is of
particular importance as it directly influences the solution of
the algorithm. For system parameters estimation, the mean
square errors (MSE) of the predictions of the identifiedmodel
against the real process data are calculated based on the
following equation:

MSE
Θ𝐺

=

∑
𝑁

𝑡=1
(𝑦 (𝑡) − 𝑦 (𝑡))

2

𝑁

,
(20)

where𝑁 in (20) represents the number of data points.

3.3. Extension to Two Scheduling Variables. Up to now, only
one scheduling variable is assumed to explain the idea. If
one scheduling variable may not be enough to describe
the complex nonlinear dynamics of the industrial process,
LPV models with two scheduling variables can be easily
introduced by using the similar way in Huang et al. [2].

Assume that that there are linearmodels at 𝑙
1
×𝑙
2
operating

points:

𝑤
1
(𝑡) : 𝑤

1

min ≤ 𝑤
1

1
< 𝑤
1

2
< ⋅ ⋅ ⋅ < 𝑤

1

𝑙1
≤ 𝑤
1

max;

𝑤
2
(𝑡) : 𝑤

2

min ≤ 𝑤
2

1
< 𝑤
2

2
< ⋅ ⋅ ⋅ < 𝑤

2

𝑙2
≤ 𝑤
2

max.
(21)

Then, the LPV model with two scheduling variables can
be obtained by interpolating the local linearmodels. Consider

𝑦 (𝑡) =

𝑙1

∑

𝑘=1

𝑙2

∑

ℎ=1

[𝜂
𝑘,ℎ

(𝑤
1
(𝑡) , 𝑤

2
(𝑡))

×

𝑚

∑

𝑖=1

𝐺
𝑘,ℎ

𝑖
(𝑞) 𝑢
𝑖
(𝑡) + V (𝑡)] ,

(22)
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Figure 1: Diagram of the distillation column under 𝐿𝑉 configura-
tion.

where V(𝑡) is a Gaussian distributed noise with zeromean and
variance 𝑜

2 and 𝜂
𝑘,ℎ
(𝑤
1
(𝑡), 𝑤
2
(𝑡)) are asymmetric Gaussian

weighting functions, which can be rewritten as
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Note that more operating point tests and transition tests
may be needed for multimodel LPV with two scheduling
variables.

4. Simulation Example

As one of the most important unit operations in the chemical
industry, high purity distillation has been widely investigated
and accepted as a highly challenging process for nonlinear
identification and control [26, 27]. When the column is
operated over a relatively wide operation region, it shows
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Figure 2: Input excitation data.
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Figure 3: Outputs of the simulated and of the LPV model with Gaussian weights.

a significant nonlinear behavior. In this section, the per-
formance of the multimodel LPV models with asymmetric
Gaussian is verified by identifying the high purity distillation
column. The test data are generated by simulating a rigorous
physical model of the distillation column, which is operated
in the 𝐿𝑉-configuration [28]. The inputs or manipulated
variables (MVs) are reflux (𝐿𝑇) and boil-up rate (𝑉𝐵); the
outputs or controlled variables (CVs) are the top product
composition (𝑦𝐷) and bottom product composition (𝑥𝐵).
A schematic representation of the high purity distillation
column is shown in Figure 1.

Because the top product composition (𝑦𝐷) is the most
important quality index of the process and has the significant
influence over the process dynamics, it is chosen as the
scheduling variable, which reflects the operating condition of
the process. The choice of the numbers of operating points is
a tradeoff of computing cost and model accuracy. Without
loss of generality, 3 typical operating points with unequal
distances are selected as

𝑦𝐷 : 𝑤 (𝑡) = 0.95, 𝑤 (𝑡) = 0.976, 𝑤 (𝑡) = 0.99.

(24)

Thereafter, to identify the global LPV model throughout
the whole operating trajectory, more identification tests are
preformed along the scheduling variable 𝑦𝐷 with length of
39,000min. The sampling time is 1min. The test signal is
chosen as a generalized binary noise (GBN) signal with aver-
age switch time of 100min. A filtered white noise sequence
with 1% of variance is added into the output 𝑦𝐷 and 𝑥𝐵

to represent measurement noises. Second order output error
local linear model is identified at each fixed operating point.
Then, the global LPVmodel with two inputs and two outputs

Table 1: Model output error comparison.

Models 𝑦𝐷 𝑥𝐵

Linear model 0.5668% 22.5239%
LPV model Gaussian weights 0.2395% 3.2305%
LPV model Asymmetric Gaussian weights 0.1811% 1.0421%

is achieved by utilizing all the training data. To validate the
identified model, additional data are generated throughout
the operating trajectory that is different from the one for the
training data generation. In other words, the feasibility of the
identified LPV model is verified by data attained from the
process operating on different operating trajectory.

Figure 2 shows the input excitation dataset of the valida-
tion test. As can be seen from Figures 3 and 4, the identifi-
cation results for the multimodel LPV model using Gaussian
weights and asymmetric Gaussianweights are comparedwith
the measured outputs. It has to be noted that when using
Gaussianweights the operating points𝑤(𝑡) should be set with
equal intervals.Therefore, the three operating points for LPV
model with Gaussian weights are predetermined as 0.95, 0.97,
and 0.99.

Table 1 compares the output errors of linear models
and LPV models using Gaussian weights and asymmetric
Gaussian weights. The output errors are defined as

Error% = [(

var (𝑦 (𝑡) − 𝑦 (𝑡))

var (𝑦 (𝑡))

)] × 100, (25)

where 𝑦(𝑡) is the output of real process and 𝑦(𝑡) is the
predicted output of the LPV model.



Journal of Applied Mathematics 7

0 0.5 1 1.5 2 2.5 3 3.5 4
0.94

0.96

0.98

1

Sample

Real process

y
D

×10
4

LPV model using asymmetric Gaussian weight

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
3
5
7
9

11
12

Sample

Real process
LPV model using asymmetric Gaussian weight

x
B

×10
4

×10
−3

(b)

Figure 4: Outputs of the simulated and of the LPV model with asymmetric Gaussian weights.
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Figure 5: Step responds at 𝑦𝐷 = 0.98.

As pointed out in Huang et al. [2], the simulation output
error alonemay not be sufficient to assure goodmodel quality
for the whole range and can even be misleading in nonlinear
system identification.Thence, one good supplemental way to
verify model quality is to check its step responses, which is
often utilized in industrial applications. Step responds of the

models and the actual process at other two operating points:
0.98 and 0.986 are shown in Figures 5 and 6, respectively.

One can see that the proposed multimodel LPV with
asymmetric Gaussian weights can provide more satisfactory
approximation to the dynamics of the distillation column
operating on a large number of different operating points.
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Figure 7: (a) Photograph of the HVAC system. (b) Diagram of the HVAC system.

5. Experimental Study

To further illustrate the effectiveness of the proposed
approach, nonlinear process identification experiment is
designed and conducted on an HVAC (heating, ventilation,

and air-conditioning) system in our lab. A photograph of the
system with R22 as the refrigerant and a simplified schematic
diagram are displayed in Figures 7(a) and 7(b), respectively.
The system contains two cycles: a refrigeration cycle and a
chilled water cycle. The cooling capacity of the system is
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Figure 9: Validation input data and variation of HVAC process scheduling variable.

3.06 kW with compressor power input of 1.04 kW. A Danfoss
plate heat exchanger with 3.06 kW heat exchanging rate is
selected as the evaporator. Chilled water driven by a pump
is circling in the cycle with a maximum flow rate of 0.7 kg/s.

Heat transfer occurs in the evaporator between the mov-
ing chilled water and refrigerant. As a result, the chilled water
is cooled in the evaporator, as shown in Figure 7. Obviously,
given a fixed flow rate of chilled water, the temperature of it
𝑇
𝑐
is mainly influenced by the frequency of the compressor

𝐹comp. Under different frequencies of chilled water pump
𝐹water (different flow rates of chilled water), the transfer
function from the frequency of compressor 𝐹comp to the
temperature of chilled water 𝑇

𝑐
varies.

Owing to significant effect of the frequency of chilled
water pump 𝐹water on process dynamics, it is chosen as
the scheduling variable, which is from 15Hz to 30Hz. The
frequency of the compressor 𝐹comp is the input variable
and the temperature of the chilled water 𝑇

𝑐
is the output

variable. By varying the frequency of chilled water pump at
different operating points, the process can be represented
using multimodel LPV model structure.

Consider three operating points at 15Hz, 26.5Hz, and
30Hz for asymmetric Gaussian weight method, respectively,
while the three operating points for Gaussian weight coun-
terpart are picked as 15Hz, 22.5Hz, and 30Hz. Then, three

Table 2: Model output error comparison.

Models Output error
Linear model 8.9126%
LPV model Gaussian weights 4.5925%
LPV model Asymmetric Gaussian weights 2.6249%

2nd-order local linear models are identified first at the three
preselected operating points. Their step responses are shown
in Figure 8, which implies that the dynamic behaviors of the
process are different at different operating points. As can be
seen from Figure 9, the input test signal is chosen as a gen-
eralized binary noise (GBN) signal and scheduling variable
𝐹water varies gradually from 15Hz to 30Hz.The output chilled
water temperature is measured online at a sampling rate of
1 s. The total identification test lasted for 26579 s. During
this, data obtained from the beginning 15,552 s are considered
as the model training data and the other 11,027 s is used
to collect validation data. The normalized weighting values
using asymmetric Gaussian function and Gaussian function
are given in Figure 10.

The comparison results are shown in Figure 11. Table 2
compares the output errors of linear models and LPVmodels
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Figure 10: Normalized weighting functions for the local linear models.
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Figure 11: The comparison results among LPV models with Gaussian weights, LPV models with asymmetric Gaussian weights, and real
process output.

using Gaussian weights and asymmetric Gaussian weights.
Step responds of the real process and LPV models are
compared at other four operating points, 19, 21, 24.5, and
28.5, which are displayed in Figure 12.These results show that
the estimated LPVmodel with asymmetric Gaussian weights
is more accurate in capturing the actual nonlinear process
dynamics than that with Gaussian weights.

6. Conclusion

In this paper, the asymmetric Gaussian weighting function is
introduced to identify themultimodel LPVmodel. Due to the
flexibility of choosing uneven operating points for local linear
models over the scheduling variable, the LPV model can be
more accurate and effective. To substantiate the feasibility of
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the proposed approach, a simulation example of a distillation
column and an experiment study with an HVAC system are
performed. It has been demonstrated that with asymmetric
Gaussian weighing, the accuracy of the multimodel LPV
model can be improved considerably.
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