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The numerical modeling of wave field in porous media generally requires more computation time than that of acoustic or elastic
media. Usually used finite difference methods adopt finite difference operators with fixed-order accuracy to calculate space
derivatives for a heterogeneous medium. A finite difference scheme with variable-order accuracy for acoustic wave equation has
been proposed to reduce the computation time. In this paper, we develop this scheme for wave equations in porous media based
on dispersion relation with high-order staggered-grid finite difference (SFD) method. High-order finite difference operators are
adopted for low-velocity regions, and low-order finite difference operators are adopted for high-velocity regions.Dispersion analysis
and modeling results demonstrate that the proposed SFD method can decrease computational costs without reducing accuracy.

1. Introduction

Seismic wave modeling for porous media is usually used to
study the properties of rocks and to characterize the seismic
response of geologic formation. Furthermore, the theory
about poroelasticity is a suitable characterization for the
environment of hydrocarbon reservoirs.

The most popular theory about poroelasticity is devel-
oped by Biot [1–3], which is the basis for solving the wave
propagation problems in porous media. A variety of dif-
ferent numerical methods have been used for poroelasticity
modeling [4, 5], such as spectral method [6], finite differ-
ence method [7], time domain method [8], discontinuous
Galerkin method [9], and finite volume method [10]. Owing
to the low memory requirement and computational cost,
finite differencemethods [11, 12] are widely applied for porous
wave equations.

To improve the efficiency and accuracy, several variants of
finite difference methods have been investigated to simulate
porous media [13, 14]. These include implicit finite difference
method [15], variable-grids [16], irregular-grids, staggered-
grids [17], discontinuous-grids [18], quadrangle-grids [19],
rotated-staggered-grids [20] finite difference methods, and

spatially varying time steps finite difference methods [21].
In order to avoid the spurious reflection from the artificial
boundaries in finite difference modeling, perfectly matched
layer (PML) absorbing boundary conditions [22, 23] have
been widely used.

Compared with the numerical modeling of acoustic or
elastic wave propagation, the porous wave propagation may
spend more computation time. As we know, the wavelength
in a lower velocity medium is smaller than that in a high-
velocity medium with a fixed source frequency [24] and
the accuracy of high-velocity regions is higher than that
of low-velocity regions with a fixed-order finite difference
operator for heterogeneous media. In addition, high-order
finite difference operators provide better accuracy than low-
order finite difference operators. Therefore, we can adopt
high-order finite difference operators for low-velocity regions
and low-order finite difference operators for high-velocity
regions to reduce the computational costs.

The remainder of this paper is organized as follows. In
Section 2, Biot’s equations are reformulated into the first-
order, velocity-stress system;we derive the dispersion relation
based on high-order staggered-grid finite difference method
for porous media. In Section 3, we propose a method to
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determine the orders of accuracy for different velocities
automatically. The validity of this method is demonstrated
by dispersion analysis. In Section 4, we use the staggered-
grid finite difference method with fixed- and variable-order
accuracy to simulate porous media. The modeling results
demonstrate the efficiency of our method. We state the
conclusion of this paper in Section 5.

2. Dispersion Relation for Porous Media

Biot established the dynamic equations in a porous elastic
solid saturated by a compressible viscous fluid, and predicted
that two dilatational waves and one rotational wave exist
in the fluid-saturated porous solid. A first-order hyperbolic
system [25–27] is developed, which is equivalent to Biot’s
equations, whose vector of unknowns consists of the solid
and fluid particle velocity components, the solid stress com-
ponents, and the fluid pressure. According to Biot’s theory,
the equations of motion for 2D porous media are given
by
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solid stress tensor. 𝑠 is related to the fluid pressure 𝑝 and the
porosity 𝜙 according to

𝑠 = −𝜙𝑝. (9)

The coefficients 𝑃, 𝑄, 𝑅, and 𝑁 are Biot’s elastic constants.
𝑃 and 𝑁 correspond to the familiar Lame coefficients in
the theory of elasticity. The coefficient 𝑅 is a measure of the
pressure required on the fluid to force a certain volume of
the fluid into the aggregate, while the total volume remains
constant.The coefficient𝑄 is the nature of a coupling between
the volume change of solid and that of the fluid. And 𝜌
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the fact that the relative fluid flow through the pores is not
uniform.

The coefficient 𝑏 is related to Darcy’s coefficient of per-
meability 𝜅 by
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where 𝜇 is the fluid viscosity.
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particle velocity evaluated at the point [𝑥 + 𝑝ℎ, 𝑧 + 𝑞ℎ] and
at the time 𝑡 + 𝑛𝜏.

TheAppendix gives the discretization of the derivatives in
(1)–(8) based on high-order staggered-grid finite difference
scheme. Using the plane wave theory, we let
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where 𝜔 is the angular frequency, (𝑘
𝑥
, 𝑘
𝑧
) is the wavenumber

vector, and 𝑖 = √−1.
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Substituting (A.1)–(A.20) of the Appendix and (11) into
(1)–(8) and simplifying,
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where 𝑎
𝑚
(𝑚 = 1, 2, . . . ,𝑀) are the SFD coefficients [28] and

2𝑀 corresponds to the order of accuracy.
Equations (12) can be rewritten into matrix form
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For porous media, Biot [1] derived the velocities of fast P
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VP slow.
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Comparing (16)–(18) with (19), (23), and (24), (16)–(18)
can be expressed as
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where VP fast, VP slow, and VS are the velocities of fast P wave,
slow Pwave, and Swave, respectively. Equations (25)–(27) are
the dispersion relations based on high-order staggered-grid
finite difference method for porous media.

3. SFD Method with Variable-Order Accuracy

The source frequency is usually fixed in the modeling so that
the wavelength in a low-velocity region is smaller than that
in a high-velocity region. For a heterogeneous model, the
accuracy of high-velocity regions is higher than that of low-
velocity regions with a fixed-order finite difference operator
to calculate the space derivatives. Moreover, high-order finite
difference operator provides better accuracy than that of
low-order finite difference operator. Therefore, we can adopt
high-order finite difference operators for low-velocity regions
and low-order finite difference operators for high-velocity
regions. Note that three velocities exist in each grid for porous
media, and we should choose the minimum velocity among
them to determine the order of accuracy.

Substitute (13) into (25), (26), or (27), and let 𝑘
𝑥
= 𝑘 cos 𝜃

and 𝑘
𝑧
= 𝑘 sin 𝜃, where 𝜃 is a propagation direction angle of

the plane wave. Dispersion relation of the minimum velocity
can be written as

(

𝑀

∑

𝑚=1

𝑎
𝑚
sin((𝑚 − 0.5)𝑘ℎ cos 𝜃))

2

+ (

𝑀

∑

𝑚=1

𝑎
𝑚
sin((𝑚 − 0.5)𝑘ℎ sin 𝜃))

2

= (𝑟
−1 sin(0.5𝜔𝜏))

2

,

(28)

where 𝑟 = V𝜏/ℎ and V = min(VS, VP slow, VP fast).
Grid dispersion parameter in SFDmodeling is defined by

using (28),

𝛿wave (𝜃) =
VFDwave

Vwave
=

2

𝑟wave𝑘ℎ
sin−1 (𝑟wave√𝑞) (29)

with

𝑞 = (

𝑀

∑

𝑚=1

𝑎
𝑚
sin((𝑚 − 0.5)𝑘ℎ cos 𝜃))

2

+ (

𝑀

∑

𝑚=1

𝑎
𝑚
sin ((𝑚 − 0.5) 𝑘ℎ sin 𝜃))

2

,

(30)

where the subscript wave represents slow P wave, S wave, or
fast P wave. If 𝛿 in (29) equals unity, there is no dispersion. If
𝛿 is larger or less than unity, the dispersion will occur.

Figure 1(a) shows the variation of the dispersion param-
eter 𝛿 with 𝑘ℎ for the same order of accuracy but different
velocities. From this figure it can be noted that the dispersion
curves are nearly consistent for different velocities. As the
independent variable 𝑘ℎ is related to velocity, we can change
𝑘ℎ into 𝑓, which is independent of velocity. We plot the
variation of the dispersion parameter 𝛿 with 𝑓 in Figure 1(b).
It can be concluded that the numerical dispersion for high-
frequency components reduces with the increase of velocity
for fixed 𝑀 and ℎ. As 𝑘ℎ ranges from 0 to 𝜋 (at Nyquist
frequency),𝑓 changes from 0 to V/2ℎ. For different velocities,
the values of maximum frequency are different. Note that the
source frequency in the modeling is predetermined and is
usually correlated with the minimum velocity for fixed-grid
size. Therefore, we can reduce the order of accuracy for the
high-velocity regions and achieve nearly the same accuracy as
the high-order finite difference operators for the low-velocity
regions.

The difference between SFD propagation time and exact
propagation time through one grid could describe the error
due to the numerical dispersion in SFD scheme,

𝜀 =
ℎ

VFD
−
ℎ

V
=
ℎ

V
(𝛿
−1

− 1) . (31)

If 𝜀 equals zero, there is no dispersion; when 𝜀 is much greater
or less than zero, large dispersion will occur. Following the
definition of SFD error, 𝜀 is related to V, 𝑀, and𝑓. Figure 1(c)
illustrates that the SFD error for low velocity is larger than
that for high velocity with a certain frequency, which implies
that we can reduce the order of accuracy for the high-velocity
regions without reducing the accuracy.

Here, we adopt a method [24] to determine the orders of
accuracy for different velocities adaptively.

For the given maximum frequency 𝑓max and the maxi-
mum error 𝜂, the following inequality is satisfied:

𝜀 (V,𝑀, 𝑓)
 ≤ 𝜂, when 𝑓 ≤ 𝑓max. (32)

The maximum frequency 𝑓max is related to the source fre-
quency, and the maximum error 𝜂 should be larger than the
maximum value of 𝜀.

Figure 2 shows dispersion curves for different orders of
accuracy and different velocities; the involved parameters are
V = 500, 1500, 2500, 3500, 4500m/s, 𝜏 = 0.0001 s, ℎ = 2m,
𝑓max = 30Hz, and 𝜂 = 10

−9. The values of 𝑀 determined
by (32) are 6, 3, 3, 2, and 2 for the five different velocities,
respectively. From this figure it can be noted that the low-
order finite difference operators can be adopted for high-
velocity regions to obtain an accuracy that is better than
or equal to the accuracy of the high-order finite difference
operators for low-velocity regions.

The orders of accuracy with different velocities and max-
imum errors are presented in Figure 3. The figure demon-
strates that the orders of accuracy generally decrease with
the increase of velocities. In addition, the orders of accuracy
determined by (32) are dependent on the time step 𝜏, the grid
spacing ℎ, and the maximum frequency 𝑓max.
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Figure 1: Dispersion curves for the same order of accuracy but different velocities. (a) Variation of dispersion parameter 𝛿 with 𝑘ℎ, (b)
variation of dispersion parameter 𝛿 with 𝑓, (c) variation of dispersion parameter log

10
|𝜀| with 𝑓. Here, V = 500, 1500, 2500, 3500, 4500m/s,

𝜏 = 0.0001 s, ℎ = 2m, and𝑀 = 10. When log
10
|𝜀| < −16, we set log

10
|𝜀| = −16.

Table 1: Parameters for the horizontally layered porous model.

𝜌
12

𝜌
11

𝜌
22

𝑃 𝑄 𝑅 𝑁 𝑏 𝜙 VP fast V
𝑆

VP slow

(kg/m3) (N/m2) (Nsm4) (m/s)
1 −260 1947 520 5.3𝑒9 5.2𝑒8 3.8𝑒8 1.8𝑒9 1𝑒3 0.25 1856 1005 733
2 −104 2174 208 7.6𝑒9 2.4𝑒8 1.4𝑒8 2.6𝑒9 1𝑒3 0.1 1950 1100 764
3 −104 2384 156 9.2𝑒9 2.1𝑒8 3.4𝑒7 3.1𝑒9 1𝑒3 0.05 2030 1162 514
4 −31 2446 62 1.2𝑒10 1.1𝑒8 3.9𝑒7 4.1𝑒9 1𝑒3 0.03 2276 780 1298
5 −330 2092 660 7.8𝑒9 9.5𝑒8 5.3𝑒8 2.9𝑒9 1𝑒3 0.33 2215 1232 718
6 −100 2430 255 5.5𝑒10 7𝑒8 7.9𝑒8 1.2𝑒10 7𝑒5 0.25 4860 2240 1740
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Figure 2: Dispersion curves for different orders of accuracy and
velocities. Here, V = 500, 1500, 2500, 3500, 4500m/s, 𝜏 = 0.0001 s,
ℎ = 2m, 𝑓max = 30Hz, 𝜂 = 10

−9, and 𝑀 = 6, 3, 3, 2, and 2
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4. Modeling Results

We adopt the high-order staggered-grid finite difference
method for a horizontally layered porous model, whose
parameters are shown in Table 1. We use a 30Hz Ricker
wavelet in time domain and Gaussian function in space
domain located at 𝑥 = 400m, 𝑧 = 360m to generate the
vibration, and the model size is 800m×800m (see Figure 4).

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

1600

1400

1200

1000

800

600

𝑋 (m)

𝑍
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Figure 4: The minimum velocities for the horizontally layered
porous model and the source location. A 30Hz Ricker wavelet in
time domain and Gaussian function in space domain located at
𝑥 = 400m, 𝑧 = 360m is used to generate the vibration. Model size
is 800m × 800m, and ℎ = 2m, 𝜏 = 0.0001 s.

Table 2: Orders of accuracy for different velocities with the same
maximum frequency.

Minimum velocity (m/s) 514 718 733 764 780 1740
𝑀 6 4 4 4 4 3

The orders of accuracy for this model are presented
in Table 2. They are determined by (32) with 𝜂 = 10

−9,
𝑓max = 30Hz, 𝜏 = 0.0001 s, and ℎ = 2m. Note that high-
order finite difference operators provide better accuracy than
low-order finite difference operators. Therefore, the highest
order of accuracy used in the variable-order accuracy SFD
method is adopted as the order of accuracy for the fixed-
order accuracy SFDmethod which can be served as reference
solution.

The snapshot of 𝑧 component of the fluid particle velocity
calculated by the SFD method with variable-order accuracy
(see Figure 5(b)) is almost the same as Figure 5(a), which is
calculated by the SFDmethod with fixed-order accuracy.The
same conclusion can be obtained from the comparison of Fig-
ures 5(c) and 5(d), which are the snapshots of 𝑧 components
of the solid particle velocity calculated by the SFD method
with fixed- and variable-order accuracy, respectively.

The modeling records of the 𝑧 components of the solid
particle velocity at 𝑥 = 400m, 𝑧 = 400m calculated by
the SFD method with fixed- and variable-order accuracy
are presented in Figure 6(a). The difference between them is
shown in Figure 6(b). From this figure, it can be noted that the
modeling results calculated by the two methods are almost
identical, which demonstrate the validity of the staggered-
grid finite difference method with variable-order accuracy.

Computational efficiency of the SFD method with
variable-order accuracy for this model is demonstrated by
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(b) The new method
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Figure 5: Snapshots of the 𝑧 components of fluid (a)-(b) and solid (c)-(d) particle velocity at 192ms for the horizontally layered porousmodel
by the SFD method with fixed-order accuracy (𝑀 = 6) and the SFD method with variable-order accuracy (𝑀 = 6, 3, 3, 3, 3, 2). No absorbing
boundary conditions are used in the modeling.

CPU time (HP with an Intel Q8400 Core 2 quard CPU and
4.00 GB of memory), shown in Table 3. It can be seen that
the SFDmethod with variable-order accuracy can save about
17% of the CPU time in comparison with the SFD method
with fixed-order accuracy.

Data in Table 4 show the CPU time for different models.
We can conclude that the efficiency depends on the character-
istic of the models. That is, the savings of CPU time increase
with the increase of high-velocity regions and the decrease of
low-velocity regions.

Themodeling results and the CPU time demonstrate that
the SFD method with variable-order accuracy results in a
decrease in computation time.

5. Conclusion

We have developed a staggered-grid finite difference scheme
with variable-order accuracy for porous media. We use a
method based on dispersion relation to determine the orders
of accuracy for different velocity regions. The variations of
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Figure 6: (a) Modeling records and (b) the difference of modeling
records of the 𝑧 components of the solid particle velocity at 𝑥 =

400m, 𝑧 = 400m for the horizontally layered porous model by SFD
schemes with fixed- and variable-order accuracy.

dispersion parameters with 𝑘ℎ or 𝑓 imply the validity of the
new scheme. The comparison of numerical modeling results
and CPU time between the SFD schemes with fixed- and
variable-order accuracy indicates that the proposed scheme
can enhance the computational efficiency without reducing
the accuracy.

Appendix

In this appendix, we discretize the derivatives of wave equa-
tions based on high-order staggered-grid finite difference
scheme for porous media.

Table 3: CPU time of SFD modeling for the horizontally layered
model.

Type of SFD
operators Value of𝑀 CPU time of 1000 recursion

times (s)
Fixed 6 688
Variable 6, 4, 4, 4, 4, 3 572

Table 4: CPU time of SFD modeling for different models, whose
parameters are shown in Table 1. The difference of these models is
the thickness of Layer 3 and Layer 6. Values of𝑀 = 6, 4, 4, 4, 4, 3 are
used for six different velocities.

Thickness (m) CPU time of 1000 recursion times (s)
Layer 3 Layer 6 Fixed Variable
280 240 692 606
40 240 688 572
40 440 698 558

The derivatives in (1) and (3) can be discretized as follows:
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=
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Equations (2) and (4) can be discretized using the fol-
lowing equations:
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The derivatives in (7) can be discretized as follows:
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Equations (5), (6), and (8) can be discretized using the
following equations:
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where ℎ is the grid size, 𝜏 is the time step, 𝑎
𝑚
(1, 2, . . . ,𝑀) are

staggered-grid finite difference coefficients.
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