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Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In
this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is
adjusted by using FuzzyCompetitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best
Matched Node (BMN) which is proposed.This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared
with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error
(MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than
DNandBPN.The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical
systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time
series data.

1. Introduction

With the rapid advance of computers, the digitization has
swept in all fields of science and technology with special
emphasize on modeling and identification. Most of the phys-
ical processes are continuous in nature but they are generally
modeled using discrete time with the use of derivative and
integral as they are easily realizable. Taking these advantages,
an enormous research has been focused on discrete time
methods andmany techniques based on linear and nonlinear
discrete systems have been developed [1, 2]. Neural network
has been widely used for nonlinear dynamical systems [3–
5]. Various control systems like back stepping control [6, 7],
sliding mode control [8, 9], and control using soft computing
[10] are continuous source of interest. The nonlinear dynam-
ical system is a generic problem which finds its application
in every field of engineering. The technique based on soft
computing, fuzzy logic, and neural network has also found
its application in modeling of systems in various application
domains. Feedforward Neural Network (FNN) is one of the
most commonly used networks for this purpose; FNN with

Back Propagation algorithm is another powerful network.
Neural network ismost popular approach due to its capability
ofmodelingmost of the nonlinear functions approximately to
any arbitrary degree of accuracy [11]. Most of the systems are
designed using feedforward network with gradient descent
learning but the gradient descent method encounters the
problem of slow convergence. This problem of convergence
can be overcome by use of some Cauchy-Newton [12] Quasi-
Newtonian method and Levenberg-Marquardt algorithms
[13].

Optimal controllers for hybrid dynamical systems (HDS)
developed using Hamilton-Jacobi-Bellman (HJB) solution
method [14, 15]. Novel Lyapunov-Krasovskii functional
(LKF) with triple integral time constructed for exponential
synchronization of complex dynamical networks will control
packet loss and additive time varying delay [16]. Control of
discrete time varying system using dynamical model is
difficult. To overcome this condition, new neural network
approximation structure was developed to solve optimal
tracking problem of nonlinear discrete time varying time
system using reinforcement learning (RL) method [17]. To
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enhance the performance of nonlinear multivariable system,
fuzzy optimal controller based Takagi-Sugeno model was
developed which was used to minimize a quadratic per-
formance index [18]. An ultimate stable training algorithm
inspired by adaptive observer for black box identification
of nonlinear discrete systems developed using state space
recurrent neural network.The algorithmdevelopedwas using
only input and output measurement in discrete time [19].
Indirect adaptive controller that uses neural network was
presented for the identification and control of experimental
pilot distillation column. This system is multivariable with
unknowndynamics and the neural networkwas trained using
Levenberg-Marquardt algorithm [20]. Adaptive finite time
stabilization of a class of switched nonlinear systems was
investigated with unknown nonlinear terms using neural
network. The finite law and adaptive law were constructed
using radial basis function neural network (RBFNN) to
approximate the unknown packaged function. Stability anal-
ysis of RBFNN was observed to evaluate the states of the
closed loop systems [21]. An adaptive fuzzy output tracking
control approach was proposed in [22] for single input single
output (SISO) systemwhich is uncertain and nonlinear under
arbitrary switching. An iterative learning control scheme
was proposed for a class of nonlinear dynamic systems
which includes holonomic systems as its subsets with linear
feedback mechanism and feedforward learning strategies
[23].

In this proposed work we have used instar-outstar struc-
ture based CPN with Fuzzy Competitive Learning (FCL).
We have designed Fuzzy Counter Propagation Network
design to control some nonlinear dynamical systems. In the
FCPN, CPN model is trained by FCL algorithms. The FCL
learning is used for adjusting weights and update of Best
Matched Node (BMN) in discrete time nonlinear dynamical
system.

The main contributions of this research are as follows:

(1) This paper contributes the approximation for a class
of nonlinear dynamical systems using Fuzzy Compet-
itive Learning Based Counter Propagation Network
(FCPN).

(2) FCPN is employed to optimize the Mean Absolute
Error, Mean Square Error, Best Fit Rate, and so forth.

(3) Performance criteria of proposed FCPN for nonlinear
dynamical systems are effectively improved by com-
pensating reference signal and controller signal.

The paper is organized as follows. In Section 2, problem
formulations for a class of nonlinear dynamical systems are
given. Section 3 contains description of Feedforward Neural
Network (FNN) with Back Propagation Network, Dynamic
Network, and Fuzzy Learning Based Counter Propagation
Network. Dynamical learning for CPN and optimal learning
of dynamical system are presented in Section 4. The simula-
tion results and comparison of different nonlinear dynamical
models are presented in Section 5. Section 6 gives conclusion
of the study.

2. Problem Formulation

Let us consider four models of discrete time nonlinear
dynamical systems [24] for single input single output (SISO)
and multiple input and single output (MISO) system con-
sidered in this paper and they are described by difference
equations (1)–(4) and Box-Jenkins time series data [10]. Let
𝑓 : 𝑅𝑛 → 𝑅 and 𝑔 : 𝑅𝑚 → 𝑅 be the nonlinear continuous
differentiable function of Model I–Model IV approximated
by FCPN to the desired degree of accuracy. Once the system
has been parameterized, the performance evaluation has been
carried out by FCPN for (1) to (4).

Model I:

𝑦 (𝑘 + 1) =
𝑛−1

∑
𝑖=0

𝛼
𝑖
𝑦 (𝑘 − 𝑖)

+ 𝑔 [𝑢 (𝑘) , . . . , 𝑢 (𝑘 − 𝑚 + 1)] .

(1)

Model II:

𝑦 (𝑘 + 1) = 𝑓 [𝑦 (𝑘) , . . . , 𝑦 (𝑘 − 𝑛 + 1)]

+
𝑚−1

∑
𝑖=0

𝛽
𝑖
𝑢 (𝑘 − 𝑖) .

(2)

Model III:

𝑦 (𝑘 + 1) = 𝑓 [𝑦 (𝑘) , . . . , 𝑦 (𝑘 − 𝑛 + 1)]

+ 𝑔 [𝑢 (𝑘) , . . . , 𝑢 (𝑘 − 𝑚 + 1)] .
(3)

Model IV:

𝑦 (𝑘 + 1) = 𝑓 [𝑦 (𝑘) , . . . , 𝑦 (𝑘 − 𝑛 + 1) ; 𝑢 (𝑘) , . . . ,

𝑢 (𝑘 − 𝑚 + 1)] ,
(4)

where [𝑢(𝑘), 𝑦(𝑘)] represent the input-output pair of the
system at time 𝑘 and their order is represented by (𝑛,𝑚).
FCL is used to learn the system defined for (1) to (4) and the
performance of the FCPN can be measured by error function
given in

𝐸 (𝑘) =
1

2
[𝑦 (𝑘) − 𝑦 (𝑘)]

2

, (5)

where 𝑢(𝑘) is the input, 𝑦(𝑘) is the system output, 𝑦(𝑘) is
neural network output, and (5) can be written for neural
controller as

𝐸𝑐 =
1

𝑃

𝑃

∑
𝑝=1

[𝑦 (𝑘) − 𝑦
𝑐

(𝑘)]
2

, (6)

where 𝑦𝑐(𝑘) is neural controller output and (6) is known as
minimized error function and 𝑃 is total number of input
patterns.

3. Back Propagation Network (BPN)

A neural network is one of the most popular intelligent
systems which has capability to approximate calculated and
target value at an arbitrary degree of accuracy. BPN is one
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Figure 1: General architecture of BPN.

of the most commonly used networks for this purpose. The
BPN consists of input layer, hidden layer, and output layer
and possesses weighted interconnections. The BPN is based
on supervised learning. This method is used where error is
propagated back to the hidden layer. The aim of this neural
network is to train the net to achieve a balance between
the net’s ability to respond (memorization) and its ability to
give reasonable response to the input that is similar but not
identical to the one that is used in training (generalization).
For a given set of training input-output pairs, this network
provides a procedure for changing weights to classify the
given input patterns correctly. The weight update algorithm
is based on gradient descent method [25]. The network
architecture is shown in Figure 1.

3.1. Dynamic Network. Neural network can be classified
into two categories: (i) Static and (ii) Dynamic. In Static
Neural Network, output can be calculated directly from input
through feedforward network. But in Dynamic Network
output depends on current or previous inputs, outputs, or
states of network. Where the current output is function of
current input and previous output, it is known as recurrent
(feedback) network. Training process of Static and Dynamic
Network can be differentiated by use of gradient or Jacobian
which is computed. Dynamic Network contains delays and
operates on a sequence of inputs. Dynamic Networks can
have purely feedforward connections or they can have some
recurrent connections. They can be trained using Dynamic
Back Propagation Network [26].

The general equation of the net input 𝑛𝑚(𝑡) for𝑚th layer
is given by

𝑛𝑚 (𝑡) = ∑

𝑙∈𝐿
𝑓
𝑚

∑
𝑑∈DL𝑚⋅𝑙

IW𝑚⋅𝑙 (𝑑) 𝑎𝑙 (𝑡 − 𝑑)

+ ∑
𝑙∈𝐼𝑚

∑
𝑑∈DI𝑚⋅𝑙

IW𝑚⋅𝑙 (𝑑) 𝑏𝑙 (𝑡 − 𝑑) + 𝑏𝑚,
(7)

where 𝑏𝑙(𝑡) is the 𝑙th input vector at time 𝑡, IW𝑚,𝑙 is the input
weight between 𝑙th and 𝑚th layer, LW𝑚,𝑙 is the layer weight
between 𝑙th and𝑚th layer, and 𝑏𝑚 is the bias vector for layer
𝑚. DL

𝑚,𝑙
is the set of all delays in the Tapped Delay Line

(TDL) between 𝑙th and 𝑚th layer and DI
𝑚,𝑙

is the set of all
delays in the TDL between input 𝑙 and𝑚th layer, 𝐼

𝑚
is the set

of indices of input vectors that connect to layer𝑚, and 𝐿𝑓
𝑚
is

the set of indices of layers that connect to layer𝑚. The output
of𝑚th layer at time 𝑡 is computed as

𝑎𝑚 (𝑡) = 𝑓
𝑚 (𝑛𝑚 (𝑡)) . (8)

Network has a TDL on the input with DI
1,1

= {0, 1, 2} and its
output is represented as

𝑎 (𝑡) = 𝑓 (𝑛 (𝑡)) = ∑
𝑑

IW (𝑑) ∗ 𝑝 (𝑡 − 𝑑) ,

𝑎 (𝑡) = 𝑓 [iw
1,1
(0) 𝑝 (𝑡) + iw

1,1
(1) 𝑝 (𝑡 − 1)

+ iw
1,1
(2) 𝑝 (𝑡 − 2)] .

(9)

One simple architecture with delay DI
1,1

= {0, 1, 2} for
feedforward Dynamic Network is shown in Figure 2 known
as Dynamic Adaptive Linear Neuron.

3.2. Counter Propagation Network (CPN). It is multilayer
feedforward network based on the combination of the input,
competitive, and output layers. Model of CPN is instar-
outstar. It is three-layer neural network that performs input-
output data mapping, that is, producing output in the
response to an input vector on the basis of Fuzzy Competitive
Learning. In CPN the connection between input layer and
competitive layer is instar structure and connection between
competitive and output layer is outstar structure. Counter
Propagation Network involves two-stage training process. In
first stage input vector is clustered on the basis of Euclidean
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Figure 2: Simple architecture of Dynamic Adaptive Linear Neuron.

distance and the performance of network is improved using
linear topology. Using Euclidean distance between input and
weight vector, we evaluated BMN. In phase II, the desired
response is obtained by adapting the weights from compet-
itive layer to output layer [27]. Let 𝑥 = [𝑥

1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
]

and 𝑦 = [𝑦∗
1
𝑦∗
2
⋅ ⋅ ⋅ 𝑦∗
𝑚
] be input and desired vector,

respectively, let V
𝑖𝑗
be weight of input layer and competitive

layer, where 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑝, and let𝑤
𝑗𝑘
be the weight

between competitive layer and output layer, where 1 ≤ 𝑘 ≤ 𝑚.
Euclidean distance between input vector 𝑥 and weight vector
V
𝑖𝑗
is

𝐷
𝑗
=
𝑛

∑
𝑖=1

(𝑥
𝑖
− V
𝑖𝑗
)
2

, where 𝑗 = 1, 2, . . . , 𝑝. (10)

The architecture of CPN is shown in Figure 3.

3.3. Fuzzy Competitive Learning (FCL). FCL is used for
adjusting instar-outstar weights and update of BMN for
discrete time nonlinear dynamical systems. Learning of CPN
is divided into two phases: FuzzyCompetitive Learning phase
(unsupervised) and Grossberg Learning phase (supervised)
[28–31]. CPN is efficient network for mapping the input
vector of size 𝑛 placed in clusters of size 𝑚. Like traditional
self-organizing map, the weight vector for every node is
considered as a sample vector to the input pattern. The
process is to determine which weight vector (say 𝐽) is more
similar to the input pattern chosen as BMN. First phase is
based on closeness between weight vector and input vector
and second phase is weight update between competitive and
output layer for desired response.

Let V
𝑖𝑗
be weight of input node 𝑖 to neuron 𝑗 and let 𝑤

𝑗𝑘

be the weight between competitive node 𝑗 and neuron 𝑘. We
propose a new learning rate calculation method for use of
weight update:

∝ (𝐽) =
∑
𝑛

𝑖=1
(V
𝑖𝐽
− 𝑥
𝑖
)
2

∑
𝑚

𝑗=1
∑
𝑛

𝑖=1
(V
𝑖𝐽
− 𝑥
𝑖
)
2
, (11)

where 𝐽 denotes the index of BMN and∝ is known as Fuzzy
Competitive Learning rate.

Fuzzy Competitive Learning phase is described as fol-
lows.

3.3.1. Training Algorithm of FCL

Phase I (for determination of BMN). There are steps for
training of CPN as follows.

Step 1. Initialize instar-outstar weights.

Step 2. Perform Steps 3–8 until stopping criteria for Phase I
training fail. The stopping condition may be fixed number of
epochs or learning rate has reduced to negligible value.

Step 3. Perform Steps 4–6 for all input training vector𝑋.

Step 4. Set the𝑋-input layer activation to vector𝑋.

Step 5. Compute the Best Matched Node (BMN) (𝐽) using
Euclidean distance; find the node𝑍

𝐽
whose distance from the

input pattern is minimum. Euclidean distance is calculated as
follows:

𝐷
𝑗
=
𝑛

∑
𝑖=1

(𝑥
𝑖
− V
𝑖𝑗
)
2

, where 𝑗 = 1, 2, . . . , 𝑝. (12)

Minimum net input:

𝑧
𝑖𝑛𝐽

=
𝑛

∑
𝑖=1

𝑥
𝑖
V
𝑖𝐽
. (13)

Step 6. Calculate Fuzzy Competitive Learning (14) rate for
weight update using BMN.

Step 7. We update weight for unit 𝑍
𝐽
:

V
𝑖𝐽
(new) = V

𝑖𝐽
(old) + ∝ ℎ (𝐽; 𝑖, 𝑗) (𝑥

𝑖
− V
𝑖𝐽
) , (14)

where 𝑖 = 1, 2, 3, . . . , 𝑛 and ℎ(⋅; ⋅) is neighborhood function
around BMN. Consider

ℎ (𝐽; 𝑖, 𝑗) = exp(
−
V𝑖𝑗 − V

𝑖𝐽



2𝜎2 (𝑡)
) ,

where ℎ (𝐽; 𝑖, 𝑗) ∈ [0, 1] ,

(15)

𝜎 (𝑡) = 𝜎
0
exp(−𝑡

𝑇
) . (16)

Step 8. Test the stopping criteria.

Phase II (to obtain desired response)

Step 1. Set activation function to (𝑥, 𝑦) input and output layer,
respectively.

Step 2. Update the BMN (𝐽) (Step 5 from Phase I). Also
update the weights into unit 𝑍

𝐽
as

V
𝑖𝐽
(new) = V

𝑖𝐽
(old) + 𝛼ℎ (𝐽; 𝑖, 𝑗) [𝑥

𝑖
− V
𝑖𝐽
(old)] . (17)
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Figure 3: Architecture of Counter Propagation Network.

Step 3. Update the weights from node 𝑍
𝐽
to the output unit

as

𝑤
𝐽𝑘
(new) = 𝑤

𝐽𝑘
(old) + 𝛽ℎ (𝐽; 𝑗, 𝑘) [𝑦

𝑗
− 𝑤
𝐽𝑘
(old)]

for 1 ≤ 𝑘 ≤ 𝑚.
(18)

Step 4. Learning rate 𝛽 is calculated as

𝛽 (𝐽) =
∑
𝑚

𝑘=1
(𝑦
𝑘
− 𝑤
𝐽𝑘
)
2

∑
𝑝

𝑗=1
∑
𝑚

𝑘=1
(𝑦
𝑘
− 𝑤
𝑗𝑘
)
2
. (19)

Step 5. Decrease the rate of learning s.t. 𝛽 = 𝛽 − 𝜀, where 𝜀 is
small positive number.

Step 6. Test the stopping condition for Phase II (i.e., fixed
number of epochs or its learning rate has reduced to negli-
gible value).

3.3.2. Testing Phase (to Test FCPN)

Step 1. Set the initial weights, that is, the weights obtained
during training.

Step 2. Apply FCPN to the input vector𝑋.

Step 3. Find unit 𝐽 that is closest to vector𝑋.

Step 4. Set activations of output units.

Step 5. Apply activation function at 𝑦
𝑘
, where 𝑦

𝑘
= ∑
𝑗
𝑧
𝑗
𝑤
𝑗𝑘
.

4. Dynamical Learning for CPN

Learning stabilities are fundamental issues for CPN; however
there are few studies on the learning issue of FNN. BPN for
learning is not always successful because of its sensitivity to
learning parameters. Optimal learning rate always changes
during the training process. Dynamical learning of CPN is
carried out using Lemmas 1, 2, and 3.

Assumption. Let us assume 𝜙(𝑥) is a sigmoid function if it
is bounded continuous and increasing function. Since input
to the neural network in this model is bounded, we consider
Lemmas 1 and 2 given below.

Lemma 1. Let 𝜙(𝑥) be a sigmoid function and let Ω be a
compact set in R𝑛, and 𝑓 : R𝑛 → R on Ω is a continuous
function and, for arbitrary ∈> 0, ∃ integer𝑁 and real constants
𝑐
𝑖
, 𝜃
𝑖
, and 𝑤

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑛, such that

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =
𝑁

∑
𝑖=1

𝑐
𝑖
0(
𝑛

∑
𝑗=1

𝑤
𝑖𝑗
𝑥
𝑖
− 𝜃
𝑖
) (20)

satisfies

max
𝑥∈Ω

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) − 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛)
 <∈ . (21)

Using Lemma 1, dynamical learning for a three-layer CPN can
be formulated where the hidden layer transfer functions are
𝜙(𝑥) and transfer function at output layer is linear.

Let all the vectors be column vectors and superscript 𝑑𝑘
𝑝

refers to specific output vectors component.
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Let 𝑋 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑝
] ∈ R𝐿×𝑃, 𝑌 = [𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑝
] ∈

R𝐻×𝑃, 𝑂 = [𝑜
1
, 𝑜
2
, . . . , 𝑜

𝑝
] ∈ R𝐾×𝑃, 𝐷 = [𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑝
] ∈

R𝐾×𝑃 be the input, hidden, output, and desired vector,
respectively, where 𝐿,𝐻, and 𝐾 denote the number of input,
hidden, and output layer neurons. Let 𝑉 and 𝑊 represent
the input-hidden and hidden-output layer weight matrix,
respectively.The objectives of the network training minimize
error function 𝐽, where 𝐽 is

𝐽 =
1

2𝑃𝐾

𝑃

∑
𝑝=1

𝐾

∑
𝑘=1

(𝑜𝑘
𝑝
− 𝑑𝑘
𝑝
)
2

. (22)

4.1. Optimal Learning of Dynamical System. Consider a
three-layer CPN; the network error matrix is defined by the
error between differences of desired and FCPN output at any
iteration and given as

𝐸
𝑡
= 𝑂
𝑡
− 𝐷 = 𝑊

𝑡
𝑌
𝑡
− 𝐷 = 𝑊

𝑡
𝑌
𝑡
𝑋 − 𝐷. (23)

The objective of the network for minimization of error given
in (24) is defined as follows:

s.t. 𝐽 =
1

2𝑃𝐾
𝑇
𝑟
(𝐸
𝑡
𝐸𝑇
𝑡
) , (24)

where𝑇
𝑟
represent the trace ofmatrix. Using gradient descent

method updated weight is given by

𝑊
𝑡+1

= 𝑊
𝑡
− 𝛽
𝑡

𝜕𝐽

𝜕𝑊
𝑡

,

𝑉
𝑡+1

= 𝑉
𝑡
− 𝛽
𝑡

𝜕𝐽

𝜕𝑉
𝑡

,

(25)

or

𝑊
𝑡+1

= 𝑊
𝑡
−
𝛽
𝑡

𝑃𝐾
𝐸
𝑡
𝑌𝑇
𝑡
,

𝑉
𝑡+1

= 𝑉
𝑡
−
𝛽
𝑡

𝑃𝐾
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇.

(26)

Using (23)–(26), we have

𝐸
𝑡+1
𝐸𝑇
𝑡+1

= (𝑊
𝑡+1
𝑌
𝑡+1

− 𝐷) (𝑊
𝑡+1
𝑌
𝑡+1

− 𝐷)
𝑇

. (27)

To obtain minimum error for multi-layer FNN in above
equation (28) after simplification, we have

𝐽
𝑡+1

− 𝐽
𝑡
=

1

2𝑃𝐾
𝑔 (𝛽) ,

𝐽 =
1

2𝑃𝐾

𝑃

∑
𝑝=1

𝐾

∑
𝑘=1

(𝑜𝑘
𝑝
− 𝑑𝑘
𝑝
)
2

,

𝐸
𝑡+1
𝐸𝑇
𝑡+1

= (𝑊
𝑡+1
𝑉
𝑡+1
𝑋 − 𝐷) (𝑊

𝑡+1
𝑉
𝑡+1
𝑋 − 𝐷)

𝑇

= [(𝑊
𝑡
−
𝛽
𝑡

𝑃𝐾
𝐸
𝑡
𝑌𝑇
𝑡
)(𝑉
𝑡
−
𝛽
𝑡

𝑃𝐾
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇)𝑋

− 𝐷][(𝑊
𝑡
−
𝛽
𝑡

𝑃𝐾
𝐸
𝑡
𝑌𝑇
𝑡
)(𝑉
𝑡
−
𝛽
𝑡

𝑃𝐾
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇)𝑋

− 𝐷]
T
= [𝐸
𝑡
−
𝛽
𝑡

𝑃𝐾
(𝑊
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋 + 𝐸

𝑡
𝑌𝑇
𝑡
𝑉
𝑡
𝑋)

+
𝛽2
𝑡

(𝑃𝐾)2
𝐸
𝑡
𝑌𝑇
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋] ∗ [𝐸

𝑡

−
𝛽
𝑡

𝑃𝐾
(𝑊
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋 + 𝐸

𝑡
𝑌𝑇
𝑡
𝑉
𝑡
𝑋)

+
𝛽2
𝑡

(𝑃𝐾)2
(𝐸
𝑡
𝑌𝑇
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋)]

𝑇

= 𝐸
𝑡
𝐸𝑇
𝑡

−
𝛽
𝑡

𝑃𝐾
[𝐸
𝑡
(𝑊
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋)

𝑇

+ 𝐸
𝑡
(𝐸
𝑡
𝑌𝑇
𝑡
𝑉
𝑡
𝑋)
𝑇

+ (𝑊
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋𝐸𝑇

𝑡
) + (𝐸

𝑡
𝑌𝑇
𝑡
𝑉
𝑡
𝑋𝐸𝑇
𝑡
)]

+
𝛽2
𝑡

(𝑃𝐾)2
[𝐸
𝑡
(𝐸
𝑡
𝑌𝑇
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋)

𝑇

+ 𝐸
𝑡
𝑌𝑇
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋𝐸𝑇

𝑡

+ 𝐸
𝑡
𝑌𝑇
𝑡
𝑉
𝑡
𝑋(𝑊
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋)

𝑇

+𝑊
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋(𝐸

𝑡
𝑌𝑇
𝑡
𝑉
𝑡
𝑋)
𝑇

+ 𝐸
𝑡
𝑌𝑇
𝑡
𝑉
𝑡
𝑋(𝐸
𝑡
𝑌𝑇
𝑡
𝑉
𝑡
𝑋)
𝑇

+𝑊
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋(𝑊

𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋)

𝑇

]

−
𝛽3
𝑡

(𝑃𝐾)3
[𝑊
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋(𝐸

𝑡
𝑌𝑇
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋)

+ 𝐸
𝑡
𝑌𝑇
𝑡
𝑉
𝑡
𝑋(𝐸
𝑡
𝑌𝑇
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋)

𝑇

+ 𝐸
𝑡
𝑌𝑇
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋(𝑊

𝑡
𝑊𝑇
𝑓
𝐸
𝑡
𝑋𝑇𝑋)

𝑇

+ 𝐸
𝑡
𝑌𝑇
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋(𝐸

𝑡
𝑌𝑇
𝑡
𝑉
𝑡
𝑋)
𝑇

]

+
𝛽4
𝑡

(𝑃𝐾)4
[𝐸
𝑡
𝑌𝑇
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋(𝐸

𝑡
𝑌𝑇
𝑡
𝑊𝑇
𝑡
𝐸
𝑡
𝑋𝑇𝑋)

𝑇

] .

(28)

For simplification, omit subscript 𝑡, we have; that is,

𝐽
𝑡+1

− 𝐽
𝑡
=

1

2𝑃𝐾
(𝐴𝛽4 + 𝐵𝛽4 + 𝐶𝛽4 +𝑀𝛽) (29)

where

𝐴 =
1

(𝑃𝐾)4
𝑇
𝑟
[𝐸𝑌𝑇𝑊𝐸𝑋𝑇𝑋(𝐸𝑌𝑇𝑊𝑇𝐸𝑋𝑇𝑋)

𝑇

] ,

𝐵 =
1

(𝑃𝐾)3
𝑇
𝑟
[𝑊𝑊𝑇𝐸𝑋𝑇𝑋(𝐸𝑌𝑇𝑊𝑇𝐸𝑋𝑇𝑋)

𝑇



Computational Intelligence and Neuroscience 7

+ 𝐸𝑌𝑇𝑉𝑋(𝐸𝑌𝑇𝑊𝑇𝐸𝑋𝑇𝑋)
𝑇

+ 𝐸𝑌𝑇𝑊𝑇𝐸𝑋𝑇𝑋(𝑊𝑊𝑇𝐸𝑋𝑇𝑋)
𝑇

+ 𝐸𝑌𝑇𝑊𝑇𝐸𝑋𝑇𝑋(𝐸𝑌𝑇𝑉𝑋)] ,

𝐶 =
1

(𝑃𝐾)2
𝑇
𝑟
[(𝐸𝑌𝑇𝑊𝑇𝐸𝑋𝑇𝑋)

𝑇

+ 𝐸𝑌𝑇𝑊𝐸𝑋𝑇𝑋𝐸𝑇 + 𝐸𝑌𝑇𝑉𝑋(𝑊𝑊𝑇𝐸𝑋𝑇𝑋)
𝑇

+𝑊𝑊𝑇𝐸𝑋𝑇𝑋 + (𝐸𝑌𝑇𝑉𝑋)
𝑇

+ 𝐸𝑌𝑇𝑉𝑋(𝐸𝑌𝑇𝑉𝑋)
𝑇

+𝑊𝑊𝑇𝐸𝑋𝑇𝑋(𝑊𝑊𝑇𝐸𝑋𝑇𝑋)
𝑇

] ,

𝑀 =
1

𝑃𝐾
𝑇
𝑟
[𝐸 (𝑊𝑊𝑇𝐸𝑋𝑇𝑋)

𝑇

+ 𝐸 (𝐸𝑌𝑇𝑉𝑋)
𝑇

+𝑊𝑊𝑇𝐸𝑋𝑇𝑋 + 𝐸𝑌𝑇𝑉𝑋𝐸𝑇] ,

(30)

where

𝑔 (𝛽) = (𝐴𝛽4 + 𝐵𝛽3 + 𝐶𝛽2 +𝑀𝛽) , (31)

𝜕𝑔

𝜕𝛽
= 4𝐴 (𝛽3 + 𝑎𝛽2 + 𝑏𝛽 + 𝑐) , (32)

where 𝑎 = 3𝐵/4𝐴, 𝑏 = 2𝐶/4𝐴, and 𝑐 = 𝑀/4𝐴.

Lemma 2. For solution of general real cubic equation, one uses
the following lemma:

𝑓 (𝑥) = 𝑥
3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐,

𝐿𝑒𝑡 𝐷 = −27𝑐2 + 18𝑐𝑎𝑏 + 𝑎2𝑏2 − 4𝑎3𝑏3 − 4𝑏3,
(33)

where𝐷 is discriminant of 𝑓(𝑥).
Then we have the following:

(1) If𝐷 < 0, 𝑓(𝑥) has one real root.

(2) If𝐷 ≥ 0, 𝑓(𝑥) has three real roots:

(a) 𝐷 > 0; 𝑓(𝑥) has three different real roots,
(b) 𝐷 = 0, 6𝑏 − 2𝑎2#0; 𝑓(𝑥) has one single root and

one multiple root,
(c) 𝐷 = 0, 66 − 2𝑎2 = 0; 𝑓(𝑥) has one root of three

multiplicities.

Lemma 3. For given polynomial 𝑔(𝛽) given (31) if optimum
𝛽 = {𝛽

𝑖
| 𝑔(𝛽

𝑖
) = min(𝑔(𝛽

1
), 𝑔(𝛽
2
), 𝑔(𝛽
3
)), 𝑖 ∈ {1, 2, 3}},

where 𝛽
𝑖
is real root of 𝜕𝑔/𝜕𝛽, the optimum (𝛽) is the optimal

learning rate and this learning process is stable.

Proof. To find stable learning range of 𝛽, consider that
Lyapunov function is

𝑉
𝑡
= 𝐽2
𝑡
,

Δ𝑉
𝑡
= 𝐽2
𝑡+1

− 𝐽2
𝑡

if Δ𝑉
𝑡
< 0,

(34)

and then dynamical system is guaranteed to be stable ifΔ𝑉
𝑡
<

0; that is, 𝐽
𝑡+1
−𝐽
𝑡
= (1/2𝑃𝐾)(𝐴𝛽4+𝐵𝛽4+𝐶𝛽4+𝑀𝛽) < 0 (29),

where 𝛽 is learning rate, since in the training process input
matrix remains the same during the whole training process.
To find the range of 𝛽, which satisfy 𝑔(𝛽) = (𝐴𝛽4 + 𝐵𝛽3 +

𝐶𝛽2 + 𝑀𝛽) < 0. Since 𝜕𝑔/𝜕𝛽, where has at least one real
root (Lemma 2) and one of them must give optimum 𝑔(𝛽).
Obviously minimum value of 𝑔(𝛽) gives the largest reduction
in 𝐽
𝑡
at each step of learning process. Equation (31) shows

that 𝑔(𝛽) has two or four real roots, one including 𝛽 = 0
(Lemma 2), such that minimum value of 𝛽 shows largest
reduction in error at two successive times and minimum
value is obtained by differentiating (31) with respect to 𝛽 we
have from (32):

𝜕𝑔

𝜕𝛽
= 4𝐴 (𝛽3 + 𝑎𝛽2 + 𝑏𝛽 + 𝐶) , (35)

where 𝑎 = 3𝐵/4𝐴, 𝑏 = 2𝐶/4𝐴, and 𝑐 = 𝑀/4𝐴.
Solving 𝜕𝑔/𝜕𝛽 = 0 gives 𝛽 which minimizes error in (5).

5. Simulation Results

To demonstrate the effectiveness and merit of proposed
FCPN, simulation results are presented and discussed. Four
different nonlinear dynamical systems and one general
benchmark problem known as Box-Jenkins model with time
series data are considered.

5.1. Performance Criteria. For accessing the performance
criteria of FCPN and comparing with Dynamic and Back
Propagation Network, we have evaluated various errors as
given below. In case of four dynamical models, it is recom-
mended to access criterion such as subset of the following.

Given 𝑁 pair of data points (𝑦(𝑘), 𝑦(𝑘)), where 𝑦(𝑘)
is output of system and 𝑦(𝑘) is output of controller, the
Maximum Absolute Error (MAE) is

𝐽MAE = 𝐽max = max
1≤𝑘≤𝑁

𝑦 (𝑘) − 𝑦 (𝑘)
 , (36)

the Sum of Squared Errors (SSE) is

𝐽SSE =
𝑁

∑
𝑘=1

(𝑦 (𝑘) − 𝑦 (𝑘))
2

, (37)

the Mean Squared Error (MSE) is

𝐽MSE =
1

𝑁

𝑁

∑
𝑘=1

(𝑦 (𝑘) − 𝑦 (𝑘))
2

, (38)
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Figure 4: (a) Mean Square Error of system (Example 1) using FCPN. (b) Performance of the controller using FCPN algorithm for Example 1.

and/or the Root Mean Squared Error (RMSE) is

𝐽RMSE = √𝐽MSE. (39)

The measure Variance Accounting Factor (VAF) is

𝐽VAF = (1 −
Var (𝑦 (𝑘) − 𝑦 (𝑘))

Var (𝑦 (𝑘))
) 100%. (40)

A related measure is the Normalized Mean Squared Error
(NMSE):

𝐽NMSE =
∑
𝑁

𝑘=1
(𝑦 (𝑘) − 𝑦 (𝑘))

2

∑
𝑁

𝑘=1
(𝑦 (𝑘) − 𝑦)

2
, (41)

and the Best Fit Rate (BFR) is

𝐽BFR = (1 −
√∑
𝑁

𝑘=1
(𝑦 (𝑘) − 𝑦 (𝑘))

2

∑
𝑁

𝑘=1
(𝑦 (𝑘) − 𝑦)

2
)100%. (42)

Example 1. The nonlinear dynamical system [24] is governed
by the following difference equation:

𝑦 (𝑘 + 1) = 0.3𝑦 (𝑘) + 0.6𝑦 (𝑘 − 1) + 𝑓 [𝑢 (𝑘)] . (43)

The nonlinear function in the system in this case is 𝑓(𝑢) =
𝑢3 + 0.3𝑢2 − 0.4𝑢, where 𝑦 and 𝑢 are uniformly distributed
in [−2, 2]. The objective of Example 1 is to control the system
to track reference output given as 250 sample data points.The
model has two inputs 𝑦(𝑘) and 𝑢(𝑘) and single output 𝑦(𝑘+1)
and the system identificationwas initially performedwith the
system input being uniformly distributed over [−2, 2]. The
FCPN controller uses two inputs 𝑦(𝑘) and 𝑢(𝑘) to produce
output 𝑦(𝑘 + 1). FCPN model governed by the difference
equation 𝑦(𝑘+1) = 0.3𝑦(𝑘)+0.6𝑦(𝑘−1)+𝑁[𝑢(𝑘)]was used.
Figures 4(a) and 4(b) show the error 𝑒(𝑘 + 1) = 𝑦(𝑘 + 1) −
𝑦(𝑘 + 1) and outputs of the dynamical system and the FCPN.

Table 1: Calculated various errors for Example 1.

NN model Different error calculation
MAE SSE MSE RMSE NMSE

FCPN 1.3364 0.1143 4.5709𝑒 − 004 0.0214 7.1627𝑒 − 004

Dynamic 5.8231 3.1918 0.0128 0.1130 0.0028
BPN 38.0666 48.1017 0.4810 0.6936 0.1035

As can be seen from the figure, the identification error is small
even when the input is changed to a sum of two sinusoids
𝑢(𝑘) = sin(2𝜋𝑘/250) + sin(2𝜋𝑘/25) at 𝑘 = 250.

Table 1 includes various calculated errors of different
NN models for Example 1. It can be seen from the table
that various errors calculated for FCPN are minimum as
compared to the DN and BPN.

Example 2. Thenonlinear dynamical system [24] is governed
by the following difference equation:

𝑦 (𝑘 + 1) = 𝑓 [𝑦
𝑝
(𝑘) , 𝑦

𝑝
(𝑘 − 1)] + 𝑢 (𝑘) , (44)

where

𝑓 [𝑦
𝑝
(𝑘) , 𝑦

𝑝
(𝑘 − 1)]

= [
𝑦
𝑝
(𝑘) 𝑦
𝑝
(𝑘 − 1) [𝑦

𝑝
(𝑘) + 2.5]

1 + 𝑦2
𝑝
(𝑘) + 𝑦2

𝑝
(𝑘 − 1)

] .

(45)

Theobjective of (44) is to control the system to track reference
output given 100 sample data points. The model has two
inputs𝑦(𝑘) and 𝑢(𝑘) and single output𝑦(𝑘+1) and the system
identification was initially performed with the system input
being uniformly distributed over [−2, 2]. Training and testing
samples contain 100 sample data points.The FCPN controller
uses two inputs 𝑦(𝑘) and 𝑢(𝑘) to output 𝑦(𝑘 + 1). FCPN
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Figure 5: (a) Mean Square Error of system (Example 2) using FCPN. (b) Performance of the controller using FCPN algorithm for Example 2.

Table 2: Calculated various errors for Example 2.

NN models Different error calculation
MAE SSE MSE RMSE NMSE

FCPN 0.1956 0.0032 3.2328𝑒 − 005 0.0057 2.7164𝑒 − 005

Dynamic 9.5152 2.9856 0.0299 0.1728 0.0308
BP 10.1494 4.5163 0.0452 0.2125 0.0323

network discussed earlier is used to identify the system from
input-output data and is described by the equation

𝑦 (𝑘 + 1) = 𝑁 [𝑦 (𝑘) , 𝑦 (𝑘 − 1)] + 𝑢 (𝑘) . (46)

For FCPN, the identification process involves the adjustment
of the weights of 𝑁 using FCL. FCPN identifier needs some
prior information concerning the input-output behavior of
the system before identification can be undertaken. FCL is
used to adjust the weights of the neural network so that the
error 𝑒(𝑘 + 1) = 𝑦(𝑘 + 1) − 𝑦(𝑘 + 1) is minimized as shown
in Figure 5(a). The behavior of the FCPN model for (16) is
shown in Figure 5(b). The input 𝑢(𝑘) was assumed to be a
random signal uniformly distributed in the interval [−2, 2].
The weights in the neural network were adjusted.

Table 2 includes various calculated errors of different
NN models for Example 2. It can be seen from the table
that various errors calculated for FCPN are minimum as
compared to the DN and BPN.

Example 3. Thenonlinear dynamical system [23] is governed
by the following difference equation:

𝑦 (𝑘 + 1) =
𝑦 (𝑘)

1 + 𝑦 (𝑘)2
+ 𝑢3 (𝑘) , (47)

which corresponds to 𝑓[𝑦(𝑘)] = 𝑦(𝑘)/(1 + 𝑦(𝑘)2) and
𝑔[𝑢(𝑘)] = 𝑢3(𝑘). FCPN network equation (47) is used to
identify the system from input-output data. Weights in the

Table 3: Calculated various errors and BFR for Example 3.

NN model MAE SSE MSE RMSE NMSE
FCPN 0.3519 0.0032 3.1709𝑒 − 005 0.0056 5.6371𝑒 − 006

Dynamic 5.5652 3.6158 0.0362 0.1902 0.0223
BP 42.6524 46.9937 0.4699 0.6855 0.2892

neural networks were adjusted for every instant of discrete
time steps.

The objective of (47) is to control the system to track
reference output given 100 sample data points.Themodel has
two inputs 𝑦(𝑘) and 𝑢(𝑘) and single output 𝑦(𝑘 + 1) and the
system identification was initially performed with the system
input being uniformly distributed over [−2, 2]. Training and
testing samples contain 250 sample data points. The FCPN
controller uses two inputs 𝑦(𝑘) and 𝑢(𝑘) to output 𝑦(𝑘 + 1).
The input data is generated using uniform distribution in
interval [−2, 2]. The function 𝑓 obtained by FCPN is used
to adjust the weights of the neural network so that the error
𝑒(𝑘 + 1) = 𝑦(𝑘 + 1) − 𝑦(𝑘 + 1) is minimized as shown in
Figure 6(a). In Figure 6(b), the desired outputs of the system
as well as the FCPN model are shown and are seen to be
indistinguishable.

Table 3 includes various calculated errors of different
NN models for Example 3. It can be seen from the table
that various errors calculated for FCPN are minimum as
compared to the DN and BPN.

Example 4. Thenonlinear dynamical system [24] is governed
by the difference equation (48). Generalized form of this
equation is Model IV. In this example, the system is assumed
to be of the form

𝑦
𝑝
(𝑘 + 1)

= 𝑓 [𝑦
𝑝
(𝑘) , 𝑦

𝑝
(𝑘 − 1) , 𝑦

𝑝
(𝑘 − 2) , 𝑢 (𝑘) , 𝑢 (𝑘 − 1)] ,

(48)
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Figure 6: (a) Mean Square Error of system (Example 3) using FCPN. (b) Performance of the controller using FCPN algorithm for Example 3.
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Figure 7: (a)Mean Square Error of system (Example 4) using FCPN. (b) Performance of the controller using FCPN algorithm for Example 4.

where the unknown function 𝑓 has the form

𝑓 [𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
] =

𝑥
1
𝑥
2
𝑥
3
𝑥
5
(𝑥
3
− 1) + 𝑥

4

1 + 𝑥2
3
+ 𝑥2
2

. (49)

In the identification model, which is approximated by FCPN,
Figure 7(b) shows the output of the system and the model
when the identification procedure carried random input
signal uniformly distributed in the interval [−1, 1]. The
performance of the model is studied and the error 𝑒(𝑘 +
1) = 𝑁[𝑦

𝑝
(𝑘 + 1)] is minimized as shown in Figure 7(a).

In Figure 7(b), the outputs of the system as well as output
of FCPN model are shown. Input to the system and the
identified model is given by 𝑢(𝑘) = sin(2𝜋𝑘/250) for 𝑘 ≤ 500
and 𝑢(𝑘) = 0.8 sin(2𝜋𝑘/250) + 0.2 sin(2𝜋𝑘/25) for 𝑘 > 500.

Table 4 includes various calculated errors of different
NN models for Example 4. It can be seen from the table
that various errors calculated for FCPN are minimum as
compared to the DN and BPN.

Table 4: Calculated various errors and BFR for Example 4.

NN models MAE SSE MSE RMSE NMSE
FCPN 30.4348 2.1931 0.0027 0.0524 0.0186
Dynamic 32.8952 6.4059 0.0080 0.0895 0.0276
BP 53.1988 13.4174 0.0168 0.1295 0.0844

Example 5. In this example we have used Box-Jenkins time
series [32], of 296 pairs of data measured from a gas furnace
system with single input 𝑢(𝑡) being gas flow rate and single
output 𝑦(𝑡) being CO

2
concentration in outlet gas. Training

samples and testing samples contained 196 and 100 data
points, respectively. The FCPN uses the two inputs, the
current state 𝑦(𝑘) and the desired state 𝑦𝑑(𝑘), to produce an
output which is 𝑦(𝑘) [33].

Figure 8(a) shows the mean squared control errors of
FCPN methods. Figure 8(b) shows the performance of the
controller with FCPN algorithm. Result shows that FCPN
algorithm enable us to appropriate the approximation using
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Figure 8: (a) Mean Square Error of system (Example 5) using FCPN. (b) Performance of the controller using FCPN algorithm for Example 5.

Table 5: BFR (%) values of NN models for various examples.

NN models BFR (%)
Example 1 Example 2 Example 3 Example 4

FCPN 97.32 99.48 99.76 86.35
DN 94.69 79.32 85.08 83.39
BPN 67.83 79.28 46.2234 70.94

fuzzy learning as given in equation (11) of Box Jenkins time
series data, based on calculation of BMN.

Table 5 shows BFR (%) various NN models for all Exam-
ples 1–5, respectively. It can be observed from Table 5 that the
Best Fit Rate found for FCPN is maximum as compared to
DN and BPN which shows better performance of the FCPN
network for nonlinear system.

6. Conclusions

FCPN is a neural network control method which was devel-
oped and presented. It is based on the concept of combining
FCL algorithm and CPN. The key ideas explored are the
use of the FCL algorithm for training the weights of the
instar-outstar. The performances of the FCPN controller
based training are tested using four nonlinear dynamical
systems and on time series (Box-Jenkins) data and compared
with the Dynamic Network and standard Back Propagation
algorithm. The comparative performances of the FCPN
algorithm and Dynamic Network, such as the number of
iterations and performance functions like MAE, MSE, SSE,
NMSE, BFR, and so forth, of FCPN and Dynamic Network
error are summarized in Tables 1–4. It can be seen that the
FCPN algorithm gives minimum errors as compared to the
Dynamic Network and standard Back Propagation Network
for all four models of nonlinear dynamical systems and Box-
Jenkins time series data. Results obtained from FCPN were
compared for various errors and it is clearly shown that FCPN
works much better for the control of nonlinear dynamical
systems.
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