
Research Article
A Security-Awareness Virtual Machine Management Scheme
Based on Chinese Wall Policy in Cloud Computing

Si Yu,1,2 Xiaolin Gui,1,2 Jiancai Lin,1,2 Feng Tian,1,2 Jianqiang Zhao,1,2,3 and Min Dai1,2

1 School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2 Shaanxi Province Key Laboratory of Computer Network, Xi’an Jiaotong University, Xi’an 710049, China
3 Xi’an Politics Institute, Xi’an 710049, China

Correspondence should be addressed to Xiaolin Gui; xlgui@mail.xjtu.edu.cn

Received 17 August 2013; Accepted 26 November 2013; Published 5 February 2014

Academic Editors: A. Rosa and A. Tsymbal

Copyright © 2014 Si Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cloud computing gets increasing attention for its capacity to leverage developers from infrastructure management tasks. However,
recent works reveal that side channel attacks can lead to privacy leakage in the cloud. Enhancing isolation between users is an
effective solution to eliminate the attack. In this paper, to eliminate side channel attacks, we investigate the isolation enhancement
scheme from the aspect of virtual machine (VM) management. The security-awareness VMs management scheme (SVMS), a VMs
isolation enhancement scheme to defend against side channel attacks, is proposed. First, we use the aggressive conflict of interest
relation (ACIR) and aggressive in ally with relation (AIAR) to describe user constraint relations. Second, based on the Chinese
wall policy, we put forward four isolation rules. Third, the VMs placement and migration algorithms are designed to enforce VMs
isolation between the conflict users. Finally, based on the normal distribution, we conduct a series of experiments to evaluate SVMS.
The experimental results show that SVMS is efficient in guaranteeing isolation between VMs owned by conflict users, while the
resource utilization rate decreases but not by much.

1. Introduction

With the promotion and development of cloud comput-
ing, virtualization technology gets increasing attention by
academia and industry. There is a broad consensus that vir-
tualization technology improves the security and reliability
of cloud computing. This is mainly because of the seemingly
strong isolation, which prevents the guest VMs located in
the same host from interfering with each other. However,
such logical isolation may not be sufficient [1]. Using the
side channel attacks (SCA), which is firstly introduced by
Kocher [2], malicious users can circumvent the isolation
mechanism and extract private information from other
users by analyzing responses of third party shared resources
[3–5].

According to whether the attacker and victim reside
in the same host, we can divide SCA into interhost SCA
and intrahost SCA. In the scenario of intrahost SCA, the

attacker resides in the samehostwith victim.Using the shared
resource in the host, such as data cache and instruction cache,
attackers can steal the private information from the victim
VMs [6–8]. In the scenario of interhost SCA, attacker and
victim are not coresident. This kind of SCA is always imple-
mented based on the network traffic, withwhich attackers can
steal private information from the VMs located in different
hosts [9, 10]. In this paper, we focus on the intrahost SCA.
In the following, SCA refers in particular to the intrahost
SCA.

To eliminate SCA, a variety of approaches to enhance
isolation have been proposed in the cloud. We categorize
them into two types, which are the approaches focused on
isolating the running of VMs (see, e.g., [11–14]) and the
approaches focused on isolating the shared resources (see,
e.g., [15–17]).The first type of approach achieves the isolation
by preventing the conflict VMs from running simultaneously.
The second type of approach prohibits the sharing of shared

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 805923, 12 pages
http://dx.doi.org/10.1155/2014/805923

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192723584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 The Scientific World Journal

resources. These approaches do represent major progress,
while, to the best of our knowledge, they are still limited in
several aspects.

(i) By using the first type of approach, the schedule of
legitimate VMs may be affected, which may lead to
VMs running failure. For example, oil-A and oil-
B are two coresident VMs, and they are in conflict
with each other. So, in the system with such access
controlmechanism, before the shutdown of oil-A, oil-
B cannot be granted to start up. If the oil-A is long-
time running, oil-B cannot be scheduled in a long
time.

(ii) When using the second type of approach, the moni-
toring system and mediation mechanism are needed,
which should probe all resource requests made by
eachVM andmake decisions onwhether to authorize
the requests quickly [12]. So, the software system
is very sophisticated. For example, in a SELinux
strict policy, there are about 30 000 policy statements.
On the other hand, a prohibitively large number of
operating system hooks (in the order of hundreds)
are needed, which makes the MAC policies for these
systems depend on details of the particular system
and the enforcement across a distributed system
difficult.

In this paper, we investigate the isolation issue from the
perspective of VMs management, including VMs placement
and VMs migration. The security-awareness VMs manage-
ment scheme (SVMS) based on Chinese wall policy is pro-
posed. Compared with existing isolation enhancing schemes,
the main contributions of this work are listed as follows.

(i) We calculate the aggressive conflict of interest relation
(ACIR) for the users according to the VMs traces. On
the other hand, by introducing the aggressive in ally
with relation (AIAR), we can restrain the placement
behavior for the new users who do not have VMs
traces.

(ii) Based on the Chinese wall policy, we put forward the
isolation rules. In these rules, we define whether to
authorize the request of placing VMs to host. And
we prove that these rules meet the simple-security
property and ∗-security property.

(iii) According to the isolation rules, we design the
VMs placement and migration solution calculation
algorithm, which places and migrates the VMs to
the proper hosts to guarantee the isolation between
conflict users.

(iv) We conduct a series of simulated experiments to
evaluate the efficacy of SVMS. In the experiments,
we use the normal distribution to simulate the users’
behavior, including theVMs traces andVMs requests,
and introduce the index of isolation degree and
resource utilization rate.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 demonstrates

the brief introduction to SCA in the cloud and Chinese wall
security. In Section 4, we present the overview design of
SVMS. The implementation details of SVMS are presented
in Section 5. In Section 6, we illustrate our experiments
and analyze the experimental results. Section 7 provides the
conclusions.

2. Related Work

2.1. Studies on Enhancing Isolation. Studies on enhancing
isolation in the virtualized computing environment can be
categorized into two types: the access control approaches and
the resource isolation approaches.

Access Control Approaches. Sailer et al. [11] presented the
sHype hypervisor security architecture, which enforced isola-
tion at the granularity of a virtual machine.McCune et al. [12]
introduced a Shamon approach for MAC enforcement across
distributed systems that completeMAC referencemonitoring
from two software layers. Jaeger et al. [13] evaluated the
ability of four policy models to express risk flow policies
and examined how such policies would be enforced in VM
systems to assess the possible risk of information leakage
due to a combination of overt channels and covert channels.
Cheng et al. [14] proposed the prioritized Chinese wall model
to reduce the risk of covert flows in VM system and enforced
the policy in sHype/Xen system. The above works focus on
prohibiting the simultaneous running of conflict VMs by
specific access control policies.

Resource Isolation Approaches. Raj et al. [15] proposed two
resource management approaches to provide security iso-
lation in the shared cloud infrastructure, which are cache
hierarchy aware core assignment and page coloring based
cache partitioning. Yasusi et al. [16] proposed two methods
to achieve resource isolation among virtual networks, which
was per-slice shaping and per-link policing. Jin et al. [17]
proposed a cache partitioningmechanism in the cloud, which
confined the L2 cache usage of each VM running on the
same host by modifying the page allocation algorithm in the
VMM. The above works focus on prohibiting the sharing of
shared resource to provide strong isolation in the virtualized
computing environment.

2.2. Studies on VM Placement. Speitkamp and Bichler [18]
presented decision models to optimally allocate source
servers to physical target servers and a heuristic to address
large-scale server consolidation projects. Wang et al. [19]
formulated the VM consolidation into a stochastic bin
packing program and proposed an online packing algorithm.
Kim et al. [20] placed virtual machines with matching algo-
rithm into servers based on measured traffic distribution of
VMs which could reduce oversubscription and increase link
utilization. Breitgand and Epstein [21] improved the perfor-
mance of work in [19], which abstracted oversubscription
factors as overflow probability. Fang et al. [22] presented
an approach, named VMPlanner, to optimize both virtual
machine placement and traffic flow routing so as to turn off

The Scientific World Journal 3

Server cluster

Accessing
matrix

Host

VM VM

VMM

User behavior
analyzing

Constraint relations

ACIR (with traces)

AIAR (no traces)

VMs
running
traces

Isolation rules

VMs placement
determining

Users interface

Requirements

VMs
placement
solution

Agent

Users

Host

Host

Host

Host

Host

VMs
migration
solution

· · ·

Figure 1: Overview of the architecture design for SVMS.

as many unneeded network elements as possible for power
saving.

In the field of VMs placement, there are lots of outstand-
ing achievements, andwe only list some significant ones. And
we can discover that the existing works focus on optimizing
allocation of resources. Although they are different from our
work, they provide us with a good reference. And this paper
represents a significant extension to our prior work [23].

3. Background: SCA and the Chinese
Wall Policy

In this section, we briefly introduce (1) SCA in the cloud and
(2) the Chinese wall policy.

3.1. SCA in the Cloud. In the cloud, to maximize efficiency,
multiple VMs owned by different users may be simultane-
ously assigned to execute on the same physical host. So, it is
possible for the attackers to use SCA to penetrate the isolation
between coresident VMs and extract private information.

According to the Trusted Computer Security Evaluation
Criteria (TCSEC), a side channel attack is any attack based
on information gained from the physical environment, as
opposed to brute force or theoretical weaknesses [24]. For
example, timing information, power consumption, or elec-
tromagnetic leaks can bring extra information. Commonly,
in the cloud, SCA consists of two major steps: placement
and extraction [4]. In the first step, the attackers should
try to locate their VMs in the same host with the VMs
of victim. According to [4], the attackers can achieve this
with considerable possibility in the Amazon EC2. In the
second step, the attackers first probe the usage of shared
resource.Then, based on the relationship between the shared
resource usage and private information, the attackers design
the leakagemodel to extract the private information from the
probed usage samples.

In the cloud, researchers have investigated how to use
SCA to steal information from other users. For example,
Zhang et al. [5] used the L2 cache based side channel
analysis as a defensive detection tool to exploit the malicious
coresident VM. Zhang et al. [25] used the L1 instruction
cache as side channel to extract the decryption key from
the coresidency VM. Okamura and Oyama [6] developed
CCCV, which created a side channel and communicated data
secretly using CPU loads between the Xen VMs. Xu et al. [7]
quantified the L2 cache cross-VM side channel with the bit
rates and assessed their ability to do harm.

3.2. Chinese Wall Policy. Chinese wall policy is firstly pro-
posed by Brewer and Nash [26], which is also called BN Chi-
nese wall policy. It has a three hierarchy architecture, includ-
ing lowest level, intermediate level, and highest level. The
lowest level consists of individual objects. The intermediate
level consists of the company datasets which contain objects
related to a single company. The highest level consists of
conflict of interests which contains the datasets of companies
in competition.

According to the definition of Brewer and Nash, Chinese
wall policy has the following two properties [26].

(i) Simple-security property. An object O can be read if
the subject has accessed a prior object O belonging
to the same dataset or the objects conflict of interest
set is new.

(ii) ∗-security property. Simple-security property should
be fulfilled for the target O and the writer has only
read data from the company dataset of O.

Since the Chinese wall policy takes advantage of the
mandatory enforcement and independent choice of users, it
has been applied in many fields. For example, various access
control models are proposed based on Chinese wall policy,
which can be implemented in the cloud effectively [27, 28].

4 The Scientific World Journal

Furthermore, Chinese wall policy is also applied in the field
of delegation [29].

In this paper, we focus on the variety of BN Chinese
wall policy, the aggressive Chinese wall policy which was
proposed by Lin [30]. Andwewill use the notations presented
in [30], such as ACIR and AIAR, to illustrate the constraint
relations for users.

4. Design of SVMS

In this section, we provide a high-level overview of the
architecture for SVMS. As shown in Figure 1, SVMS consists
of three major components, which are behavior sampling,
constraint relations analyzing, and placement determining.

(1) Behavior sampling. In each host, we deploy the agent
to record the behavior of VMs, thus obtaining the
VMs traces.

(2) Constraint relations analyzing. In this component, we
analyze the constraint relations. For the users who
have VMs traces, we calculate the ACIR. For the
new users who do not have VMs traces, we calculate
the AIAR. Then, combining the isolation rules and
constraint relations, we can get the access matrix
which records the maps between VMs and hosts
and provides feedback for the dynamical update for
constraint relations.

(3) Placement determining. According to the constraint
relations and accessmatrix, this component calculates
the VMs placement solutions. On the other hand,
when the ACIR of users changes, this component also
provides the VMs migration solutions to guarantee
the isolation between conflict users.

5. Implementation of SVMS

In this section, we describe the implementation details of
SVMS. First, we present the ACIR computation process.
Second, based on the Chinese wall policy, we put forward
the isolation rules. Third, we propose the VMs placement
solution and migration calculated algorithm.

5.1. Computing the ACIR. In the BN Chinese wall policy,
conflict of interest (CIR) is an equivalence relation. However,
in the scenario of this paper, CIR is a binary relation which
is reflexive, symmetric, and not transitive. For example, oil-
A, oil-B, and bank-C are three VMs, where oil-A and oil-B
are prohibited to reside in the same host; oil-B and bank-C
are also prohibited to reside in the same host. However, we
cannot deduce that oil-A and bank-C are prohibited in the
same host. So, based on the work of Lin [30], we use the ACIR
to describe the CIR for users.

Definition 1. Aggressive Conflict of Interest Relation (ACIR).
If user ui is aggressive conflict with user uj, denoted as ui
ACIR uj, then the VMs owned by ui are prohibited to reside
in the same host with the VMs owned by uj, and ACIR(ui) is
called as the ACIR set for ui.

Table 1: Example of information.

ID User Time domain Support
id
𝑖

𝑢
𝑗

td
𝑘

𝜎
𝑙

According to the previous analysis, we compute the ACIR
for users according to the VMs traces. To formulate the VMs
traces, we define a specific time period as a placement cycle.
And the placement cycle is divided into several time domains
with the same time span.Thenwe define the number of active
VMs in different time domains as VMs traces for different
users.

Based on the work of Pawlak [29], we put forward the
following steps to compute ACIR sets according to the VMs
traces.

Step 1. Forming the information table (IT). IT contains three
major attributes: user (uj), time domain (𝑡𝑑k), andVMs traces
value (𝜎l equals to the support factor defined in [29]), as
shown in Table 1.

Step 2. Computing the strength factor and certainty factor for
each record in IT. For the record {id

𝑖
, 𝑢
𝑗
, td
𝑘
, 𝜎
𝑙
}, the strength

factor and certainty factor are defined in (1). Consider

strength
𝑖
=

𝜎
𝑙

𝜎 (IT)
,

certainty
𝑖
= strength

𝑖
∗

𝜎 (IT)
𝜎 (𝑢
𝑗
)
,

(1)

where𝜎(IT) refers to the summary of support factor for all the
records in IT; 𝜎(𝑢

𝑗
) refers to the summary of support factor

for user 𝑢
𝑗
in IT.

Step 3. Computing the active time domains. For each record
in IT, if the certainty factor is larger than the threshold (e.g.,
0.2), we consider that the user is active in this time domain.
The denotation “uj → tdk” is used to represent that user uj is
active in time domain tdk. So, for any user uj, the active time
domain is T

𝑗
= {td
𝑘
| 𝑢
𝑗
→ td
𝑘
}.

Step 4. Forming the similarity matrix S{𝑠
𝑖𝑗
}, where 𝑠

𝑖𝑗
refers

to the similarity between ui and uj. Consider

𝑠
𝑖𝑗
=

{{{

{{{

{

0; 𝑖 = 𝑗 or
T
𝑗

= 0

T
𝑖
∩ T
𝑗

T
𝑗

; otherwise,
(2)

where |T
𝑗
| refers to the cardinality of T

𝑗
.

Step 5. Obtaining the ACIR sets. If sij is larger than 0, then ui
ACIR uj, which means uj ∈ ACIR(ui). Finally, we can get the
ACIR sets for the users who have VMs traces.

5.2. The Isolation Rules and AIAR. For the users who have
the VMs traces, using the previous steps, we can easily obtain
their ACIR sets. However, for the new users who do not have

The Scientific World Journal 5

VMs traces, we cannot compute the ACIR sets for them by
using these steps. To solve this problem, we introduce the
AIAR. For the new users, their VMs could only be placed to
the hosts which are occupied by the users in their AIAR sets.
In this section, we first define AIAR. Then, we propose the
isolation rules.

Definition 2. Aggressive In Ally with Relation (AIAR). If user
ui is aggressive in ally with uj, denoted as ui AIAR uj, then
the VMs owned by ui are permitted to reside in the same host
with the VMs owned by uj, and AIAR(ui) is called the AIAR
set for ui.

AIAR is an equivalence relation which is reflexive, sym-
metric, and transitive. And we will present how to compute
AIAR in the isolation rules. Consider

𝑎
𝑖𝑗
=

{{

{{

{

−1, against
0, neutral
1, favorable.

(3)

In this paper, we define the access matrix A{aij} as a two-
dimensional matrix: A :H × U → {−1, 0, 1}. The notations
“1”, “0”, and “−1” mean that the VM is favorable, neutral, and
against to be placed to the host, respectively, as shown in (3).
If the VM placement request to hi from uj(𝑅(𝑖, 𝑗)) is rejected,
then the entry aij is assigned to “−1”; if 𝑅(𝑖, 𝑗) is granted, then
aij is assigned to “1”; and if 𝑅(𝑖, 𝑗) is not determined, than aij
is assigned to “0”.

Based on the access matrix, we put forward the isolation
rules.

Rule 1. Initially, for all i and j, aij = 0.
Initially, each requestR(i, j) is neutral. In other words, any

VMs are neutral to be placed to any hosts initially.

Rule 2. aij = 0 ⇒ 𝑅(𝑖, 𝑗) is granted ∧ 𝑎
𝑖𝑗
= 1 ∧ ∀𝑙 ̸= 𝑗, ul ∈

AIAR(uj), ail = 1 ∧ ∀𝑙 ̸= 𝑗, ul ∈ ACIR(uj), ail = −1 ∧ update
AIAR(uj) according to Rule 5.

In this rule, we define the placement behavior when uj
is neutral to place VMs to hi. When the access permission
is neutral, we authorize that user uj can place VMs to the
host. Moreover, the users in AIAR(uj) are also authorized to
place VMs to the host. However, the users inACIR(uj) are not
allowed to place VMs to the host.

This rule applies especially for new users, whose ACIR
and AIAR are empty initially. In this scenario, the first access
request sent by new users is always granted. Then, the AIAR
is initialed, with which the behavior of new users is restrained
in the placement cycle.

Rule 3. aij = 1 ⇒ 𝑅(𝑖, 𝑗) is granted ∧∀𝑙 ̸= 𝑗, 𝑢
𝑙
∈ ACIR(uj),

ail = −1 ∧ ∀𝑙 ̸= j, ul ∈ AIAR(uj), ail = 1 ∧ update AIAR(uj)
according to Rule 5.

The placement behavior when uj are favorable to place his
VMs to hi is defined in this rule. If uj is granted to access hi or
has accessed hi, we authorize this request and grant the users

in AIAR(uj) to access hi. However, the users in ACIR(uj) are
rejected to access this host.

Rule 4. 𝑎
𝑖𝑗
= −1 ⇒ 𝑅(𝑖, 𝑗) is denied.

If uj is against to access hi, we denied his requests to place
VMs to hi.

Rule 5. R(i, j) is granted ∧ AICR(uj) ==NULL⇒ ∀l ̸= j, ail =
1, AIAR(uj) = {𝑙} ∪ AIAR(ul) ∪ AIAR(uj).

In this rule, we update AIAR for new users dynamically.
If uj is authorized to access hi, then AIAR(uj) should be
expanded by adding two kinds of users, including (1) the user
ul who is granted to access hi and (2) the users in AIAR(ul).

We put forward the above five rules based on Chinese
wall policy. According to our scenario, we use the access
permission to substitute for read and write permission. If the
object has the access permission, then he has the read and
write permission. And we can prove that the rules meet the
simple-security property and ∗-security property, which will
be detailed in the appendix.

5.3. The VMs Placement and Migration Solutions. In this
section, based on the constraint relations and isolation
rules, we propose the VMs placement solution calculated
algorithm to get the placement solutions. And we propose
the VMs migration solution calculated algorithm to obtain
the migration solutions when changing the ACIR of users.

5.3.1.The VMs Placement Solution Calculated Algorithm. The
basic idea of this algorithm is as follows. First, according
to user type (new user or not) and the isolation rules, we
obtain the candidate hosts which the user can access. Then,
we determine whether the available space of candidate hosts
is able to meet the needs of user. If the available space is not
enough, we add new hosts to the candidate hosts. Finally, we
place the VMs to the candidate hosts and update the access
matrix and constraint relations (AIAR for new users).

The detailed processes of this algorithm are shown in
Algorithm 1.

Regarding the input parameters for this algorithm, id
refers to the user identity; ur refers to the counts of requested
VMs; 𝐴 refers to the access matrix with m rows and n
columns; acir refers to the ACIR set for all the users in the
system. Finally, we output the updated access matrix.

In this algorithm, we introduce the following functions.
update() adds a new column to the access matrix when user
new is joined in. firstFitHost() is designed for the new user,
which gets the first available host and returns the identity
of this host. getAiar() initials the AIAR set for new user.
getCandHost() returns the available hosts which the user has
the access permission to according to his constraint relations.
There are two callingmode for getCandHost().Thefirstmode
is designed for the new user, which should input the AIAR set
and access matrix. The second mode is designed for the user
who has VMs traces, which should input id, ACIR set, and
access matrix. addNewHosts() is used to add new hosts to the
candidate hosts when the space cannot meet the user request.
getSolution() deploys the VMs to the candidate hosts.

6 The Scientific World Journal

input: id, ur, 𝐴, acir
output: 𝐴

(1) IF(aiar==NULL)
(2) 𝐴[𝑚, 𝑛 + 1] = update(𝐴[𝑚, 𝑛]);
(3) 𝑎 (∗, 𝑛 + 1) = 0;
(4) ℎ

𝑥
= firstFitHost(id, 𝐴);

(5) aiar = getAiar(id, ℎ
𝑥
);

(6) cHosts = getCandHosts(aiar, 𝐴);
(7) ELSE
(8) IF(newUser (id))
(9) cHosts = getCandHosts(aiar, 𝐴);
(10) ELSE
(11) cHosts = getCandHosts(id, acir, 𝐴);
(12) ENDIF
(13) ENDIF
(14) IF(cHosts.size < ur)
(15) addNewHosts(cHosts, (ur-cHosts.size)/ℎ𝑜𝑠𝑡𝑆𝑖𝑧𝑒 + 1);
(16) ENDIF
(17) placeSolution = getSolution(id, ur, cHosts);
(18) update(𝐴, aiar);

Algorithm 1: VMs placement solution calculated algorithm.

input: 𝐴, acir
output: 𝐴

(1) FOR(ℎ[]:𝐴[][])
(2) FOR(𝑢:ℎ[])
(3) coVMs[]= getCoVMs(𝑢);
(4) acirU[]= acir(𝑢);
(5) confVMs[]= sameElem(cVMs, confU);
(6) IF(confVMs! = NULL)
(7) 𝑛𝑈 = h⋅num(𝑢);
(8) nConf = h⋅num(confVMs);
(9) IF(𝑛𝑈 > nConf.sum())
(10) cHosts = getCandHosts(𝑢, acir, 𝐴);
(11) getSolution(𝑢, 𝑛𝑈, cHosts);
(12) update(𝐴);
(13) ELSE
(14) FOR(𝑛𝑐: nConf.user)
(15) cHosts = getCandHosts(𝑛𝑐, acir, 𝐴);
(16) getSolution(𝑛𝑐, nConf.num(𝑛𝑐), cHosts);
(17) update(𝐴);
(18) ENDFOR
(19) ENDIF
(20) ENDIF
(21) ENFFOR
(22) ENDFOR

Algorithm 2: VMs migration solution calculated algorithm.

5.3.2. The VMs Migration Solution Calculated Algorithm. In
the scenario ofmultiplacement cycles, ACIR changeswith the
change of VMs traces. So, the VMs owned by conflict users
may be placed in the same host when changing the ACIR. To
solve this problem, we use VMs migration to guarantee the
isolation between conflict users.

The detailed processes for this algorithm are shown in
Algorithm 2.

In this algorithm, we first look for the host where the
VMs owned by conflict users reside. Then, we calculate
the minimum number of VMs which should be migrated
to remove the conflict. Finally, we obtain the candidate
destination hosts for the migrated VMs.

In this algorithm, h[i] records the identity of users whose
VMs locate in host hi, where u refers to the user identity.
coVMs[] records the users whose VMs are colocated with

The Scientific World Journal 7

user u, and acirU[] records the ACIR of u. confVM[] refers
to the union of coVMs[] and acirU[], which is calculated by
sameElem(). nU is an integer, which refers to the number of
VMs of u located in hi; nConf is a structure, which records nU
for each user in confVM[] and the user identity. The above
two variables can be obtained by num().

6. Experiments

Theoverall evaluation of SVMS comprised of (1) experiments
to evaluate the feasibility of ACIR set calculation and (2)

experiments to evaluate the performance of SVMS with the
index of isolation degree and resource utilization.

6.1. Feasibility of ACIR Calculation. In this experiment, we
mainly focus on evaluating the feasibility of calculating ACIR
for different users.
Experimental Data Preparation. In the simulated experiment,
we set one day as a placement cycle which was divided into
8 time domains with the same time span. 80 users were
simulated, and they were divided into 8 groups (groupi, i =
1∼8). Each group consisted of 10 users.

The normal distribution 𝑋 ∼ 𝑁(𝜇, 𝜎) was used to simu-
late the VMs traces for different users, where the cumulative
probability in the range of [𝑥 − 0.5, 𝑥 + 0.5] was used as
the probability that VMs were active in time domain tdi.
By converting the normal distribution to standard normal
distribution𝑌 = (𝑋−𝜇)/𝜎, we could calculate the probability
as (4). Consider

𝑝 (td
𝑖
) = Φ[

td
𝑖
+ 0.5 − 𝜇

𝜎
] − Φ[

td
𝑖
− 0.5 − 𝜇

𝜎
] . (4)

To obtain the probabilities, two key parameters should
be set, which were the expectation 𝜇 and standard deviation
𝜎. For the users in groupi, we set the expectation as tdi.
The standard deviation was simulated randomly generated
from a specific range [𝜎min, 𝜎max]. Using 𝜎max, we could state
that the probability for each group was similar with each
other. Using 𝜎min, we could state that the probability for the
specific groupwas close to 1 and the probabilities for the other
groups were close to 0. According to the 3𝜎 principle, 3𝜎
accounted for about 99.73%. So when 3𝜎-(−3𝜎) equaled to 1,
we could insure that about 99.73% of the total VMs would
be active in one time domain. In this case, 𝜎 equaled to 0.13.
According to the theoretical calculation, we could observe
that when assigning 3 to 𝜎max, the probability for each time
domain was the most similar. Therefore, in the experiment,
we randomly generated 𝜎 in the range [0.13, 3]. In Figure 2,
we demonstrated some significant results when 𝜇 was
equal to 5.

We used the random integer to describe the total number
of VMs (𝜂i) owned by user ui, where the range is [1, 50]. So,
the number of active VMs owned by ui in time domain tdj
was ⌊𝜂

𝑖
∗ 𝑝(td

𝑗
)⌋.

Finally, we could simulate the VMs traces for the users in
one placement cycle. And the ACIR set for each user could be
calculated. In the experiment, we repeated the process for 100
times. In the repeated processes, the expectation of users was

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8

Pr
ob

ab
ili

ty

Time domain

𝜇 = 5, 𝜎 = 0.13

𝜇 = 5, 𝜎 = 3

Figure 2: The cumulative probabilities for different time domains.

constant, while the standard deviation and total number of
VMs owned by users were randomly generated for each time.

To quantify the aggressive conflict relations between
users, we defined the average conflict times.

Definition 3. Average Conflict Times (act). If user uk (uk ∈

groupi) was aggressive conflict with ckj users in groupj, then
average conflict times between groupi and groupj (actij) are
defined as (5). Consider

act
𝑖𝑗
=

1

𝑚
∑
𝑢𝑘∈group𝑖

𝑐
𝑘𝑗
. (5)

Since the user is not aggressive conflictedwith himself, so,
if i = j,m = |groupi|−1; if i ̸= j,m = |groupi|.

Finally, the experimental results for average conflict times
were shown in Figure 3.

Taking group
1
as an example, from Figure 3, we could

easily observe that the act11 was about 60; act12 was about 50;
act
13
was about 25; and act

1x (x > 3) was 0. For other groups,
we could observe the similar experimental results, where the
value of actij decreased with the increase of distance between
groupi and groupj. In other words, the regular in conflict
times was consistent with the behavior of users (VMs traces).

Brief Summary. In the experiment, based on normal distri-
bution, we generated the simulated VMs traces. Considering
the diversity of users’ behavior, we divided the users into
different groups. The users in the same group had the same
expectation, while the standard deviation was randomly
generated. According to the experimental results, we could
draw the following conclusions: (1) the more the similarity
between VMs traces for different users, the larger the conflict
probability between the users would be; and (2) according
to the VMs traces, we could obtain the ACIR set for users
effectively by using the conflict analysis approach.

6.2. Evaluating the Isolation and Resource Utilization.
Through the theoretical proof we could know that our
proposed isolation rules met both simple-security property
and ∗-security property. In this section, we aimed to evaluate

8 The Scientific World Journal

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

0

20

40

60

80

100

User group

User group

Av
er

ag
e c

on
fli

ct
 ti

m
es

Figure 3: The average conflict times between different user groups.

the possibility for the VMs owned by different users to be
located in the same host.

In the experiments, we used the index of isolation degree
and resource utilization rate to evaluate the performance of
SVMS, compared with the existing resource-awareness VM
placement schemes (RVMPS). A variety of RVMPS specific to
different scenarios were proposed (see, e.g., [18–22]). In our
experiments, we considered that the basic idea for RVMPS
was to use the fewest resources to meet the VMs needs of
users.

Definition 4. Coresidency Times (ct). If there are c hosts
in which the VMs owned by ui and uj reside, then the
coresidency times between ui and uj are c, where i ̸= j, which
is denoted as ctij = c.

Definition 5. Isolation Degree (𝜄). For any user ui and uj, i ̸=

j, if uj ∈ ACIR(ui) and ctij = c; then the isolation degree for
the system is defined as (6)

𝜄 =
1

1 + 0.5 ∗ ∑
𝑖
ct
𝑖𝑗

. (6)

According to Definition 5, if VMs owned by conflict
users were not placed in the same host, which meant that
∑ ct
𝑖𝑗

= 0, then the isolation degree was 1. In this case, the
efficacy of isolation was optimal. On the contrary, a larger
value of ct for conflict users referred to a smaller value of 𝜄,
which meant that the isolation of the placement solution was
inefficient.

Definition 6. Resource Utilization Rate (rur). The maximum
number of VMs which simultaneously run in host hk was
ak, and the real number of VMs run in this host was bk,
then the resource utilization rate for this host was bk/ak. For
the system, the resource utilization rate was defined as (7).
Consider

rur =
∑
𝑘
𝑏
𝑘

∑
𝑘
𝑎
𝑘

. (7)

In this section, we used the same approach to generate
the VMs requests for different users, where the number of
requested VMs for user ui in time domain 𝑡𝑑j was rij =
⌊𝑝(td
𝑗
) ∗ 𝜂
𝑖
⌋. And we considered the case of one placement

cycle and the case of multiplacement cycles.

6.2.1. The Case of One Placement Cycle. In the case of one
placement cycle, the VMs traces would not be recounted. So,
ACIR for users would not change. In this case, we considered
two scenarios, including (1)no newuser joined in and (2) one
new user joined in, to evaluate the performance of SVMS and
the impact of new user. Using the repeated tests, we obtained
the isolation degree and resource utilization rate.
(1) The Scenario of No New Users Joined In. In the scenario
of no new users joined in, using the above approaches to
generate the test data, we compared SVMS with RVMPS; the
experimental results are shown in Figures 4 and 5.

In Figure 4, we demonstrated the experimental results of
isolation degree in the scenario of no new users joined in.
The black vertical on the left side referred to the coordinates
for the “SVMS” curve. And the red vertical on the right side
referred to the coordinates for the “RVMPS” curve. From this
figure, we could easily observe that the isolation degree was
kept as 1 in the repeated 10 tests, which meant that SVMS
could guarantee that VMs owned by conflict users would not
be placed to the same host. However, the isolation degree of
RVMPS was very small, which was about 0.002 to 0.004 in
the repeated tests. The small value of isolation degree meant
that coresidency times for conflict users were about 500 to
1000. Generally, coresidency times for conflict users were
related with the number of VMs owned by the conflict users
and scheduling order of users. Due to the limited space, we
will not investigate these factors here. Overall, in the same
experimental settings, comparedwith SVMS andRVMPS, we
could conclude that the VMs owned by conflict users would
be placed to the same host with high probability when the
conflict relations were not considered, which could introduce
the vulnerability of side channel attacks.

In Figure 5, we demonstrated the resource utilization rate
for SVMS and RVMPS. From this figure, we could observe
that rur was all close to 100% by using RVMPS, which meant
that all the hosts could run at full load. While by using
SVMS, rur was less than the resource utilization rate of
RVMPS, which was about 92% to 96%. The experimental
results indicated that SVMS made a trade-off between the
isolation and resource utilization. In other words, by using
SVMS, we guaranteed the isolation between conflict users by
using more physical resources.
(2) The Scenario of NewUser Joined In. In this experiment, we
considered new users joined in and evaluated the impact of
new users. Implicitly, we considered only one new user, since
the placement behavior of new users was determined by their
AIAR sets and had nothing to do with ACIR sets of other
users. In this scenario, for the new user, we did not need to
generate his VMs traces, and we used 𝑟

𝑛𝑗
= ⌊𝑝(td

𝑗
) ∗ 𝜂
𝑖
⌋ to

refer to the number of requested VMs in time domain 𝑡𝑑j.

The Scientific World Journal 9

0

0.002

0.004

0.006

0.008

0.01

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10

Is
ol

at
io

n
de

gr
ee

Experiment numbers

SVMS
RVMPS

Figure 4: Isolation degrees when no new users joined in.

0.80

0.84

0.88

0.92

0.96

1.00

1 2 3 4 5 6 7 8 9 10

Re
so

ur
ce

 u
til

iz
at

io
n

ra
te

Experiment numbers

SVMS
RVMPS

Figure 5: Resource utilizations when no new users joined in.

For other users, we used the same approach to generate the
test data.

Using the same experimental steps, we could obtain
the experimental results for isolation degree and resource
utilization rate, as shown in Figures 6 and 7.

In Figure 6, the black vertical on the left side referred to
the coordinates for the “SVMS” curve. And the red vertical
on the right side referred to the coordinates for the “RVMPS”
curve. As shown in Figure 6, the experimental results for
isolation degree were similar with the experimental results
shown in Figure 4, regardless of SVMS or RVMPS, where
id for SVMS was 1 and id for RVMPS was about 0.002 to
0.004. Although only one new user was considered, we could
conclude that new users had no impact on the isolation
between the conflict users.

In Figure 7, we demonstrated the results of resource
utilization rate when a new user joined in. Comparing the
results shown in Figures 7 and 5, we could observe that the
new user had no impact on rur when using RVMPS to get
the placement solutions, for the rur was close to 1 with these
two schemes. However, using SVMSmade a difference on rur
from using RVMPS. First, the value of rur was smaller. By
using SVMS, the smallest rur was about 83% and the average
rur was about 90%. Second, the variance of rur was larger.

0

0.002

0.004

0.006

0.008

0.01

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10

Is
ol

at
io

n
de

gr
ee

Experiment numbers

SVMS
RVMPS

Figure 6: Isolation degrees when one new user joined in.

0.80

0.84

0.88

0.92

0.96

1.00

Re
so

ur
ce

 u
til

iz
at

io
n

Experiment numbers

SVMS
RVMPS

1 2 3 4 5 6 7 8 9 10

Figure 7: Resource utilizations when no new users joined in.

The difference between the largest rur and smallest rur was
about 12%.Thereweremainly two reasons. First, in SVMS,we
used the AIAR to restrain the target location of VMs owned
by new users, which would reduce the range of available
candidate hosts.Thenwe startedmore new hosts, resulting in
more resource wastes. Second, the AIAR set was initialed and
dynamically updated according to the first fit host, while the
first fit host was chosen randomly, and the VMs requests of
new users were also generated randomly. As a result the value
of rur in repeated tests would fluctuate with the deployment
situation of the first fit host and the VMs requests.

6.2.2. The Case of Multiplacement Cycles. To investigate the
performance of SVMS in isolation and resource utiliza-
tion, we only considered one placement cycle previously.
As analyzed above, in this case, AIAR of users did not
change. However, the cloud is dynamic; VMs traces would
change at any time, which brought about the change to the
ACIR sets. When ACIR of users changed, in SVMS, we
used the VMs migration to guarantee the isolation between
conflict users. In this section, we mainly investigated the
impact of VMs migration on system performance. And the
indexes of migration ratio and resource utilization were
used.

10 The Scientific World Journal

In this experiment, we used the same approaches to
generate the test data for the users who had VMs traces. For
the new users, we defined a random function ranControl()→
{0, 1}. ranControl randomly returned “0” and “1.” If “0” was
returned, no new users joined in during the tests. And if “1”
was returned, one new user joined in. And we used the same
approaches in Section 6.2.1 to generate the test data for the
new user.

Definition 7. Migration Ratio (mr). In the cloud, mr was
defined as the proportion of migrated VMs in all the VMs,
which is denoted as (8). Consider

mr =
𝜂
𝑚

𝜂all
∗ 100%, (8)

where 𝜂m referred to the number of migrated VMs and 𝜂all
referred to the number of all VMs in the cloud.

In this experiment, we designed the following steps.
(1) Generating the VMs traces and calculating the ACIR
sets. (2) Generating the VMs requests and using SVMS and
RVMPS to obtain the placement solutions. (3) Recounting
the VMs traces after the VMs placement and recalculating
the ACIR sets for all the users. (4) Using the VMs migration
solution calculated algorithm to get the migration solutions
to guarantee the isolation between conflict users.

Finally, we could obtain the experimental results as shown
in Figures 8 and 9.

In Figure 8, we demonstrated the results of migration
ratios. As shown in this figure, the migration ratios were
about 13% in the repeated tests, which meant that we should
migrate about 13% VMs to guarantee the isolation. In our
opinion, themigration ratios were a bit large.We believed this
was mainly because the requested VMs were independent on
the history VMs traces. Then the update VMs traces would
be very different from the history VMs traces, which resulted
in the big difference in the ACIR of users.

We compared the resource utilization rate before and
after the VMs migration by using SVMS in Figure 9. As
shown in this figure, the resource utilization rate fluctuated
around 90% before the migration.While, after migration, rur
fluctuated around 86%, which decreased a bit compared with
the results before migration. Through this experiment, we
could draw the conclusion that to adapt the changed ACIR,
more physical resources were needed.

Brief Summary. In this section, we mainly focused on
evaluating SVMS. First, we considered the isolation and
resource utilizations in the case of one placement cycle
where the ACIR sets did not change. Then, we considered
the case of multiplacement cycles, where the ACIR sets
changed. By analyzing the experimental results, we could
draw the following conclusions. (1) SVMS could guarantee
the isolation between the conflict users effectively. In our
repeated tests, the probability of VMs owned by conflict users
being located in the same host was 0. (2) The joining in of
the new user had no impact on the isolation. However, the
resource utilization rate would decrease. (3) To guarantee

0.00

0.10

0.20

0.30

0.40

1 2 3 4 5 6 7 8 9 10

M
ig

ra
tio

n
ra

tio

Experiment numbers

Migration ratio

Figure 8: Migration ratios.

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10

Re
so

ur
ce

 u
til

iz
at

io
n

Experiment numbers

Rur before migration
Rur after migration

Figure 9: Resource utilization rate.

the isolation after the change of ACIR, we should migrate a
portion of VMs and start more hosts.

7. Conclusions

We proposed a security VMs management scheme (SVMS)
for eliminating the SCA in the cloud. The major insights are
that the sophisticated decision making system and specific
monitoring systems are not required. In SVMS, we only need
the agent system to collect the VMs traces for analyzing
the constraint relations, and we can insure that the VMs
owned by conflict users are placed to the different hosts.
We should notice that SVMS makes a trade-off between
the security and resource utilization rates, which means that
SVMS needs more resources compared with other resource-
awareness placement schemes.

The work in this paper is very preliminary, but demon-
strates that it is feasible to reduce the vulnerability by VMs
placement and migration. And we believe that there are still
some limitations and challenges that remain to be solved.
First, in the current solution, we consider that the users
should be isolated from each other according to their VMs
traces, which is too strict for eliminating the SCA in some
ways. So, more efficient approaches for conflict analysis are
needed, even though we believe that SVMS has a flexible

The Scientific World Journal 11

frameworkwhich can adapt to different approaches for calcu-
lating the conflict relations of users. Second, according to the
experimental results, the cost of VMs migration is large. So,
it is necessary to design a more efficient migration approach.
We believe the VCG mechanism in game theory would be a
good tool for solving this problem. Third, we would like to
examine the trade-offs between security (isolation), resource
utilization rate, and performance degradation. Therefore,
we can propose the security solutions which can meet the
individual needs of users.The issues mentioned above are left
as future works.

Appendix

TheoremA.1. The isolation rules meet the ∗-security property:
user u can assess host h; then no host ℎ which is accessed by u
is aggressive conflict with h.

Proof . We use the method of proof by contradiction. For any
two different users, uj and uk, satisfy the condition that uk ∈

ACIR(uj) ∧ 𝑎(𝑖, 𝑗) = 1 ∧ 𝑅(𝑖, 𝑘) is granted.
In this scenario, 𝑎(𝑖, 𝑘)may be assigned to “0” or “1.”

(1) If 𝑎(𝑖, 𝑘) = 0, according to Rule 2, when 𝑅(𝑖, 𝑘) is
granted, we can obtain that 𝑎(𝑖, 𝑘) = 1 ∧ 𝑎(𝑖, 𝑗) =
−1, which means that 𝑅(𝑖, 𝑗) will be rejected. The
conclusion contradicts the condition.

(2) If 𝑎(𝑖, 𝑘) = 1, according to Rule 3, when 𝑅(𝑖, 𝑘) is
granted, we can obtain that 𝑎(𝑖, 𝑘) = 1 ∧ 𝑎(𝑖, 𝑗) =
−1, which means that 𝑅(𝑖, 𝑗) will be rejected. The
conclusion contradicts the condition.

Combining the two cases, we can conclude that if u is
granted to access ℎ which is aggressive conflict with h, then u
cannot access h.The conclusion contradicts the condition. So
the condition does not hold. So, our proposed isolation rules
meet ∗-security property.

Corollary A.2. The isolation rules meet the simple-security
property.

Proof. According to the definition of ∗-security property, if
the rules meet ∗-security property, they should meet simple-
security property.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported in part by NSFC under Grant
61172090, National Science and Technology Major Project
under Grant 2012ZX03002001, Ph.D. Programs Founda-
tion of Ministry of Education of China under Grant
20120201110013, and Scientific and Technological Project in
Shaanxi Province under Grant 2012K06-30.

References

[1] N. Sonehara, I. Echizen, and S.Wohlgemuth, “Isolation in cloud
computing and privacy-enhancing technologies: suitability of
privacy-enhancing technologies for separating data usage in
business processes,” Business and Information Systems Engineer-
ing, vol. 3, no. 3, pp. 155–162, 2011.

[2] P. C. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in Advances in Cryp-
tology (CRYPTO ’96), vol. 1109 of Lecture Notes in Computer
Science, pp. 104–113, 1996.

[3] S. K. Gorantla, S. Kadloor, N. Kiyavash, T. P. Coleman, I. S.
Moskowitz, andM. H. Kang, “Characterizing the efficacy of the
nrl network pump in mitigating covert timing channels,” IEEE
Transactions on Information Forensics and Security, vol. 7, no. 1,
pp. 64–75, 2012.

[4] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,
get off ofmy cloud: exploring information leakage in third-party
compute clouds,” in Proceedings of the 16th ACM Conference on
Computer and Communications Security (CCS ’09), pp. 199–212,
Chicago, Ill, USA, November 2009.

[5] Y. Q. Zhang, A. Juels, A. Oprea, andM. K. Reiter, “HomeAlone:
co-residency detection in the cloud via side-channel analysis,”
in Proceedings of the IEEE Symposium on Security and Privacy
(SP ’11), pp. 313–328, Berkeley, Calif, USA, May 2011.

[6] K. Okamura and Y. Oyama, “Load-based covert channels
between Xen virtual machines,” in Proceedings of the 25th
Annual ACM Symposium on Applied Computing (SAC ’10), pp.
173–180, Sierre, Switzerland, March 2010.

[7] Y. J. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R.
Schlichting, “An exploration of L2 cache covert channels in vir-
tualized environments,” in Proceedings of the ACM Conference
on Computer and Communications Security, pp. 29–39, Chicago,
Ill, USA, October 2011.

[8] S. Yu, X. L. Gui, J. C. Lin, J. F. Wang, and X. J. Zhang, “Detecting
VMsCo-residency in the cloud: using cache-based side channel
attacks,” Electronics and Electrical Engineering, vol. 19, no. 5, pp.
73–78, 2013.

[9] Z. Ling, J. Z. Luo, Y. Zhang, M. Yang, X. W. Fu, and W. Yu, “A
novel network delay based side-channel attack: modeling and
defense,” in Proceedings of the IEEE International Conference on
Computer Communications (IEEE INFOCOM ’12), pp. 2390–
2398, Orlando, Fla, USA, 2012.

[10] Y. L. Zhang, M. Li, K. Bai, M. Yu, and W. Y. Zang, “Incen-
tive compatible moving target defense against VM-colocations
attacks in clouds,” in IFIP Advances in Information and Commu-
nication Technology, pp. 388–399, Heraklion, Greece, 2012.

[11] R. Sailer, T. Jaeger, E. Valdez et al., “Building a MAC-based
security architecture for the Xen open-source hypervisor,” in
Proceedings of the 21st Annual Computer Security Applications
Conference (ACSAC ’05), pp. 276–285, Tucson, Ariz, USA,
December 2005.

[12] J. M. McCune, T. Jaeger, S. Berger, R. Cáceres, and R. Sailer,
“Shamon: a system for distributedmandatory access control,” in
Proceedings of the 22nd Annual Computer Security Applications
Conference (ACSAC ’06), pp. 23–32, Miami Beach, Fla, USA,
December 2006.

[13] T. Jaeger, R. Sailer, and Y. Sreenivasan, “Managing the risk
of covert information flows in virtual machine systems,” in
Proceedings of the 12th ACM Symposium on Access Control
Models and Technologies (SACMAT ’07), pp. 81–90, Sophia
Antipolis, France, June 2007.

12 The Scientific World Journal

[14] G. Cheng, H. Jin, D. Zou, A. K. Ohoussou, and F. Zhao,
“A prioritized chinese wall model for managing the covert
information flows in virtual machine systems,” in Proceedings
of the 9th International Conference for YoungComputer Scientists
(ICYCS ’08), pp. 1481–1487, Zhangjiajie, China, November 2008.

[15] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource man-
agement for isolation enhanced cloud services,” in Proceedings
of the ACM Computer and Communications Security (CCS ’09),
pp. 77–84, Chicago, Ill, USA, November 2009.

[16] K. Yasusi, S. Kei, and N. Akihiro, “Network-resource isolation
for virtualization nodes,” IEICE Transactions on Communica-
tions, vol. 96, no. 1, pp. 20–30, 2013.

[17] X. Jin, H. Chen, X. Wang et al., “A simple cache partitioning
approach in a virtualized environment,” in Proceedings of the
IEEE International Symposium on Parallel and Distributed
Processing with Applications (ISPA ’09), pp. 519–524, Piscataway,
NJ, USA, August 2009.

[18] B. Speitkamp and M. Bichler, “A mathematical programming
approach for server consolidation problems in virtualized data
centers,” IEEE Transactions on Services Computing, vol. 3, no. 4,
pp. 266–278, 2010.

[19] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual
machines with dynamic bandwidth demand in data centers,”
in Proceedings of the 30th IEEE International Conference on
Computer Communications (IEEE INFOCOM ’11), pp. 2861–
2865, Shanghai, China, April 2011.

[20] G. Kim,H. Park, J. Yu, andW. Lee, “Virtualmachines placement
for network isolation in clouds,” in Proceedings of the ACM
Research in Applied Computation Symposium, pp. 243–248, San
Antonio, Tex, USA, 2012.

[21] D. Breitgand and A. Epstein, “Improving consolidation of
virtual machines with risk-aware bandwidth oversubscription
in compute clouds,” in Proceedings of the IEEE International
Conference on Computer Communications (IEEE INFOCOM
’12), Orlando, Fla, USA, 2012.

[22] W. W. Fang, X. M. Liang, S. X. Li, L. Chiaraviglio, and N.
X. Xiong, “VMPlanner: optimizing virtual machine placement
and traffic flow routing to reduce network power costs in cloud
data centers,” Computer Networks, vol. 57, no. 1, pp. 179–196,
2013.

[23] S. Yu, X. L. Gui, F. Tian, P. Yang, and J. Q. Zhao, “A security-
awareness virtual machine placement scheme in the cloud,” in
Proceedings of the 15th IEEE International Conference on High
Performance Computing and Communications, pp. 1078–1083,
Zhangjiajie, China, 2013.

[24] L. M. Vaquero, L. Rodero-Merino, and D. Morán, “Locking the
sky: a survey on IaaS cloud security,” Computing, vol. 91, no. 1,
pp. 93–118, 2011.

[25] Y.Q. Zhang, A. Juels,M. K. Reiter, andT. Ristenpart, “Cross-VM
side channels and their use to extract private keys,” in Proceed-
ings of the ACM Conference on Computer and Communications
Security, pp. 305–316, Raleigh, NC, USA, 2012.

[26] D. F. C. Brewer and M. J. Nash, “The Chinese wall security
policy,” in IEEE Symposium on Security and Privacy, pp. 206–
214, Oakland, Calif, USA, 1989.

[27] T.-H. Tsai, Y.-C. Chen, H.-C. Huang, P.-M. Huang, and K.-
S. Chou, “A practical Chinese wall security model in cloud
computing,” in Proceedings of the 13th Asia-Pacific Network
Operations and Management Symposium: Managing Clouds,
Smart Networks and Services (APNOMS ’11), pp. 1–4, Taipei,
Taiwan, September 2011.

[28] D. Q. Zou, L. Shi, and H. Jin, “DVM-MAC: a mandatory access
control system in distributed virtual computing environment,”
in Proceedings of the 15th International Conference on Parallel
and Distributed Systems (ICPADS ’09), pp. 556–563, Shenzhen,
China, December 2009.

[29] Z. Pawlak, “Some remarks on conflict analysis,” European
Journal of Operational Research, vol. 166, no. 3, pp. 649–654,
2005.

[30] T. Y. Lin, “Chinese wall security policy—an aggressive model,”
in Proceedings of the 5th Annual Computer Security Application,
pp. 282–289, Tucson, Ariz, USA, December 1989.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

