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A mathematical model for the relationship between the populations of giant pandas and two kinds of bamboo is established. We
use the impulsive perturbations to take into account the effect of a sudden collapse of bamboo as a food source. We show that this
system is uniformly bounded. Using the Floquet theory and comparison techniques of impulsive equations, we find conditions for
the local and global stabilities of the giant panda-free periodic solution. Moreover, we obtain sufficient conditions for the system to
be permanent. The results provide a theoretical basis for giant panda habitat protection.

1. Introduction

The giant panda is a highly specialized Ursid, approximately
its 99% of their diet is bamboo [1]. Many of these bamboo
species sexually reproduce by synchronous semelparity, that
is, the bamboos of a given species within a given region
flower at the same time and then die. If the particular bamboo
species is one that pandas locally depend upon, there can be a
great reduction in local carrying capacity. For example, in the
middle of the 1970s and the beginning of 1980s, a large area
of Fargesia denudata in Minshan Mountains and Bashania
fangiana in Qionglai Mountains bloomed and died, causing
the death of at least 138 and 144 giant pandas, respectively [2].

Yuan et al. may be the first person who have developed
mathematical models for the relationship between giant pan-
das and bamboo [3]. After that some mathematical models
are presented by some scholars [4, 5]. Guo et al. described an
improved mathematical model for the relationship between
the populations of giant pandas (Ailuropoda melanoleuca)
and bamboo by adding a correction term which takes into
account the effect of a sudden collapse of bamboo as a
food source [5]. Modified by the above, we shall establish
an ecological model of the population ecology on the three
populations of the giant panda and two kinds of bamboo.

Impulsive differential equations, that is, differential equa-
tions involving an impulse effect, appear as a natural descrip-
tion of observed evolution phenomena of several real-world
problems [6, 7]. It is known that many biological phenomena
involving thresholds, bursting rhythm models in biology, do
exhibit impulse effects. The differing varieties of bamboo go
through periodic die-offs as part of their renewal cycle. The
bamboo, at the end of its life cycle, will bloom and drop its
seeds and then dies. Often vast areas of the bamboo forest
disappear at the same time. Generally died-back bamboo
should take from 10 to 20 years before it can support a
panda population again [1, 8]. So we can use impulse effect
to describe bamboo flowering phenomenon. In this paper,
we will consider an impulsive differential system of the
population ecology on the three populations of the giant
panda and two kinds of bamboo:
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where 𝑥
1
(𝑡) and 𝑥

2
(𝑡) are the respective densities of two

kinds of bamboo at time 𝑡 and 𝑥
3
(𝑡) is the density of the

giant panda. 𝑎
𝑖0
(𝑖 = 1, 2) denote the birthrate of two kinds

of bamboo, respectively. 𝑎
𝑖𝑖
(𝑖 = 1, 2) denote the density

restriction coefficients of the two kinds of bamboo. 𝑎
𝑖3
(𝑖 =

1, 2) are the predation rate of giant panda feeding upon
two kinds of bamboo, respectively. (𝑎

3𝑖
/𝑎
𝑖3
) (𝑖 = 1, 2) are

the transformation rate of giant panda due to predation on
bamboo. Most predator-prey relationships are complicated
by the predator’s use of multiple prey items or by prey being
used by multiple predators. The bamboo-panda relationship
does, however, simplify to a binary one such as those
modelled by the Lotka-Volterra equations. Although giant
pandas do eat other items, their limited remaining habitat has
reduced their ability to move on to other species of bamboo
which are not flowering [9–11].

The organization of the paper is as follows. Section 2
deals with some notation and definitions together with a
few auxiliary results related to the comparison theorem,
positivity, and boundedness of solutions. Section 3 is devoted
to studying the stability of the giant panda-free periodic
solutions. In Section 4, we find the conditions which ensure
the giant panda to be permanent. The paper ends with
discussion on the results obtained in the previous sections.

2. Preliminaries

In this section we will introduce some notations and def-
initions together with a few auxiliary results related to the
comparison theorem, which will be useful for establishing
our results.

Let R
+
= [0, +∞), R∗

+
= (0, +∞), and R3

+
= {𝑥 =
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3
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2
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3
≥ 0}. Denote asN the set of all of

nonnegative integers and as 𝑓 = (𝑓
1
, 𝑓
2
, 𝑓
3
)
𝑇 the right-hand

sides of the first three equations (1). Let 𝑉 : R
+
× R3
+
→ R
+
,

and then 𝑉 is said to belong to class 𝑉
0
if

(1) 𝑉 is continuous on ((𝑛−1)𝑇, (𝑛+ 𝑙−1)𝑇]×R3
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∪((𝑛+
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0
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+ and 𝑛𝑇+.
(2) 𝑉 is locally Lipschitzian in 𝑥.

Definition 1. Let 𝑉 ∈ 𝑉
0
, for (𝑡, 𝑥) ∈ ((𝑛 − 1)𝑇, (𝑛 + 𝑙 − 1)𝑇] ×

R3
+
, and the upper right derivative of 𝑉 with respect to the

impulsive differential system (1) is defined as

𝐷
+
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ℎ→0+

1

ℎ
[𝑉 (𝑡 + ℎ, 𝑥 + ℎ𝑓 (𝑡, 𝑥) − 𝑉 (𝑡, 𝑥))] .

(2)

The solution of system (1) is piecewise continuous func-
tion 𝑋 : R

+
× R3
+
, 𝑋(𝑡) is continuous on ((𝑛 − 1)𝑇, (𝑛 + 𝑙 −

1)𝑇]∪((𝑛+𝑙−1)𝑇, 𝑛𝑇] and𝑋(𝑡+
0
) = lim

𝑡→ 𝑡0
𝑋(𝑡) exists, where

𝑡
0
= (𝑛 + 𝑙 − 1)𝑇

+ and 𝑛𝑇+. The smoothness properties of 𝑓
guarantee the global existence and uniqueness of solution of
system (1) for details, see [12]. Given a solution 𝑋(𝑡) of (1),
defined on [𝑡

0
, 𝑡
0
+ 𝑎) with 𝑎 > 0, we say that a solution 𝑌(𝑡)

of (1) is a proper continuation to the right of 𝑋(𝑡) if 𝑌(𝑡) is
defined on [𝑡

0
, 𝑡
0
+ 𝑏) for some 𝑏 > 𝑎 and 𝑋(𝑡) = 𝑌(𝑡) for

𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎). The interval [𝑡

0
, 𝑡
0
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interval of existence of solution (saturated solution) 𝑋(𝑡) of
(1) if 𝑥(𝑡) is well defined on [𝑡

0
, 𝑡
0
+ 𝑎) and it doesnot have

any proper continuation to the right. For other results on
impulsive differential equations, see [12, 13].

Lemma 2 (see [12]). Suppose 𝑉 ∈ 𝑉
0
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+
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where 𝑔 : R
+
×R
+
→ R satisfies.

(H): 𝑔 is continuous on ((𝑛−1)𝑇, (𝑛+ 𝑙−1)𝑇]×R
+
∪((𝑛+

𝑙 − 1)𝑇, 𝑛𝑇] × R
+
and the limit lim
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exists, where 𝑡
0
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+ and 𝑛𝑇+, and is finite for 𝑥 ∈ R
+

and 𝑛 ∈ N, and 𝜓
1
, 𝜓
2
: R
+

→ R
+
are nondecreasing for

all 𝑛 ∈ N. Let 𝑟(𝑡) be the maximal solution for the impulsive
Cauchy problem:
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defined on [0,∞). Then 𝑉(0
+
, 𝑥
0
) ≤ 𝑢

0
implies that

𝑉(𝑡, 𝑥(𝑡)) ≤ 𝑟(𝑡), 𝑡 ≥ 0, where 𝑥(𝑡) is any solution of (3).

Note that under appropriate conditions (such that, 𝑔 is
locally Lipschitz continuous with 𝑥 in ((𝑛 − 1)𝑇, (𝑛 + 𝑙 −

1)𝑇] × R
+
∪ ((𝑛 + 𝑙 − 1)𝑇, 𝑛𝑇] × R

+
etc. see Remark 2.3

and Theorem 2.3 of [13] for the details) the Cauchy problem
(3) has a unique solution and in that case 𝑟(𝑡) becomes
the unique solution of (4). We now indicate a result which
provides estimation for the solution of a system of differential
inequalities. Let PC(R

+
,R)(PC1(R

+
,R)) denote the class

if real piecewise continuous (real piecewise continuously
differentiable) functions are defined on R

+
.

Lemma 3 (see [12]). Let the function 𝑢 ∈ 𝑃𝐶
1
(R
+
,R) satisfy

the inequalities:

𝑑𝑢

𝑑𝑡
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𝑘
) + ℎ
𝑘
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𝑢 (0
+
) ≤ (≥) 𝑢

0
,

(5)
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where 𝑝, 𝑓 ∈ 𝑃𝐶(R
+
,R) and 𝑑

𝑘
≥ 0, ℎ

𝑘
and 𝑢

0
are constants,

and {𝜏
𝑘
}
𝑘≥0

is a strictly increasing sequence of positive real
number. Then, for 𝑡 > 0
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+ ∑
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(6)

Using Lemma 3, it is possible to prove that the solution
of the Cauchy problem (1) with strictly positive initial value
remains strictly positive.

Lemma 4. The positive octant (R3
+
) is an invariant region for

system (1).

Proof. Let us consider (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) : [0, 𝑇

0
] → R3 a

saturated solution of system (1) with a strictly positive initial
value (𝑥
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, 𝑥
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, 𝑥
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). By Lemma 2, we can obtain that, for 0 <
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(7)

where [𝑥] represents the largest integer not exceeding 𝑥. That
is, (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) remains strictly positive on [0, 𝑇

0
].

Lemma 5. All solutions (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) of (1) with initial

value (𝑥
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, 𝑥
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, 𝑥
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) ∈ R3
+
are bounded.

Proof. Let (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) be a solution of (1) with a

positive initial value (𝑥
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𝑎
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𝑥
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(𝑡) , 𝑡 ≥ 0. (8)

Then, if 𝑡 ̸= 𝑛𝑇, 𝑡 ̸= (𝑛 + 𝑙 − 1)𝑇, and 𝑡 > 0, we obtain that
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𝑎
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1
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𝑥
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𝑥
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𝑥
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3
.

(9)

Then

𝑑𝑉

𝑑𝑡
+ 𝑎
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𝑉 (𝑡) = 𝑥

1
(
𝑎
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𝑎
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𝑎
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−
𝑎
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𝑎
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𝑎
13

𝑥
1
)

+ 𝑥
2
(
𝑎
20
𝑎
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𝑎
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𝑎
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𝑎
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𝑎
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𝑥
2
) − 𝑎
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𝑥
2

3
,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇, 𝑡 > 0.

(10)

As the right-hand side of (10) is bounded from above denoted
by𝐷, it follows that

𝑑𝑉

𝑑𝑡
+ 𝑎
30
𝑉 (𝑡) ≤ 𝐷, 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇, 𝑡 > 0 (11)

together with

𝑉 ((𝑛 + 𝑙 − 1) 𝑇
+
) ≤ (1 − 𝛼)𝑉 ((𝑛 + 𝑙 − 1) 𝑇) ,

𝑉 (𝑛𝑇
+
) ≤ (1 − 𝛽)𝑉 (𝑛𝑇) .

(12)

By Lemma 3, it follows that

𝑉 (𝑡) ≤ 𝑉 (0
+
)( ∏

0<(𝑛+𝑙−1)𝑇<𝑡

(1 − 𝛼) ∏

0<𝑛𝑇<𝑡

(1 − 𝛽) 𝑒
−𝑎30𝑡)

+ 𝐷∫

𝑡

0

[ ∏

0<(𝑛+𝑙−1)𝑇<𝑡

(1 − 𝛼) ∏

0<𝑛𝑇<𝑡

(1 − 𝛽)] 𝑒
−𝑎30(𝑡−𝑠)𝑑𝑠,

(13)

which yields

𝑉 (𝑡) ≤ 𝑉 (0
+
) 𝑒
−𝑎30𝑡 +

𝐷 (1 − 𝑒
−𝑎30𝑡)

𝑎
30

, 𝑡 > 0 (14)

and since the limit of the right-hand side of (14) for 𝑡 → ∞

is

𝑉 (𝑡) ≤
𝐷

𝑎
30

< ∞, (15)

it easily follows that 𝑉(𝑡) is bounded in its domain. Con-
sequently, (𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) are bounded by a constant

“𝐷/𝑎
30
” for sufficiently lager 𝑡.

3. Stability of the Giant Panda-Free
Periodic Solutions

First, we will give the basic properties of the following
differential equations considering the absence of the giant
panda.
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When the giant panda 𝑥
3
(𝑡) is eradicated, it is easy to see

that the equations in (1) decouple, and then we consider the
properties of the subsystems:

𝑑𝑥
1

𝑑𝑡
= 𝑥
1
(𝑎
10
− 𝑎
11
𝑥
1
) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑥
1
(𝑡) = −𝛼𝑥

1
(𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑥
1
(0
+
) = 𝑥
10
,

(16)

𝑑𝑥
2

𝑑𝑡
= 𝑥
2
(𝑎
20
− 𝑎
22
𝑥
2
) , 𝑡 ̸= 𝑛𝑇,

Δ𝑥
2
(𝑡) = −𝛽𝑥

2
(𝑡) , 𝑡 = 𝑛𝑇,

𝑥
2
(0
+
) = 𝑥
20
.

(17)

Lemma 6 (see [14]). Suppose that ln(1 − 𝛼) + 𝑎
10
𝑇 > 0, then

the system (16) has a periodic solution 𝑥∗
1
(𝑡)with this notation,

and the following properties are satisfied:

(i) ∫

𝑇

0

𝑥
∗

1
(𝑡) 𝑑𝑡 =

1

𝑎
11

[ln (1 − 𝛼) + 𝑎
10
𝑇] ,

(ii) lim
𝑡→∞

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
∗

1
(𝑡)
󵄨󵄨󵄨󵄨 = 0

(18)

for all solutions 𝑥
1
(𝑡) of (16) starting with strictly positive 𝑥

10
.

Similarly, we have the following Lemma 7.

Lemma 7. Suppose that ln(1 − 𝛽) + 𝑎
20
𝑇 > 0, then the system

(17) has a periodic solution 𝑥
∗

2
(𝑡) with this notation, and the

following properties are satisfied:

(iii) ∫

𝑇

0

𝑥
∗

1
(𝑡) 𝑑𝑡 =

1

𝑎
22

[ln (1 − 𝛽) + 𝑎
20
𝑇] ,

(iv) lim
𝑡→∞

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 = 0

(19)

for all solutions 𝑥
2
(𝑡) of (17) starting with strictly positive 𝑥

20
.

It follows from Lemmas 6 and 7 that the system (1) has a
giant panda-free periodic solution (𝑥∗

1
(𝑡), 𝑥
∗

2
(𝑡), 0).

Now, we study the local stability of the giant panda-free
periodic solution (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡), 0) by means of the Floquent

theory. (We can see the details from Page 26 to 35 of [13].)

Theorem 8. Suppose that ln(1−𝛼)+𝑎
10
𝑇 > 0 and ln(1−𝛽)+

𝑎
20
𝑇 > 0 and

− 𝑎
30
𝑇 +

𝑎
31

𝑎
11

(ln (1 − 𝛼) + 𝑎
10
𝑇) +

𝑎
32

𝑎
22

(ln (1 − 𝛽) + 𝑎
20
𝑇)

< 0

(20)

hold, and then the giant panda-free periodic solution (𝑥
∗

1
(𝑡),

𝑥
∗

2
(𝑡), 0) is locally stable.

Proof. The local stability of the periodic solution (𝑥
∗

1
(𝑡),

𝑥
∗

2
(𝑡), 0) may be determined by considering the behavior of

small-amplitude perturbations of the solution. Define

𝑥
1
(𝑡) = 𝑢 (𝑡) + 𝑥

∗

1
, 𝑥

2
(𝑡) = V (𝑡) + 𝑥∗

2
,

𝑥
3
(𝑡) = 𝑤 (𝑡) .

(21)

Substituting (21) into system (1), it is possible to obtain a
linearization of the system as follows:

𝑑𝑢 (𝑡)

𝑑𝑡
= (𝑎
10
− 2𝑎
11
𝑥
∗

1
(𝑡)) 𝑢 (𝑡) − 𝑎

13
𝑥
∗

1
(𝑡) 𝑤 (𝑡) ,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

𝑑V (𝑡)
𝑑𝑡

= (𝑎
20
− 2𝑎
22
𝑥
∗

2
(𝑡)) V (𝑡) − 𝑎

23
𝑥
∗

2
(𝑡) 𝑤 (𝑡) ,

𝑡 ̸= 𝑛𝑇,

𝑑𝑤 (𝑡)

𝑑𝑡
= (−𝑎

30
+ 𝑎
31
𝑥
∗

1
(𝑡) + 𝑎

32
𝑥
∗

2
(𝑡)) 𝑤 (𝑡) ,

(22)

which can be written as

(

𝑢 (𝑡)

V (𝑡)
𝑤 (𝑡)

) = Φ (𝑡)(

𝑢 (0)

V (0)
𝑤 (0)

) , 0 ≤ 𝑡 ≤ 𝑇, (23)

where Φ(𝑡) satisfies

𝑑Φ (𝑡)

𝑑𝑡

= (

𝑎
10
− 2𝑎
11
𝑥
∗

1
0 −𝑎

13
𝑥
∗

1

0 𝑎
20
− 2𝑎
22
𝑥
∗

2
−𝑎
23
𝑥
∗

2

0 0 −𝑎
30
+ 𝑎
31
𝑥
∗

1
+ 𝑎
32
𝑥
∗

2

),

(24)

Φ(0) = 𝐼, and 𝐼 is the identity matrix, so the fundamental
solution matrix is

Φ (𝑡) = (

exp(∫
𝑡

0

(𝑎
10
− 2𝑎
11
𝑥
∗

1
(𝑠)) 𝑑𝑠) 0 ∗

0 exp(∫
𝑡

0

(𝑎
20
− 2𝑎
22
𝑥
∗

1
(𝑠)) 𝑑𝑠) ∗∗

0 0 Δ

), (25)
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For the upper triangular matrix, there is no need to calculate
the exact forms of∗ and∗∗ as it is not required in the analysis
that follows. And Δ = exp(∫𝑡

0
(−𝑎
30
+ 𝑎
31
𝑥
∗

1
(𝑠) + 𝑎

32
𝑥
∗

2
(𝑠))𝑑𝑠).

The resetting impulsive condition of system (1) becomes

Δ𝑢 (𝑡) = −𝛼𝑢 (𝑡) ,

ΔV (𝑡) = 0,

Δ𝑤 (𝑡) = 0,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑢 (𝑡) = 0,

ΔV (𝑡) = −𝛽V (𝑡) ,

Δ𝑤 (𝑡) = 0.

𝑡 = 𝑛𝑇.

(26)

All of the eigenvalues of

𝑆 = (

1 − 𝛼 0 0

0 1 0

0 0 1

)(

1 0 0

0 1 − 𝛽 0

0 0 1

) ×(

exp(∫
𝑡

0

(𝑎
10
− 2𝑎
11
𝑥
∗

1
(𝑠)) 𝑑𝑠) 0 ∗

0 exp(∫
𝑡

0

(𝑎
20
− 2𝑎
22
𝑥
∗

1
(𝑠)) 𝑑𝑠) ∗∗

0 0 Δ

) (27)

are

𝜆
1
= (1 − 𝛼) exp(∫

𝑡

0

(𝑎
10
− 2𝑎
11
𝑥
∗

1
(𝑠)) 𝑑𝑠)

= (1 − 𝛼) exp [− ln (1 − 𝛼) − 𝑎
10
𝑇] ,

𝜆
2
= (1 − 𝛽) exp(∫

𝑡

0

(𝑎
20
− 2𝑎
22
𝑥
∗

2
(𝑠)) 𝑑𝑠)

= (1 − 𝛽) exp [− ln (1 − 𝛽) − 𝑎
20
𝑇] ,

𝜆
3
= exp(∫

𝑡

0

(−𝑎
30
+ 𝑎
31
𝑥
∗

1
(𝑠) + 𝑎

32
𝑥
∗

2
(𝑠)) 𝑑𝑠)

= exp( − 𝑎
30
𝑇 +

𝑎
31

𝑎
11

(ln (1 − 𝛼) + 𝑎
10
𝑇)

+
𝑎
32

𝑎
22

(ln (1 − 𝛽) + 𝑎
20
𝑇)) .

(28)

Since ln(1−𝛼)+𝑎
10
𝑇 > 0, ln(1−𝛽)+𝑎

20
𝑇 > 0, and condition

(20) hold, it is obvious that 0 < 𝜆
1
< 1, 0 < 𝜆

2
< 1, and

0 < 𝜆
3
< 1, which implies that (𝑥∗

1
(𝑡), 𝑥
∗

2
(𝑡), 0) is stable.

If the reverse of (20) is satisfied, then 𝜆
3

> 1 and
(𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), 0) is unstable.

Theorem 9. If the conditions of Theorem 8 are satisfied, the
giant panda-free periodic solution (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡), 0) is globally

asymptotically stable.

Proof. Choose 𝜀
1
> 0, 𝜀

2
> 0 small enough that if condition

(20) holds,

𝜌 = exp( − 𝑎
30
𝑇 + 𝑎
31
𝜀
1
𝑇 + 𝑎
32
𝜀
2
𝑇

+
𝑎
31

𝑎
11

[ln (1 − 𝛼) + 𝑎
10
𝑇]

+
𝑎
32

𝑎
22

[ln (1 − 𝛽) + 𝑎
20
𝑇]) < 1.

(29)

It is seen that
𝑑𝑥
1

𝑑𝑡
≤ 𝑥
1
(𝑎
10
− 𝑎
11
𝑥
1
) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑥
1
(𝑡) = −𝛼𝑥

1
(𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑥
1
(0
+
) = 𝑥
10
,

(30)

and so by Lemmas 2 and 3,

𝑥
1
(𝑡) ≤ 𝑥

∗

1
(𝑡) + 𝜀

1
, for 𝑡 ≥ 0, (31)

where 𝑥∗
1
(𝑡) is the periodic solution of the system

𝑑𝑢

𝑑𝑡
= 𝑢 (𝑡) (𝑎

10
− 𝑎
11
𝑢 (𝑡)) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑢 (𝑡) = −𝛼𝑢 (𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑢 (0
+
) = 𝑥
10
,

(32)

𝑢(𝑡) → 𝑥
∗

1
(𝑡), 𝑡 → ∞, and

∫

𝑇

0

𝑥
∗

1
(𝑡) 𝑑𝑡 =

1

𝑎
11

[ln (1 − 𝛼) + 𝑎
10
𝑇] . (33)

Similarly,

𝑥
2
(𝑡) ≤ 𝑥

∗

2
(𝑡) + 𝜀

2
, for 𝑡 ≥ 0, (34)

where 𝑥∗
2
(𝑡) is the periodic solution of the system

𝑑V
𝑑𝑡

= V (𝑡) (𝑎
20
− 𝑎
22
V (𝑡)) , 𝑡 ̸= 𝑛𝑇,

ΔV (𝑡) = −𝛼V (𝑡) , 𝑡 = 𝑛𝑇,

V (0+) = 𝑥
20
,

(35)

V(𝑡) → 𝑥
∗

2
(𝑡), 𝑡 → ∞, and

∫

𝑇

0

𝑥
∗

2
(𝑡) 𝑑𝑡 =

1

𝑎
22

[ln (1 − 𝛽) + 𝑎
20
𝑇] . (36)
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Therefore,

𝑑𝑥
3

𝑑𝑡
≤ 𝑥
3
(−𝑎
30
+ 𝑎
31
(𝑥
∗

1
(𝑡) + 𝜀

1
) + 𝑎
32
(𝑥
∗

2
(𝑡) + 𝜀

2
)) .

(37)

Integrating (37) over ((𝑛 + 𝑙 − 1)𝑇, (𝑛 + 𝑙)𝑇) yields

𝑥
3
((𝑛 + 𝑙) 𝑇) ≤ 𝑥

3
((𝑛 + 𝑙 − 1) 𝑇

+
)

× exp∫
(𝑛+𝑙)𝑇

(𝑛+𝑙−1)𝑇

(−𝑎
30
+ 𝑎
31
(𝑥
∗

1
(𝑡) + 𝜀

1
)

+ 𝑎
32
(𝑥
∗

2
(𝑡) + 𝜀

2
)) 𝑑𝑡

≤ 𝑥
3
((𝑛 + 𝑙 − 1) 𝑇)

× exp(−𝑎
30
𝑇 +

𝑎
31

𝑎
11

(ln (1 − 𝛼) + 𝑎
10
𝑇)

+
𝑎
32

𝑎
22

(ln (1 − 𝛽) + 𝑎
20
𝑇)

+ (𝑎
31
𝜀
1
+ 𝑎
32
𝜀
2
) 𝑇) .

= 𝑥
3
((𝑛 + 𝑙 − 1) 𝑇) 𝜌.

(38)

Therefore

𝑥
3
((𝑛 + 𝑙 + 𝑘) 𝑇) ≤ 𝑥

3
((𝑛 + 𝑙 + 𝑘 − 1) 𝑇) 𝜌

≤ 𝑥
3
((𝑛 + 𝑙 − 1) 𝑇) 𝜌

𝑘
.

(39)

𝜌
𝑘
→ 0 as 𝑘 → ∞. This implies that 𝑥

3
(𝑡) → 0 as 𝑡 → ∞.

Next, we prove that 𝑥
1
(𝑡) → 𝑥

∗

1
(𝑡) and 𝑥

2
(𝑡) → 𝑥

∗

2
(𝑡) as

𝑡 → ∞ if lim
𝑡→∞

𝑥
3
(𝑡) = 0. For 𝜀

3
> 0 there exists a 𝑇

1
> 0

such that 0 < 𝑥
3
(𝑡) < 𝜀

3
, 𝑡 > 𝑇

1
. Without loss of generality,

we may assume that 0 < 𝑥
3
(𝑡) < 𝜀

3
for all 𝑡 ≥ 0. Then we have

𝑑𝑥
1

𝑑𝑡
≥ 𝑥
1
(𝑎
10
− 𝑎
11
𝑥
1
− 𝑎
13
𝜀
3
) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑥
1
(𝑡) = −𝛼𝑥

1
(𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇.

(40)

By Lemmas 2 and 3, we have

𝑥
1
(𝑡) ≥ 𝑥

1
(𝑡) − 𝜀

1
, for 𝑡 ≥ 0, (41)

where 𝑥
1
(𝑡) is the periodic solution of the system

𝑑𝑢

𝑑𝑡
= 𝑢 (𝑡) (𝑎

10
− 𝑎
11
𝑢 (𝑡) − 𝑎

13
𝜀
3
) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑢 (𝑡) = −𝛼𝑢 (𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑢 (0
+
) = 𝑥
10
,

(42)

𝑢(𝑡) → 𝑥
1
(𝑡) as 𝑡 → ∞, and

∫

𝑇

0

𝑥
1
(𝑡) 𝑑𝑡 =

1

𝑎
11

[ln (1 − 𝛼) + (𝑎
10
− 𝑎
13
𝜀
3
) 𝑇] . (43)

Therefore, for 𝜀
1
> 0, we have

𝑥
1
(𝑡) − 𝜀

1
≤ 𝑥
1
(𝑡) ≤ 𝑥

∗

1
(𝑡) + 𝜀

1 (44)

for 𝑡 large enough. Let 𝜀
3
→ 0, andwe get 𝑥∗

1
(𝑡)−𝜀
1
≤ 𝑥
1
(𝑡) ≤

𝑥
∗

1
(𝑡)+𝜀
1
for large 𝑡, which implies 𝑥

1
(𝑡) → 𝑥

∗

1
(𝑡) as 𝑡 → ∞.

Similarly, we can get that 𝑥
2
(𝑡) → 𝑥

∗

2
(𝑡) as 𝑡 → ∞. This

completes the proof.

Remark 10. Condition (20) can be rewritten as follows:

𝑇 <
(𝑎
31
/𝑎
11
) ln (1 − 𝛼) + (𝑎

32
/𝑎
22
) ln (1 − 𝛽)

𝑎
30
− (𝑎
31
/𝑎
11
) 𝑎
10
− (𝑎
32
/𝑎
22
) 𝑎
20

. (45)

Denote 𝑇∗ = ((𝑎
31
/𝑎
11
) ln(1 − 𝛼) + (𝑎

32
/𝑎
22
) ln(1 − 𝛽))/(𝑎

30
−

(𝑎
31
/𝑎
11
)𝑎
10
−(𝑎
32
/𝑎
22
)𝑎
20
), andwe find that when𝑇 < 𝑇

∗, the
giant panda-free periodic solution is globally asymptotically
stable. That is to say, in this case, the giant panda will be
extinct. In biology, when the period of bamboo flowing is
smaller than the threshold 𝑇∗, the bamboo cannot be revived
to support giant panda again, so giant panda will die by
starvation.

4. Permanence

We make mention of the definition of permanence before
starting the permanence of system (1).

Definition 11. System (1) is said to be permanent if there exist
two positive constants 𝑚 and 𝑀 such that every positive
solution (𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) of system (1) with 𝑥

10
, 𝑥
20
, 𝑥
30
>

0 satisfies 𝑚 ≤ 𝑥
1
(𝑡) ≤ 𝑀, 𝑚 ≤ 𝑥

2
(𝑡) ≤ 𝑀, and 𝑚 ≤ 𝑥

3
(𝑡) ≤

𝑀 for sufficiently large 𝑡.

Theorem12. Suppose that ln(1−𝛼)+(𝑎
10
−𝑎
13
𝑀)𝑇 > 0, ln(1−

𝛽) + (𝑎
20
− 𝑎
23
)𝑇 > 0, and

− 𝑎
30
𝑇 +

𝑎
31

𝑎
11

[ln (1 − 𝛼) + 𝑎
10
𝑇] +

𝑎
32

𝑎
22

[ln (1 − 𝛽) + 𝑎
20
𝑇]

> 0

(46)

hold, and system (1) is permanent, where𝑀 is upper bound of
the solution of system (1).

Proof. Let (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) be a solution of (1). From

Lemma 3, there exists a constant 𝑀 > 0 such that 𝑥
1
(𝑡) ≤

𝑀, 𝑥
2
(𝑡) ≤ 𝑀, 𝑥

3
(𝑡) ≤ 𝑀 for each solution 𝑋 =

(𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) of (1) for all sufficiently large 𝑡. The first

equation of (1) implies

𝑥
1
(𝑡) ≥ 𝑥

1
(𝑎
10
− 𝑎
11
𝑥
1
− 𝑎
13
𝑀) . (47)

By Lemmas 2 and 3, we have

𝑥
1
(𝑡) ≥ 𝑢

∗
(𝑡) − 𝜀 ≡ 𝑚

1
, for sufficiently small 𝜀 > 0,

(48)
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where 𝑢∗(𝑡) is the periodic solution of system:

𝑑𝑢

𝑑𝑡
= 𝑢 (𝑡) (𝑎

10
− 𝑎
11
𝑢 (𝑡) − 𝑎

13
𝑀) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑢 (𝑡) = −𝛼𝑢 (𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑢 (0
+
) = 𝑥
10
,

(49)

𝑢(𝑡) → 𝑢
∗
(𝑡), 𝑡 → ∞, and

∫

𝑇

0

𝑢
∗
(𝑡) 𝑑𝑡 =

1

𝑎
11

[ln (1 − 𝛼) + (𝑎
10
− 𝑎
13
𝑀)𝑇] . (50)

Similarly, if ln(1 − 𝛽) + (𝑎
20
− 𝑎
23
𝑀)𝑇 > 0 holds, we can get

𝑥
2
(𝑡) > V∗(𝑡) − 𝜀 ≡ 𝑚

2
, where V∗(𝑡) is the periodic solution of

system:

𝑑V
𝑑𝑡

= V (𝑡) (𝑎
20
− 𝑎
22
V (𝑡) − 𝑎

23
𝑀) , 𝑡 ̸= 𝑛𝑇,

ΔV (𝑡) = − 𝛼V (𝑡) , 𝑡 = 𝑛𝑇,

V (0+) = 𝑥
10
,

(51)

V(𝑡) → V∗(𝑡), 𝑡 → ∞, and

∫

𝑇

0

V∗ (𝑡) 𝑑𝑡 =
1

𝑎
22

[ln (1 − 𝛼) + (𝑎
20
− 𝑎
23
𝑀)𝑇] . (52)

Therefore, it is necessary only to find an𝑚
3
> 0 such that

𝑥
3
(𝑡) ≥ 𝑚

3
for sufficiently large 𝑡. This can be done in the

following two steps.

Step 1. Choose 𝑚
0
> 0, 𝜀

4
> 0, 𝜀

5
> 0 small enough that if

condition (46) holds,

𝜎 = exp( − 𝑎
30
𝑇 − 𝑎
33
𝑚
0
𝑇 − 𝑎
31
𝜀
4
𝑇 − 𝑎
32
𝜀
5
𝑇

+
𝑎
31

𝑎
11

[ln (1 − 𝛼) + (𝑎
10
− 𝑎
13
𝑚
0
) 𝑇] )

+
𝑎
32

𝑎
22

[ln (1 − 𝛽) + (𝑎
20
− 𝑎
23
𝑚
0
) 𝑇]) > 1.

(53)

This step will show that 𝑥
3
(𝑡) ≥ 𝑚

0
for some 𝑡

1
> 0.

Assuming the contrary, 𝑥
3
(𝑡) < 0 for all 𝑡, from system (1),

we have
𝑑𝑥
1

𝑑𝑡
≥ 𝑥
1
(𝑎
10
− 𝑎
11
𝑥
1
− 𝑎
13
𝑚
0
) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

𝑑𝑥
2

𝑑𝑡
≥ 𝑥
2
(𝑎
20
− 𝑎
22
𝑥
2
− 𝑎
23
𝑚
0
) , 𝑡 ̸= 𝑛𝑇,

𝑑𝑥
3

𝑑𝑡
≥ 𝑥
3
(−𝑎
30
− 𝑎
33
𝑚
0
+ 𝑎
31
𝑥
1
+ 𝑎
32
𝑥
2
) ,

Δ𝑥
1
(𝑡) = −𝛼𝑥

1
(𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑥
2
(𝑡) = −𝛽𝑥

2
(𝑡) , 𝑡 = 𝑛𝑇,

(𝑥
1
(0
+
) , 𝑥
2
(0
+
) , 𝑥
3
(0
+
)) = (𝑥

10
, 𝑥
20
𝑥
30
) .

(54)

Consider the corresponding impulsive compare system:

𝑑𝑢 (𝑡)

𝑑𝑡
= 𝑢 (𝑡) (𝑎

10
− 𝑎
11
𝑢 (𝑡) − 𝑎

13
𝑚
0
) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

𝑑V (𝑡)
𝑑𝑡

= V (𝑡) (𝑎
20
− 𝑎
22
V (𝑡) − 𝑎

23
𝑚
0
) , 𝑡 ̸= 𝑛𝑇,

𝑑𝑤

𝑑𝑡
= 𝑤 (𝑡) (−𝑎

30
− 𝑎
33
𝑚
0
+ 𝑎
31
𝑢 (𝑡) + 𝑎

32
V (𝑡)) ,

Δ𝑢 (𝑡) = −𝛼𝑢 (𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

ΔV (𝑡) = −𝛽V (𝑡) , 𝑡 = 𝑛𝑇,

(𝑢 (0
+
) , V (0+) , 𝑤 (0

+
)) = (𝑥

10
, 𝑥
20
, 𝑥
30
) .

(55)

By Lemma 2, 𝑥
1
(𝑡) ≥ 𝑢(𝑡), 𝑥

2
(𝑡) > V(𝑡), and 𝑥

3
(𝑡) ≥ 𝑤(𝑡). By

Lemma 3,

𝑢
∗
(𝑡) − 𝜀

4
≤ 𝑢 (𝑡) ≤ 𝑢

∗
(𝑡) + 𝜀

4
, for sufficiently small 𝜀

4
,

∫

𝑇

0

𝑢
∗
(𝑡) 𝑑𝑡 =

1

𝑎
11

[ln (1 − 𝛼) + (𝑎
10
− 𝑎
13
𝑚
0
) 𝑇] .

(56)

Also,

V∗ (𝑡) − 𝜀
5
≤ V (𝑡) ≤ V∗ (𝑡) + 𝜀

5
, for sufficiently small 𝜀

2
,

∫

𝑇

0

V∗ (𝑡) 𝑑𝑡 =
1

𝑎
22

[ln (1 − 𝛽) + (𝑎
20
− 𝑎
23
𝑚
0
) 𝑇] .

(57)

Thus

𝑑𝑤

𝑑𝑡

≥(−𝑎
30
− 𝑎
30
𝑚
0
+ 𝑎
31
(𝑢
∗
(𝑡) − 𝜀

4
) + 𝑎
32
(V∗ (𝑡) − 𝜀

5
)) 𝑤 (𝑡) .

(58)

Integrating (58) over ((𝑛 + 𝑙 − 1)𝑇, (𝑛 + 𝑙)𝑇) yields

𝑤 ((𝑛 + 𝑙) 𝑇)

≥ 𝑤 ((𝑛 + 𝑙 − 1) 𝑇
+
)

× exp∫
(𝑛+𝑙)𝑇

(𝑛+𝑙−1)𝑇

( − 𝑎
30
− 𝑎
33
𝑚
0
+ 𝑎
31
(𝑢
∗
(𝑡) − 𝜀

4
)

+ 𝑎
32
(V∗ (𝑡) − 𝜀

5
)) 𝑑𝑡

≥ 𝑤 ((𝑛 + 𝑙 − 1) 𝑇) 𝜎.

(59)

Therefore

𝑥
3
((𝑛 + 𝑙 + 𝑘) 𝑇) ≥ 𝑤 ((𝑛 + 𝑙 + 𝑘) 𝑇)

≥ 𝑤 ((𝑛 + 𝑙 + 𝑘 − 1) 𝑇) 𝜎

≥ 𝑤 ((𝑛 + 𝑙 − 1) 𝑇) 𝜎
𝑘
.

(60)
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Since 𝜎 > 1, 𝜎𝑘 → ∞ as 𝑘 → ∞. This implies that 𝑥
3
(𝑡)

→ ∞ as 𝑡 → ∞, which contradicts the boundedness of
𝑥
3
(𝑡).

Step 2. If 𝑥
3
(𝑡) ≥ 𝑚

0
for all 𝑡 ≥ 𝑡

1
, then the proof is complete.

If not, let 𝑡∗ = inf
𝑡≥𝑡1

{𝑥
3
(𝑡) < 𝑚

0
}, and then 𝑥

3
(𝑡) ≥ 𝑚

0
for

𝑡 ∈ [𝑡
1
, 𝑡
∗
) and 𝑥

3
(𝑡
∗
) = 𝑚

0
. By Step 1, there exists a 𝑡󸀠 > 𝑡

∗

such that 𝑥(𝑡󸀠) ≥ 𝑚
0
. Set 𝑡

2
= inf
𝑡>𝑡
∗{𝑥
3
(𝑡) ≥ 𝑚

0
}, and then

𝑥
3
(𝑡) < 𝑚

0
for 𝑡 ∈ (𝑡

∗
, 𝑡
2
) and 𝑥

3
(𝑡
2
) = 𝑚

0
. This process can

be continued by repeating Step 1. If this process steps after
a finite number of repetitions, the proof is complete. If not,
there exists an interval sequence [𝑡

𝑛
, 𝑡
𝑛+1

], (𝑛 ∈ N), such that
𝑥
3
(𝑡) ≥ 𝑚

0
, 𝑡 ∈ [𝑡

𝑛
, 𝑡
𝑛+1

]. Let 𝑇󸀠 = sup |𝑡
𝑛+1

− 𝑡
𝑛
|, 𝑛 ∈ N.

If 𝑇󸀠 = ∞, there must exist a subsequence 𝑡
𝑛𝑖
such that

𝑡
𝑛𝑖+1

− 𝑡
𝑛𝑖

→ ∞ as 𝑛
𝑖
→ ∞. From Step 1, this can lead

to a contradiction with the boundedness of 𝑥
3
(𝑡); therefore,

𝑇
󸀠
< ∞. Then

𝑥
3
(𝑡) ≥ 𝑥

3
(𝑡
𝑛
)

× exp∫
𝑡

𝑡𝑛

(−𝑎
30
− 𝑎
33
𝑀+ 𝑎

31
𝑢
∗
(𝑡)

− 𝑎
31
𝜀
4
+ 𝑎
32
V∗ (𝑡) − 𝑎

32
𝜀
5
) 𝑑𝑠

≥ 𝑚
0
exp ((−𝑎

30
− 𝑎
33
𝑀)𝑇
󸀠
)

≡ 𝑚
3
.

(61)

Let𝑚 = min{𝑚
1
, 𝑚
2
, 𝑚
3
}, and then

lim inf
𝑡→∞

𝑥
1
(𝑡) ≥ 𝑚, lim inf

𝑡→∞

𝑥
2
(𝑡) ≥ 𝑚,

lim inf
𝑡→∞

𝑥
3
(𝑡) ≥ 𝑚.

(62)

This completes the proof.

Next, we consider the following two subsystems:

𝑑𝑥
1

𝑑𝑡
= 𝑥
1
(𝑎
10
− 𝑎
11
𝑥
1
− 𝑎
13
𝑥
3
) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

𝑑𝑥
3

𝑑𝑡
= 𝑥
3
(𝑎
30
− 𝑎
33
𝑥
3
+ 𝑎
31
𝑥
1
) ,

Δ𝑥
1
(𝑡) = − 𝛼𝑥

1
(𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

(𝑥
1
(0
+
) , 𝑥
3
(0
+
)) = (𝑥

10
, 𝑥
30
) ,

(63)

𝑑𝑥
2

𝑑𝑡
= 𝑥
2
(𝑎
20
− 𝑎
22
𝑥
2
− 𝑎
23
𝑥
3
) , 𝑡 ̸= 𝑛𝑇,

𝑑𝑥
3

𝑑𝑡
= 𝑥
3
(𝑎
30
− 𝑎
33
𝑥
3
+ 𝑎
32
𝑥
2
) ,

Δ𝑥
2
(𝑡) = − 𝛽𝑥

2
(𝑡) , 𝑡 = 𝑛𝑇,

(𝑥
2
(0
+
) , 𝑥
3
(0
+
)) = (𝑥

20
, 𝑥
30
) .

(64)

Imitating the proof of Theorem 12, we can obtain the
following theorems.

Theorem 13. Subsystem (63) is permanent if

−𝑎
30
𝑇 +

𝑎
31

𝑎
11

[ln (1 − 𝛼) + 𝑎
10
𝑇] > 0 (65)

holds.

Theorem 14. Subsystem (64) is permanent if

−𝑎
30
𝑇 +

𝑎
31

𝑎
22

[ln (1 − 𝛽) + 𝑎
20
𝑇] > 0 (66)

holds.

Remark 15. In this paper, our purpose is that of considering
the survival of the giant panda. From Theorems 13 and 14,
we can easily obtain that either condition (65) or condition
(66) holds, and the giant panda can be persistent. Clearly,
this condition is weaker than condition (46). Moreover, it is
also weaker than that of only one kind of food bamboo in the
habitat of giant panda.

5. Conclusion

In this paper, we consider an impulsive differential system of
the population ecology on the three populations of the giant
panda and two kinds of bamboo.The local and global stability
of the giant panda-free periodic solution are obtained and
we find the threshold value 𝑇∗. When 𝑇 < 𝑇

∗, the giant
panda-free periodic solution is globally asymptotically stable.
That is to say, the giant panda will be extinct if the period of
bamboo flowering is smaller than the threshold 𝑇∗, because
the bamboo cannot be revived to support giant panda again.
Comparing Theorem 12 with Theorems 13 and 14, we know
that when there are two kinds of staple bamboo in the
giant panda habitat, the conditions which guarantee the giant
panda to be permanent are weaker than that of only one kind
of staple bamboo in the habitat. Our results will provide a the-
oretical basis for the rejuvenation update of the bamboo forest
after bamboo flowering. Once the bamboo forest flowers, we
should timely remove flowering bamboo stains or clamps,
and we can promote the flowering bamboo to update and
restore as soon as possible by manual intervention approach,
such as excavating bamboo stump and rhizome of flowering
bamboo, loosing soil and fertilizing Nitrogen fertilizer in the
whole forest to promote new whip growth, and sprouting
bamboo into bamboo. Our results also provide a theoretical
basis for the implementation of artificial bamboo forest. We
can select giant panda staple bamboo species according to the
flowering cycle to implement artificial bamboo forest plan.
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