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By virtue of variational method and critical point theory, we will investigate the existence of weak solutions for a 𝑝-Laplacian
impulsive differential equation with antiperiodic boundary conditions.

1. Introduction

In this work, we will study the existence of weak solutions
for the 𝑝-Laplacian impulsive differential equation with
antiperiodic boundary conditions
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𝑘
, for 𝑘 = 1, 2, . . . , 𝑚.

Impulsive differential equations have become more
important in recent years in some mathematical models of
real processes and phenomena studied in physics, chemical
technology, population dynamics, biotechnology, and eco-
nomics. We mention, for instance, the books [1–3] dealing
with impulsive differential equations.

Recently, many researchers pay their attention to impul-
sive differential equations by variational method and critical
point theory, to the best our knowledge; we refer the reader

to [4–8] and references cited therein. Meanwhile, some
people begin to study 𝑝-Laplacian differential equations with
impulsive effects; for example, see [9–14].

Chen and Tang [9] adopted the least action principle and
the saddle point theorem to obtain some existence theorems
for a second-order 𝑝-Laplacian system with or without
impulsive effects under weak sublinear growth conditions.
In [10], they also considered that a second-order impulsive
differential equation with Dirichlet problems has one or
infinitely many solutions under more relaxed assumptions
on their nonlinearity 𝑓, which satisfies a kind of new
superquadratic and subquadratic conditions.

The problem of finding infinitely many large energy
solutions is a very classical problem; there is an extensive
literature concerning the existence of infinitely many large
energy solutions of a plethora of problems via the symmetric
mountain pass theorem and fountain theorem; for instance,
see [15–22].

Motivated by the works cited above, in this paper, we shall
discuss the problem (1). Firstly, we adopt Browder theorem,
introduced in [23], to prove that the problem (1) has only one
weak solution. Secondly, we shall utilize Fountain theorem
under Cerami condition (C), which is introduced in [24], to
prove that the problem (1) has infinitelymanyweak solutions.
The results obtained here improve some existing results in the
literature.
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2. Variational Structure

We first introduce the Banach space 𝑋 := {𝑢 ∈ 𝑊
1,𝑝

([0, 𝑇]) :

𝑢(0) = −𝑢(𝑇)}, endowed with the norm
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Substituting (4) into (3), we easily find that
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Definition 1. If for each V ∈ 𝑋 there is a 𝑢 ∈ 𝑋 such that (5)
holds, then 𝑢 ∈ 𝑋 is called a weak solution for (1).

From (5), we can obtain the weak solutions for (1) that
coincide with critical points of the energy functional
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Furthermore, for 𝑢 ∈ 𝑋, we have 𝑡, 𝑠 ∈ [0, 𝑇],
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Hence every bounded set in 𝑋 is equicontinuous in 𝐶[0, 𝑇].
By Arzela-Ascoli theorem, we claim that 𝑋 →→ 𝐶[0, 𝑇].
By the same manner, we can prove that 𝑋 →→ 𝐿

𝑝
([0, 𝑇]).

Furthermore, we can obtain by (9)
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≤
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This completes the proof.

Definition 3 (see [23, page 303]). Let 𝑋 be a reflexive real
Banach space and 𝑋

∗ its dual. The operator L : 𝑋 → 𝑋
∗

is said to be demicontinuous if L maps strongly convergent
sequences in𝑋 to weakly convergent sequences in𝑋

∗.
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Lemma 4 (Browder theorem, see [23, Theorem 5.3.22]). Let
𝑋 be a reflexive real Banach space.Moreover, letL : 𝑋 → 𝑋

∗

be an operator satisfying the following conditions:

(i) L is bounded and demicontinuous;
(ii) L is coercive, that is, lim

‖𝑥‖→∞
(L(𝑥), 𝑥)/‖𝑥‖ = +∞;

(iii) L is monotone on the space𝑋; that is, for all 𝑥, 𝑦 ∈ 𝑋,
one has

(L (𝑥) −L (𝑦) , 𝑥 − 𝑦) ≥ 0. (12)

Then the equation L(𝑥) = 𝑓
∗ has at least one solution

𝑥 ∈ 𝑋 for every 𝑓
∗
∈ 𝑋
∗. If, moreover, the inequality (12) is

strict for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦, then the equationL(𝑥) = 𝑓
∗ has

precisely one solution 𝑥 ∈ 𝑋 for all 𝑓∗ ∈ 𝑋
∗.

In what follows, we shall introduce Fountain theorem
under Cerami condition (C). We first give the definition of
Cerami condition (C).

Definition 5 (see [24, Definition 1.1]). Assume that 𝑋 is a
Banach spacewith norm ‖⋅‖; we say that 𝐽 ∈ 𝐶

1
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Cerami condition (C), if for all 𝑑 ∈ R,

(i) any bounded sequence {𝑢
𝑛
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𝑛
) →

𝑑, 𝐽(𝑢
𝑛
) → 0 possesses a convergent subsequence;

(ii) there exist 𝛿, 𝜉, 𝜌 > 0 such that for any 𝑢 ∈ 𝐽
−1
([𝑑 −

𝛿, 𝑑 + 𝛿]) with ‖𝑢‖ ≥ 𝜉, ‖𝐽(𝑢)‖ ⋅ ‖𝑢‖ ≥ 𝜌.

As 𝑋 is a reflexive Banach space, there exist (see [25,
Section 17]) {𝑒

𝑛
}
∞
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, 𝑋 = span{𝑒
𝑛
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∗
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∗
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𝑗
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𝑗
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𝑘

𝑗=1
𝑋
𝑗
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𝑘
:= ⊕∞
𝑗=𝑘

𝑋
𝑗
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𝑗∈N𝑋𝑗 with dim𝑋
𝑗
< ∞ for

all 𝑗 ∈ N. Denote 𝑆
𝜌
:= {𝑢 ∈ 𝑋 : ‖𝑢‖ = 𝜌}.

Lemma 6 (see [24, Proposition 1.2]). Let𝑋, 𝑌
𝑘
,𝑍
𝑘
be defined

as above. Assume that 𝐽 ∈ 𝐶
1
(𝑋,R) satisfies condition (C), and

𝐽(−𝑢) = 𝐽(𝑢). For each 𝑘 ∈ N, there exist 𝜌
𝑘
> 𝑟
𝑘
> 0 such that

(i) 𝑏
𝑘
:= inf

𝑢∈𝑍
𝑘

∩𝑆
𝑟

𝑘

𝐽(𝑢) → +∞, 𝑘 → ∞,

(ii) 𝑎
𝑘
:= max

𝑢∈𝑌
𝑘

∩𝑆
𝜌

𝑘

𝐽(𝑢) ≤ 0.

Then 𝐽 has a sequence of critical points 𝑢
𝑛
, such that

𝐽(𝑢
𝑛
) → +∞ as 𝑛 → ∞.

3. Main Results

Now, we list our assumptions on 𝑓 and 𝐼
𝑗
, 𝑗 = 1, 2, . . . , 𝑚.

(H1) 𝑓(𝑥, 𝑢) is a decreased function about 𝑢, uniformly in
𝑥 ∈ [0, 𝑇], and 𝐼

𝑗
(𝑢) (𝑗 = 1, 2, . . . , 𝑚) are increased

functions with 𝑢.
(H2) There exist 𝑎

𝑗
, 𝑏
𝑗
> 0 and 𝛾

𝑗
∈ [1, 𝑝) such that |𝐼

𝑗
(𝑢)| ≤

𝑎
𝑗
+ 𝑏
𝑗
|𝑢|
𝛾
𝑗

−1, for all 𝑢 ∈ R and 𝑗 = 1, 2, . . . , 𝑚.

(H3) There exist 𝑐
1
, 𝑐
2
> 0 such that 𝑓(𝑥, 𝑢) ≤ 𝑐

1
+ 𝑐
2
|𝑢|
𝑝−1,

for all 𝑢 ∈ R, 𝑥 ∈ [0, 𝑇].

(H4) There is a positive constant 𝑎 > 0 such that
lim
|𝑢|→∞

(−𝑝𝐹(𝑥, 𝑢) + 𝑓(𝑥, 𝑢)𝑢)/|𝑢| ≥ 𝑎, uniformly
in 𝑥 ∈ [0, 𝑇].

(H5) 𝑝∫
𝑢

0
𝐼
𝑗
(𝑠)d𝑠−𝐼

𝑗
(𝑢)𝑢 ≥ 0, ∫𝑢

0
𝐼
𝑗
(𝑠)d𝑠 ≥ 0, for all 𝑢 ∈ R,

𝑗 = 1, 2, . . . , 𝑚.

(H6) lim
|𝑢|→∞

𝐹(𝑥, 𝑢)/|𝑢|
𝑝

= +∞, uniformly on 𝑥 ∈

[0, 𝑇].

(H7) 𝐹(𝑥, 𝑢) is an even function about 𝑢 and 𝐼
𝑗
(𝑢) (𝑗 =

1, 2, . . . , 𝑚) are odd functions about 𝑢, for all 𝑥 ∈

[0, 𝑇].

Theorem 7. Let 0 < 𝑐
2
< (𝑇/2)

−𝑝 and (H1)–(H3) hold. Then
(1) has precisely a weak solution.

Proof. For 𝑢, V ∈ 𝑋, we define

(𝐿
1
(𝑢) , V) := ∫

𝑇

0


𝑢


(𝑥)


𝑝−2

𝑢


(𝑥) V (𝑥) d𝑥,

(𝐿
2
(𝑢) , V) :=

𝑚

∑

𝑗=1

𝐼
𝑗
(𝑢 (𝑥
𝑗
)) V (𝑥

𝑗
) ,

(𝐿
3
(𝑢) , V) := ∫

𝑇

0

𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥) d𝑥.

(13)

Let

(L (𝑢) , V)= (𝐿
1
(𝑢) , V)+(𝐿

2
(𝑢) , V)

−(𝐿
3
(𝑢) , V) , ∀𝑢, V ∈ 𝑋.

(14)

Then, to find a weak solution of (1) is equivalent to finding a
solution for the operator equationL(𝑢) = 0. In what follows,
we shall sketch the properties of operators 𝐿

𝑖
(𝑖 = 1, 2, 3). By

Hölder inequality, we have

∫

𝑇

0


𝑢


(𝑥)


𝑝−2

𝑢


(𝑥) V (𝑥) d𝑥

≤ (∫

𝑇

0




𝑢


(𝑥)


𝑝−2

𝑢


(𝑥)


𝑝/(𝑝−1)

d𝑥)
(𝑝−1)/𝑝

× (∫

𝑇

0


V (𝑥)



𝑝

d𝑥)
1/𝑝

= (∫

𝑇

0


𝑢


(𝑥)


𝑝

d𝑥)
(𝑝−1)/𝑝

(∫

𝑇

0


V (𝑥)



𝑝

d𝑥)
1/𝑝

= ‖𝑢‖
𝑝−1

‖V‖ < ∞, ∀𝑢, V ∈ 𝑋.

(15)
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Consequently, 𝐿
1
is bounded:

(𝐿1 (𝑢𝑛) − 𝐿
1
(𝑢) , V)

=



∫

𝑇

0

[

𝑢


𝑛
(𝑥)



𝑝−2

𝑢


𝑛
(𝑥) −


𝑢


(𝑥)


𝑝−2

𝑢


(𝑥)] V (𝑥) d𝑥


≤(∫

𝑇

0




𝑢


𝑛
(𝑥)



𝑝−2

𝑢


𝑛
(𝑥)

−

𝑢


(𝑥)


𝑝−2

𝑢


(𝑥)


𝑝/(𝑝−1)

d𝑥)
(𝑝−1)/𝑝

‖V‖ .

(16)

The last integral tends to zero as ‖𝑢
𝑛
− 𝑢‖ → 0 due to the

continuity of the Nemytskii operator 𝜑(𝑠) = |𝑠|
𝑝−2

𝑠. Hence,
𝐿
1
is continuous. We assume that 𝑢

𝑛
⇀ 𝑢 in𝑋; by Lemma 2,

we know that there is a subsequence, still denoted by {𝑢
𝑛
},

which strongly converges to 𝑢 in 𝐶[0, 𝑇]. Therefore, utilizing
the continuity of 𝑓, we have

(𝐿3 (𝑢𝑛) − 𝐿
3
(𝑢) , V)

=



∫

𝑇

0

[𝑓 (𝑥, 𝑢
𝑛
(𝑥)) − 𝑓 (𝑥, 𝑢 (𝑥))] V (𝑥) d𝑥



→ 0

as 𝑛 → ∞.

(17)

So, 𝐿
3
is continuous. In the same methods, we see that 𝐿

2
is

also continuous. On the other hand, by (9) and (11), for 𝑢, V ∈

𝑋, it follows from (H2) and (H3) that

(𝐿2 (𝑢) , V)


≤

𝑚

∑

𝑗=1


𝐼
𝑗
(𝑢 (𝑥
𝑗
))



V (𝑥
𝑗
)


≤

𝑚

∑

𝑗=1

(𝑎
𝑗
+ 𝑏
𝑗


𝑢(𝑥
𝑗
)


𝛾
𝑗

−1

)

V (𝑥
𝑗
)


≤

𝑚

∑

𝑗=1

(𝑎
𝑗
+ 𝑏
𝑗
‖𝑢‖
𝛾
𝑗

−1

∞ ) ‖V‖
∞

≤
𝑚

2
𝑇
(𝑝−1)/𝑝

(𝑎
𝑗
+ 𝑏
𝑗
(
1

2
𝑇
(𝑝−1)/𝑝

)

𝛾
𝑗

−1

‖𝑢‖
𝛾
𝑗

−1
) ‖V‖

< ∞,

(𝐿3 (𝑢) , V)


=



∫

𝑇

0

𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥) d𝑥


≤ ∫

𝑇

0

𝑓 (𝑥, 𝑢 (𝑥))
 |V (𝑥)| d𝑥

≤ ∫

𝑇

0

(𝑐
1
+ 𝑐
2
|𝑢 (𝑥)|

𝑝−1
) |V (𝑥)| d𝑥

≤ 𝑐
1
𝑇
(𝑝−1)/𝑝

‖V‖
𝑝
+ 𝑐
2
‖𝑢‖
𝑝−1

𝑝
‖V‖
𝑝

≤
𝑐
1

2
𝑇
(2𝑝−1)/𝑝

‖V‖ + 𝑐
2
(
𝑇

2
)

𝑝

‖𝑢‖
𝑝−1

‖V‖

< ∞.

(18)

Therefore, 𝐿
2
and 𝐿

3
are bounded. Up to now, we have proved

thatL is bounded and continuous, so (i) of Lemma 4 holds.
Finally, we shall show the monotonicity and coercivity ofL.
Indeed, (H1) implies that for 𝑢, V ∈ 𝑋 and 𝑢 ̸= V,

(L (𝑢) −L (V) , 𝑢 − V)

= ∫

𝑇

0

[

𝑢


(𝑥)


𝑝−2

𝑢


(𝑥) −

V (𝑥)



𝑝−2

V (𝑥)]

× (𝑢


(𝑥) − V (𝑥)) d𝑥

+

𝑚

∑

𝑗=1

(𝐼
𝑗
(𝑢 (𝑥
𝑗
)) − 𝐼

𝑗
(V (𝑥
𝑗
))) (𝑢 (𝑥

𝑗
) − V (𝑥

𝑗
))

− ∫

𝑇

0

(𝑓 (𝑥, 𝑢 (𝑥)) − 𝑓 (𝑥, V (𝑥))) (𝑢 (𝑥) − V (𝑥)) d𝑥

≥ ∫

𝑇

0

[

𝑢


(𝑥)


𝑝−2

𝑢


(𝑥) −

V (𝑥)



𝑝−2

V (𝑥)]

× (𝑢


(𝑥) − V (𝑥)) d𝑥

≥ ‖𝑢‖
𝑝
− ‖𝑢‖
𝑝−1

‖V‖− ‖ V‖𝑝−1‖𝑢‖ + ‖V‖𝑝

≥ (‖𝑢‖
𝑝−1

− ‖V‖𝑝−1) (‖𝑢‖ − ‖V‖)

> 0.

(19)

(H2) and (H3) enable us to get

(L (𝑢) , 𝑢)

= ‖𝑢‖
𝑝
+

𝑚

∑

𝑗=1

𝐼
𝑗
(𝑢 (𝑥
𝑗
)) 𝑢 (𝑥

𝑗
) − ∫

𝑇

0

𝑓 (𝑥, 𝑢 (𝑥)) 𝑢 (𝑥) d𝑥

≥ ‖𝑢‖
𝑝
−

𝑚

∑

𝑗=1

(𝑎
𝑗
+ 𝑏
𝑗


𝑢 (𝑥
𝑗
)


𝛾
𝑗

−1

)

𝑢 (𝑥
𝑗
)


− ∫

𝑇

0

(𝑐
1
+ 𝑐
2
|𝑢 (𝑥)|

𝑝−1
) |𝑢 (𝑥)| d𝑥



Discrete Dynamics in Nature and Society 5

≥ [1 − 𝑐
2
(
𝑇

2
)

𝑝

] ‖𝑢‖
𝑝
− [

𝑚𝑎
𝑗

2
𝑇
(𝑝−1)/𝑝

+
𝑐
1

2
𝑇
(2𝑝−1)/𝑝

] ‖𝑢‖

− 𝑚𝑏
𝑗
(
1

2
𝑇
(𝑝−1)/𝑝

)

𝛾
𝑗

‖𝑢‖
𝛾
𝑗 .

(20)

Therefore, by the span of 𝑐
2

∈ (0, (𝑇/2)
−𝑝
), we arrive at

lim
‖𝑢‖→∞

(L(𝑢), 𝑢)/‖𝑢‖ = +∞. As a result, (ii) and (iii) of
Lemma 4 hold. Hence, Lemma 4 implies that (1) has precisely
a weak solution. This completes the proof.

Lemma 8. Let (H3)–(H5) hold. Then 𝐽 satisfies Cerami
condition (C).

Proof. For all 𝑑 ∈ R, we assume that {𝑢
𝑛
}
∞

𝑛=1
⊂ 𝑋 is bounded

and

𝐽 (𝑢
𝑛
) → 𝑑, 𝐽


(𝑢
𝑛
) → 0, 𝑛 → ∞. (21)

Going, if necessary, to a subsequence, we can assume that
𝑢
𝑛
⇀ 𝑢 weakly in𝑋, and then

(𝐽

(𝑢
𝑛
) − 𝐽


(𝑢) , 𝑢
𝑛
− 𝑢)

= ∫

𝑇

0

(

𝑢


𝑛



𝑝−2

𝑢


𝑛
−

𝑢


𝑝−2

𝑢

) (𝑢


𝑛
− 𝑢

) d𝑥

+

𝑚

∑

𝑗=1

(𝐼
𝑗
(𝑢
𝑛
(𝑥
𝑗
)) − 𝐼

𝑗
(𝑢 (𝑥
𝑗
))) (𝑢

𝑛
(𝑥
𝑗
) − 𝑢 (𝑥

𝑗
))

− ∫

𝑇

0

(𝑓 (𝑥, 𝑢
𝑛
) − 𝑓 (𝑥, 𝑢)) (𝑢

𝑛
− 𝑢) d𝑥.

(22)

By Lemma 2,𝑋 →→ 𝐶[0, 𝑇] enables us to obtain that

𝑚

∑

𝑗=1

(𝐼
𝑗
(𝑢
𝑛
(𝑥
𝑗
)) − 𝐼

𝑗
(𝑢 (𝑥
𝑗
))) (𝑢

𝑛
(𝑥
𝑗
) − 𝑢 (𝑥

𝑗
)) → 0,

∫

𝑇

0

(𝑓 (𝑥, 𝑢
𝑛
) − 𝑓 (𝑥, 𝑢)) (𝑢

𝑛
− 𝑢) d𝑥 → 0 as 𝑛 → ∞.

(23)

It follows from 𝑢
𝑛
⇀ 𝑢 weakly in 𝑋 and (𝐽


(𝑢
𝑛
) − 𝐽

(𝑢), 𝑢
𝑛
−

𝑢) → 0 that

∫

𝑇

0

(

𝑢


𝑛



𝑝−2

𝑢


𝑛
−

𝑢


𝑝−2

𝑢

) (𝑢


𝑛
− 𝑢

) d𝑥 → 0 as 𝑛 → ∞.

(24)

Noting (19), we have

(
𝑢𝑛


𝑝−1

− ‖𝑢‖
𝑝−1

) (
𝑢𝑛

 − ‖𝑢‖)

≤ ∫

𝑇

0

(

𝑢


𝑛



𝑝−2

𝑢


𝑛
−

𝑢


𝑝−2

𝑢

) (𝑢


𝑛
− 𝑢

) d𝑥,

(25)

and thus ‖𝑢
𝑛
−𝑢‖ → 0 as 𝑛 → ∞. Hence, (i) of Definition 5

is satisfied. Next, we prove (ii) of Definition 5; if not, there
exists a sequence {𝑢

𝑛
} ⊂ 𝑋 such that

𝐽 (𝑢
𝑛
) → 𝑑,


𝐽

(𝑢
𝑛
)

⋅
𝑢𝑛

 → 0, 𝑛 → ∞, (26)
𝑢𝑛

 → ∞, 𝑛 → ∞. (27)

By (26), there exists a constant 𝜀
1
> 0 such that

𝐽 (𝑢
𝑛
) −

1

𝑝
𝐽

(𝑢
𝑛
) 𝑢
𝑛
≤ 𝜀
1
. (28)

On the other hand, (H4) implies that there is a 𝑀 > 0 such
that −𝑝𝐹(𝑥, 𝑢) + 𝑓(𝑥, 𝑢)𝑢 ≥ 𝑎|𝑢|, for all |𝑢| > 𝑀 and 𝑥 ∈

[0, 𝑇]. Furthermore,−𝑝𝐹(𝑥, 𝑢)+𝑓(𝑥, 𝑢)𝑢 is bounded for |𝑢| ≤
𝑀 and 𝑥 ∈ [0, 𝑇]. Therefore, there exists 𝑐 > 0 such that
−𝐹(𝑥, 𝑢) + (1/𝑝)𝑓(𝑥, 𝑢)𝑢 ≥ (𝑎/𝑝)|𝑢| − 𝑐, for all 𝑢 ∈ R, 𝑥 ∈

[0, 𝑇]. This, together with (H5), yields

𝐽 (𝑢
𝑛
) −

1

𝑝
𝐽

(𝑢
𝑛
) 𝑢
𝑛

=

𝑚

∑

𝑗=1

∫

𝑢
𝑛

(𝑥
𝑗

)

0

𝐼
𝑗
(𝑥) d𝑥 −

1

𝑝
𝐼
𝑗
(𝑢
𝑛
(𝑥
𝑗
)) 𝑢
𝑛
(𝑥
𝑗
)

+ ∫

𝑇

0

(−𝐹 (𝑥, 𝑢
𝑛
) +

1

𝑝
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
𝑛
) d𝑥

≥ ∫

𝑇

0

(−𝐹 (𝑥, 𝑢
𝑛
) +

1

𝑝
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
𝑛
) d𝑥

≥ ∫

𝑇

0

(
𝑎

𝑝

𝑢𝑛
 − 𝑐) d𝑥,

(29)

which implies ∫𝑇
0
|𝑢
𝑛
|d𝑥 ≤ 𝑝𝑎

−1
(𝑇𝑐 + 𝜀

1
). Therefore, there is

a 𝜀
2
> 0 such that ‖𝑢

𝑛
‖
∞

≤ 𝜀
2
.

It follows from (H3) that there are 𝑐
3
, 𝑐
4
> 0 such that

𝐹 (𝑥, 𝑢) ≤ 𝑐
3
|𝑢| + 𝑐

4
|𝑢|
𝑝
, ∀𝑢 ∈ R, 𝑥 ∈ [0, 𝑇] . (30)

By this and (H5), we can find

𝐽 (𝑢
𝑛
) =

1

𝑝
∫

𝑇

0


𝑢


𝑛



𝑝

d𝑥 +

𝑚

∑

𝑗=1

∫

𝑢
𝑛

(𝑥
𝑗

)

0

𝐼
𝑗
(𝑥) d𝑥

− ∫

𝑇

0

𝐹 (𝑥, 𝑢
𝑛
) d𝑥

≥
1

𝑝

𝑢𝑛

𝑝

− ∫

𝑇

0

(𝑐
3

𝑢𝑛
 + 𝑐
4

𝑢𝑛

𝑝

) d𝑥

≥
1

𝑝

𝑢𝑛

𝑝

− 𝑐
3
𝑇
𝑢𝑛

∞ − 𝑐
4
𝑇
𝑢𝑛


𝑝

∞

≥
1

𝑝

𝑢𝑛

𝑝

− 𝑐
3
𝑇𝜀
2
− 𝑐
4
𝑇𝜀
𝑝

2
,

(31)



6 Discrete Dynamics in Nature and Society

and thus 𝐽(𝑢
𝑛
) → ∞ if (27) holds, which contradicts

𝐽(𝑢
𝑛
) → 𝑑 in (26). This proves that 𝐽 satisfies condition

(C).

Theorem 9. Suppose that (H2)–(H7) hold, and then (1) has
infinitely many weak solutions.

Proof. By (H7), we know that 𝐽 is even. Denote 𝛽
𝑘

=

sup
𝑢∈𝑍
𝑘

∩𝑆
1

‖𝑢‖
𝑝
, and by the compactness of the embedding

𝑋 →→ 𝐿
𝑝
([0, 𝑇]), we see that 𝛽

𝑘
→ 0 as 𝑘 → ∞ (see

[26, Lemma 3.8]). Noting (30), we have by (H5) and Hölder
inequality, for any 𝑢 ∈ 𝑍

𝑘
and ‖𝑢‖ = 𝑟

𝑘
:= 𝛽
−1

𝑘
,

𝐽 (𝑢) ≥
1

𝑝
‖𝑢‖
𝑝
− ∫

𝑇

0

(𝑐
3
|𝑢| + 𝑐

4
|𝑢|
𝑝
) d𝑥

≥
1

𝑝
‖𝑢‖
𝑝
− 𝑐
3
𝑇
(𝑝−1)/𝑝

‖𝑢‖
𝑝
− 𝑐
4
‖𝑢‖
𝑝

𝑝

≥
1

𝑝
‖𝑢‖
𝑝
− 𝑐
3
𝑇
(𝑝−1)/𝑝

𝛽
𝑘
‖𝑢‖ − 𝑐

4
𝛽
𝑝

𝑘
‖𝑢‖
𝑝

≥
𝛽
−𝑝

𝑘

𝑝
− 𝑐
3
𝑇
(𝑝−1)/𝑝

− 𝑐
4
.

(32)

We easily have 𝑟
𝑘

→ ∞ as 𝑘 → ∞ and 𝐽(𝑢) ≥ 𝛽
−𝑝

𝑘
/𝑝 −

𝑐
3
𝑇
(𝑝−1)/𝑝

− 𝑐
4
→ ∞ as 𝑘 → ∞. Hence,

𝑏
𝑘
:= inf
𝑢∈𝑍
𝑘

,‖𝑢‖=𝑟
𝑘

𝐽 (𝑢) → ∞ as 𝑘 → ∞. (33)

On the other hand, by (H6), we find that there are 𝑏, 𝑐 > 0

such that

𝐹 (𝑥, 𝑢) ≥ 𝑏|𝑢|
𝑝
− 𝑐, ∀𝑢 ∈ R, 𝑥 ∈ [0, 𝑇] . (34)

Since all the norms of a finite dimensional normed space are
equivalent, note that ‖ ⋅ ‖

𝑝
is a norm of 𝑌

𝑘
, so there exists a

𝜉 > 0 such that

‖𝑢‖
𝑝

𝑝
≥ 𝜉‖𝑢‖

𝑝
, ∀𝑢 ∈ 𝑌

𝑘
. (35)

Noting (9), we have

𝐽 (𝑢) =
1

𝑝
∫

𝑇

0


𝑢


𝑝

d𝑥 +

𝑚

∑

𝑗=1

∫

𝑢(𝑥
𝑗

)

0

𝐼
𝑗
(𝑥) d𝑥 − ∫

𝑇

0

𝐹 (𝑥, 𝑢) d𝑥

≤
1

𝑝
‖𝑢‖
𝑝
− ∫

𝑇

0

(𝑏|𝑢|
𝑝
− 𝑐) d𝑥

+

𝑚

∑

𝑗=1

∫

𝑢(𝑥
𝑗

)

0

(𝑎
𝑗
+ 𝑏
𝑗
|𝑠|
𝛾
𝑗

−1
) d𝑥

≤
1

𝑝
‖𝑢‖
𝑝
− 𝑏‖𝑢‖

𝑝

𝑝
+ 𝑐𝑇

+

𝑚

∑

𝑗=1

[𝑎
𝑗


𝑢 (𝑥
𝑗
)

+

𝑏
𝑗

𝛾
𝑗


𝑢 (𝑥
𝑗
)


𝛾
𝑗

]

≤
1

𝑝
‖𝑢‖
𝑝
− 𝑏𝜉‖𝑢‖

𝑝
+

𝑚

∑

𝑗=1

[𝑎
𝑗
‖𝑢‖
∞

+
𝑏
𝑗

𝛾
𝑗

‖𝑢‖
𝛾
𝑗

∞] + 𝑐𝑇

≤ (
1

𝑝
− 𝑏𝜉) ‖𝑢‖

𝑝

+

𝑚

∑

𝑗=1

[
𝑎
𝑗

2
𝑇
(𝑝−1)/𝑝

‖𝑢‖+
𝑏
𝑗

𝛾
𝑗

(
1

2
𝑇
(𝑝−1)/𝑝

)

𝛾
𝑗

‖𝑢‖
𝛾
𝑗]+𝑐𝑇.

(36)

Note that we can choose a large enough 𝑏 such that 1/𝑝−𝑏𝜉 <

0 by (H6) and 𝑝 > 𝛾
𝑗
by (H2), and then there exists positive

constants 𝑑
𝑘
such that

𝐽 (𝑢) ≤ 0, for each 𝑢 ∈ 𝑌
𝑘
, ‖𝑢‖ ≥ 𝑑

𝑘
. (37)

By this and (33), we can take 𝜌
𝑘
:= max{𝑑

𝑘
, 𝑟
𝑘
+ 1}, and thus

𝑎
𝑘
:= max

𝑢∈𝑌
𝑘

,‖𝑢‖=𝜌
𝑘

𝐽(𝑢) ≤ 0. Up until now, we have proved
that the functional 𝐽 satisfies all the conditions of Lemma 6,
and then 𝐽 has infinitelymany critical points. Equivalently, (1)
has infinitely many weak solutions.This completes the proof.

Two Examples. (1) Let 𝑝 = 4 and 𝑥
1

= 𝑇/2. Consider the
problem

−(

𝑢


2

𝑢

)


= 𝑓 (𝑥, 𝑢) , in Ω,

Δ

𝑢

(𝑥
1
)


2

𝑢

(𝑥
1
) = 𝑢 (𝑥

1
) ,

𝑢 (0) = −𝑢 (𝑇) , 𝑢


(0) = −𝑢


(𝑇) ,

(38)

where 𝑓(𝑥, 𝑢) = −𝜂
1
−𝜂
2
𝑢
3, 𝜂
1
≥ 0, 𝜂

2
∈ (0, (𝑇/2)

−4
). Clearly,

(H1)–(H3) hold true. By Theorem 7, (38) has only a weak
solution.

(2) (H6) can be weaken that

lim
|𝑢|→∞

𝐹 (𝑥, 𝑢)

|𝑢|
𝑝

> (𝑝𝜉)
−1

, uniformly on 𝑥 ∈ [0, 𝑇] , (39)

where 𝜉 is determined by (35). Indeed, by (39), we can obtain
that there exist 𝑏 > (𝑝𝜉)

−1 and 𝑐 > 0 such that (34) is satisfied.
Furthermore, 1/𝑝 − 𝑏𝜉 < 0.

Let 𝑝 = 4 and 𝑥
1
= 𝑇/2. Consider the problem

−(

𝑢


2

𝑢

)


= 𝑓 (𝑥, 𝑢) , in Ω,

Δ

𝑢

(𝑥
1
)


2

𝑢

(𝑥
1
) =

3√𝑢 (𝑥
1
),

𝑢 (0) = −𝑢 (𝑇) , 𝑢


(0) = −𝑢


(𝑇) ,

(40)

where 𝑓(𝑥, 𝑢) = −𝜂 + (𝜉
−1

+ 4)𝑢
3 and 𝐼

𝑗
(𝑢(𝑥
𝑗
)) = 3√𝑢(𝑥

1
),

where 𝜂 > 0 and 𝜉 is defined by (35).
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For 𝐼
𝑗
(𝑢), we can easily have (H2) and (H7) hold. By

computation, ∫𝑢
0
𝐼
𝑗
(𝑠)d𝑠 = (3/4)

3√𝑢4 ≥ 0, 𝑝∫
𝑢

0
𝐼
𝑗
(𝑠)d𝑠 −

𝐼
𝑗
(𝑢)𝑢 = 4 × (3/4)

3√𝑢4 −
3√𝑢4 = 2

3√𝑢4 ≥ 0, for all 𝑢 ∈ R,
and hence we obtain that (H5) is satisfied.

For𝑓(𝑥, 𝑢) and𝐹(𝑥, 𝑢), we see𝑓(𝑥, 𝑢) = −𝜂+(𝜉
−1
+4)𝑢
3
≤

𝜂 + (𝜉
−1

+ 4)|𝑢|
3, for all 𝑢 ∈ R, 𝑥 ∈ [0, 𝑇]. Therefore, (H3)

holds.
It is obvious that 𝐹(𝑥, 𝑢) = ∫

𝑢

0
𝑓(𝑥, 𝑠)d𝑠 = ∫

𝑢

0
(−𝜂 + (𝜉

−1
+

4)𝑠
3
)d𝑠 = −𝜂|𝑢|+((𝜉

−1
+4)/4)|𝑢|

4, so (H7) holds; furthermore,

lim
|𝑢|→∞

𝐹 (𝑥, 𝑢)

|𝑢|
𝑝

= lim
|𝑢|→∞

−𝜂 |𝑢| + ((𝜉
−1

+ 4) /4) |𝑢|
4

|𝑢|
4

=
𝜉
−1

+ 4

4
> (𝑝𝜉)

−1

.

(41)

As a result of this, (39) (i.e., (H6)) is true.
By
− 𝑝𝐹 (𝑥, 𝑢) + 𝑓 (𝑥, 𝑢) 𝑢

= −4 [−𝜂 |𝑢| +
𝜉
−1

+ 4

4
|𝑢|
4
] + (−𝜂 + (𝜉

−1
+ 4) 𝑢

3
) 𝑢

= 4𝜂 |𝑢| − 𝜂𝑢

≥ 3𝜂 |𝑢| ,

(42)
we obtain that

lim
|𝑢|→∞

−𝑝𝐹 (𝑥, 𝑢) + 𝑓 (𝑥, 𝑢) 𝑢

|𝑢|
≥ lim
|𝑢|→∞

3𝜂 |𝑢|

|𝑢|
= 3𝜂, (43)

uniformly on 𝑥 ∈ [0, 𝑇]. Consequently, (H4) holds. Nowa-
days, we have proved that (H2)–(H7) hold, and then (40) has
infinitely many weak solutions byTheorem 9.

In [14], the condition (𝑝
2
) is

∃𝜇 > 𝑝 ∃𝛿 > 0 : ∀ |𝑡| ≥ 𝛿, 0 ≤ 𝜇𝐹 (𝑥, 𝑡) ≤ 𝑡𝑓 (𝑥, 𝑡) .

(44)
As known to all, this condition is originally introduced in [27]
and is still present in many works which is used to guarantee
the boundedness of (P.S.) sequences of the corresponding
functional.

In the problem (40), note that there exists 𝛿 > 0 such that
|𝑢| ≥ 𝛿 and

𝜇𝐹 (𝑥, 𝑢)≤ 𝑢𝑓 (𝑥, 𝑢) ⇒ −𝜂𝜇 |𝑢| +
𝜉
−1

+ 4

4
𝜇|𝑢|
4

≤ − 𝜂𝑢+(𝜉
−1
+4) |𝑢|

4
.

(45)

This is impossible if 𝜇 > 𝑝 = 4 and 𝛿 is an adequately large
positive number. On the other hand, if (H4) holds, then there
is a 𝛿 sufficiently large such that
−𝑝𝐹 (𝑥, 𝑢) + 𝑢𝑓 (𝑥, 𝑢) ≥ 𝑎 |𝑢| ≥ 0, for 𝑥 ∈ [0, 𝑇] , |𝑢| ≥ 𝛿.

(46)
Therefore, 𝑝𝐹(𝑥, 𝑢) ≤ 𝑢𝑓(𝑥, 𝑢), for all 𝑥 ∈ [0, 𝑇] and |𝑢| ≥

𝛿, which is also weaker than the condition (𝑝
2
) if 𝐹(𝑥, 𝑢) ≥

0. This means that our results generalize the corresponding
results in [14].
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[22] P. S. Iliaş, “Existence and multiplicity of solutions of a 𝑝(𝑥)-
Laplacian equation in a bounded domain,” Revue Roumaine de
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