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Abstract

In a widely-cited paper, Glymour [1] claims to show that Bayesians
cannot learn from old data. His argument contains an elementary error. I
explain exactly where Glymour went wrong, and how the problem should
be handled correctly. When the problem is fixed, it is seen that Bayesians,
just like logicians, can indeed learn from old data.

Outline of the Paper I first review some aspects of standard logic that are
relevant to this paper. I then discuss the relationship between standard logic and
standard probability theory, and in particular point out the fact that standard
probability theory contains standard logic in the particular sense that for any
argument that reaches a conclusion using standard logic, there exists a parallel
argument (calculation) in standard probability theory that reaches the same
conclusion, and furthermore, that any valid argument by any method (whether
logical or Bayesian) must arrive at the same conclusion.

I then introduce a simple “toy example” that is nonetheless sophisticated
enough to reveal the problem with Glymour’s claim. The toy example is an
extension of the example that Glymour used in his paper. I describe Glymour’s
argument, and use the toy example to show that his reasoning leads to a contra-
diction with ordinary logic, and therefore must be invalid. I then explain, again
in terms of the toy example, exactly where Glymour’s argument goes wrong,
and how to correct it. I conclude with a summary of what we have learned.

1 Standard Logic

Standard logic tells us how to combine propositions A,B,C, . . . with logical
operations such as ∧,∨,¬,→, . . . to obtain new and valid propositions. The
propositional calculus allows us to calculate, using definite rules, the truth value
of any proposition that has been constructed from other propositions using these
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logical operations, given the truth values of the propositions from which they
are constructed.

For example, given propositions A,B, we can calculate the truth value of the
proposition C = A∧B as follows: C is true if both A and B are true, otherwise
it is false. Similarly, the truth value of the proposition D = A∨B is true unless
both A and B are false.

Likewise, the truth value of the proposition E = A → B is true if A is false,
otherwise it is equal to the truth value of B. That is, if A is true, then B must
be true. If A is not true, then it doesn’t matter what the truth value of B is,
A → B is true.

An important feature of standard logic is that it is time-independent (Jaynes
[3], p. 89). That is, it describes relationships between propositions that are inde-
pendent of when we may learn the truth or falsity of the propositions themselves.
For example, the truth-value of the expressions ¬A, A ∧B, A ∨B, and A → B
depend only on the truth-values of A and B, and not upon when we may have
learned their truth-values.

2 Probability and Logic

Probability theory extends the basic notions of standard logic to a regime where
the degree of plausibility of propositions is no longer just “true” or “false”, but
may be intermediate between the two. That is, to any proposition we can assign
a number in the unit interval [0, 1] that corresponds to our assessment of how
likely it is that the proposition is true, where 1 means that we are certain the
proposition is true and 0 means that we are certain that it is false. The larger the
degree of plausibility, the more likely it is that we would regard the proposition
as true.

A theorem of Cox [2] proves that, up to an isomorphism, standard probabil-
ity theory is the unique extension of ordinary logic to this regime that satisfies
certain obvious requirements necessary for the theory to yield consistent re-
sults. Jaynes ([3], p. 19) lists a set of three such requirements, which he calls
desiderata:

1 If a conclusion can be reasoned out in more than one way, then every
possible way must lead to the same result.

An important aspect of this desideratum is that if a conclusion can
be obtained using ordinary logic, then a valid calculation using prob-
ability theory must arrive at the same result. If a purported Bayesian
calculation arrives at a result different from one that we can derive
using standard logic, it must ipso facto be invalid. We will see below
that Glymour’s calculation fails this test.

2 The calculation takes into account all of the evidence relevant to
the question. It does not arbitrarily ignore some of the information,
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basing its conclusions only on what remains. It is, as Jaynes says,
completely nonideological.

Glymour’s calculation doesn’t fail this test, but it does muddle the
issue by failing use standard probability notation to indicate all the
information that was taken into account. Indeed, this results in a
basic confusion of models that turns out to be at the root of the
problem with Glymour’s calculation.

3 Equivalent states of knowledge are always represented by equivalent
plausibility assignments. That is, if in two situations the state of
knowledge is the same, then (except for possible relabeling of the
propositions), the calculation must assign the same plausibilities to
both.

Glymour’s calculation fails this test as well.

It turns out that these three desiderata, along with the assumption that
degrees of plausibility are represented by real numbers on the unit interval [0, 1],
are sufficient to derive standard probability theory as the unique embodiment
of these sensible requirements of plausible reasoning.

In particular it turns out, as a consequence of Jaynes’ desideratum #1 and
Cox’s theorem, that standard probability theory contains standard logic as a
subset. This means that for every calculation that can be made using standard
logic, (that is to say, where all of the propositions are either definitely true
or definitely false), there is a corresponding calculation in standard probability
theory that will arrive at the same result, and no valid calculation in standard
probability theory can yield a different result.

Let P be the disjunction of one or more propositions, and Z another propo-
sition. Then P |= Z states that the truth of Z validly follows from the truth of
P. If in addition P is in fact true, then the argument P |= Z is also sound.

In particular, I note the following correspondences: The argument {A,A →
B |= B} is sound if, and only if the argument {A,P (B|A) = 1 |= B} is sound.

Clearly, if P (B|A) = 1 then P (¬B|A) = 0 by standard probability theory.
This last result comes from the identity P (B|A) + P (¬B|A) = 1, which is
equivalent to the tautology A → (B ∨ ¬B).

3 A Toy Example

We consider a situation where there are precisely two theories under consider-
ation, say T and T ′ = ¬T , and only two observations of evidence are possible,
that is E and E′ = ¬E. We furthermore presume that T → E and T ′ → E′.
This means that if theory T is true, we must observe evidence E, and if theory
T ′ is true, then we must observe evidence E′.
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For example, let T be the theory of general relativity, and T ′ be pure New-
tonian mechanics. Let E be the (in this case old) evidence that the motion
of Mercury’s perihelion is anomalous (cannot be explained under Newtonian
mechanics). If we ignore the infinitesimally low-probability situation that ob-
servational errors have somehow transformed a truly non-anomalous perihelion
motion into an apparently anomalous one (see Pennock [4] for a discussion) then
we see immediately that in our toy example T → E and T ′ → E′.

It is important to recognize that these relationships are defined by the theory,
independently of any data that may have been observed and independently
of when those data may have been observed. The relationships are therefore
time-independent. It is always the case that Newtonian theory entails that no
anomalous perihelion motion will be observed, and always the case that general
relativity entails that anomalous perihelion motion will be observed.

If we observe evidence E, then standard logic says T ′ → E′, so ¬T → ¬E.
It follows that E → T and E → ¬T ′. Hence observing E rules out T ′ and
confirms T .

Note that this result was obtained by an appeal to nothing but standard
logic. Since standard logic is just a calculus on the truth-values of the proposi-
tions, and does not depend on when we observe evidence E, it follows that we
can certainly learn from old evidence if we use only logic. But, as pointed out
above, Jaynes’ desideratum #1, together with Cox’s theorem, implies that the
same result must be obtainable by a valid application of probability theory. If a
calculation using probability obtains a different result, it is certainly not a valid
calculation.

Translated into the language of probability theory, the result E → ¬T ′ is
equivalent to P (¬T ′|E) = P (T |E) = 1 and P (T ′|E) = 0. Any purported
Bayesian calculation that does not arrive at this result must be invalid. Note
also that when we translate the initial assumptions of this toy example into
standard probability notation we can calculate the likelihood as P (E|T ) = 1 and
P (E|T ′) = 0 for use when we observe E, and P (E′|T ) = 0 and P (E′|T ′) = 1 for
use when we observe E′. Since all of these probability assignments are simply
translations of statements of ordinary logic into the language of probability
theory, they are time-independent, that is, their values are independent of when
we happen to observe the evidence.

4 Glymour’s Argument

Glymour argues that the Bayesian cannot learn from old evidence E. The
argument goes as follows: Since we know the old evidence E to be true (we
have observed it, after all), Glymour claims that

P (E) = 1 ??? (1)

I put question marks here because I believe this equation to be wrong.



5

Nonetheless, if we grant Eq. (1), the rest of Glymour’s alleged proof goes
through easily. Since P (E) = 1, it follows from standard probability theory
that P (E|X) = 1 for all propositions X. In particular, P (E|T ) = 1. Therefore,
by Bayes’ theorem,

P (T |E) =
P (E|T )
P (E)

P (T ) = P (T )

and since the posterior probability is equal to the prior probability, we haven’t
learned anything.

5 Counterexample to Glymour’s Argument

We see immediately that Glymour’s calculation fails to satisfy Jaynes’ desidera-
tum #1, for we have proved that for our toy problem, knowledge of E together
with standard logic leads to the conclusion that T is true and T ′ is false, re-
gardless of what we may have thought before we did the calculation. But Gly-
mour’s calculation allows for no such conclusion: If for example we had adopted
P (T ) = 1/2, Glymour’s calculation tells us that P (T |E) = 1/2, in blatant con-
tradiction to the calculation from ordinary logic. The equation P (T |E) = 1/2
says that E does not entail T , whereas logic says that E does entail T . Since
Cox’s theorem guarantees that any valid calculation using probability theory
must arrive at the same conclusion we obtained using standard logic, this fact
in itself proves that Glymour’s argument cannot be valid.

It is not hard to pinpoint the source of the problem, again using the toy
example as a guide. If P (E) = 1, then it follows that P (E|X) = 1 for any
proposition X; in particular, P (E|T ′) = 1, or translated into the language of
logic, T ′ → E. That is, according to Glymour’s reasoning, if we know that E
is true, we must conclude that Newtonian physics entails that we will observe
anomalous motion of the perihelion of Mercury. But this is absurd. Purely as
a matter of logic, and as a consequence of physical theory, Newtonian physics
entails that we will never observe anomalous perihelion motion for Mercury, that
is, T ′ → E′, which is equivalent to P (E′|T ′) = 1 or equivalently P (E|T ′) = 0,
as demonstrated above.

Thus we have from Glymour’s argument P (E|T ′) = 1, and at the same
time we have from standard logic P (E|T ′) = 0. Equivalently, we have from
Glymour’s argument that T ′ → E, whereas logic says that T ′ → E′ 6= E. Both
cannot be true, and since the calculation using standard logic is clearly correct,
it follows that Glymour’s argument has yielded a contradiction, and cannot be
valid.

The problem arises from Glymour’s assumption that P (E) = 1. Without
that assumption, the rest of his alleged proof fails.



6

6 Glymour’s Friend

Physicists are familiar with “Wigner’s Friend,” a thought experiment named for
the late physicist Eugene Wigner, that is designed to help us think about when
and under what circumstances the “collapse” of states in quantum mechanics
takes place. In this thought experiment, Wigner and his “friend” have different
states of knowledge, until Wigner’s friend informs Wigner of certain facts, so
that they end up with the same state of knowledge, and thus should have the
same conclusions. The details of the physics aren’t important here, but the idea
that people arrive at the same state of knowledge having started with different
states of knowledge is the key idea that I want to carry over to the present
problem.

Let me introduce Glymour’s friend Tom. Tom is ignorant of E. Therefore,
when Glymour explains the toy problem to Tom, Tom can set priors and set up
the problem without knowing that E is true. After he has done this, Tom can
tell Glymour what his priors are. Suppose the priors are the same as the ones
that Glymour has already adopted, and that P (T ) 6= 1. Then both are starting
with the same priors.

Now Glymour informs Tom that E is true, and Tom performs the standard
Bayesian analysis (as he may, since he was igonorant of E up to this point, so the
data are for him “new,” not “old”), and arrives at the result that P (T |E) = 1.
Glymour performs the calculation that he advocates (since for him the data are
“old”) and arrives at P (T |E) = P (T ) 6= 1.

This violates Jaynes’ desideratum #3, since at this point both parties have
the same state of knowledge, yet they have assigned different plausibilities to
T |E. Since the axioms of probability theory, in virtue of Cox’s theorem, cannot
violate Jaynes’ three desiderata when used validly, we have again arrived at
a contradiction. Since it is clear that Tom does not view E as “old” data,
and therefore is entitled to carry out the standard Bayesian calculation, his
conclusions must be correct and Glymour’s wrong.

7 Where Glymour Went Wrong

Jaynes ([3], pp. 473, 484) points out an important fact: A fruitful source of error
and even apparent paradoxes in probabiliy theory is to fail to condition properly
and explicitly on all background information used. By failing to include such
background information, one can imagine that one is discussing one model while
actually discussing another model. Since the intended model may be different
from the one you think you are describing, it is easy to arrive at apparent
contradictions.

In the present case, the source of the error is embarrassingly obvious. Re-
call that Eq. (1) was derived in the light of knowledge of the old evidence
E and actually used that information as background information, even though
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this dependence was not explicitly noted in the equations. Following Jaynes’
advice above, standard notational convention demands that we call out this fact
explicitly. If we do this, we obtain the correct Eq. (2):

P (E|E) = 1 !!! (2)

The rest of the proof translates as follows:

P (E|E, T ) = 1 (3)

P (T |E,E) =
P (E|E, T )
P (E|E)

P (T |E) (4)

But of course, P (T |E,E) = P (T |E ∧E) = P (T |E) by standard logic. Thus
we see that when the conditioning that is implicit but unstated in Eq. (1) is
explicitly recognized in Eq. (2), what Glymour has actually proved is the (well-
known) fact that the Bayesian machinery, quite sensibly, prevents us from using
the same evidence twice. He has not proved that a Bayesian cannot learn from
old evidence, only that he cannot validly manipulate the Bayesian machinery
to get additional information out of information that has already been used.

We now see that P (E) and P (E|E) are entirely different. P (E|E) has al-
ready used evidence E, whereas according to the standard notational conven-
tion, P (E) has never used evidence E, not even once. P (E) is in fact entirely
ignorant of our knowledge of E. Thus, there is no reason to suppose that
P (E) = 1, and indeed, it is usually not.

Note that the right-hand side of Eq. (4) has its as prior P (T |E), not P (T ).
In other words, the prior in Eq. (4) must be constructed from full knowledge of
E; it is not the same as P (T ), which is (of course) ignorant of E. One cannot
substitute P (T ) for P (T |E) in Eq. (4); the resulting equation is not a valid
equation in probability theory.

In order to calculate the value of P (T |E) for substitution into Eq. (4), we
have to start from P (T ) and then apply Bayes’ theorem in the usual way, where
in this case the right hand side is calculated unconditioned on E (which is to
say, the right-hand side is ignorant of any knowledge we may have about E).
In this case, P (E) does not know that E has been observed, and is correctly
calculated from the priors and the time-independent likelihood as follows:

P (E) = P (E|T )P (T ) + P (E|T ′)P (T ′) (5)

Thus, in the toy example, where P (E|T ) = 1 and P (E|T ′) = 0,

P (E) = P (T ), (6)

which is in general not equal to 1 unless the prior P (T ) = 1, which is usually
not the case.

This tells us the correct way to do the Bayesian calculation, in the case
where E has been observed as old data. We still have to assign priors P (T ) and
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P (T ′), and this must be done without taking E into account. Although this step
might pose some problems of its own (assignation of priors in general requires
careful thought), any such problems are unrelated to Glymour’s argument, so
I will pass over this issue. Suppose, for example, we have assigned P (T ) = α,
P (T ′) = 1 − α, where α ∈ (0, 1). Then the Bayesian calculation goes through
in the usual way as follows:

P (T |E) =
P (E|T )
P (E)

P (T ) = 1 (7)

since in the toy example example P (E) = P (T ) and P (E|T ) = 1. Note that
independent of α, we obtain the same result as we did from the calculation
using ordinary logic. Thus, Jaynes’ desideratum #1 is satisfied: No matter how
we do the calculation, whether by ordinary logic or by a valid application of
probability theory, Cox’s theorem guarantees that we must arrive at the same
result.

8 Summary and Conclusions

As Jaynes ([3], p. 89) points out, probability theory, like logic, is time-independ-
ent. All of the relationships in probability theory are logical relationships and
have nothing to do with the order in which we happen to learn about the
evidence or write down the Bayesian equations. When we calculate P (T |E) from
P (T ), it does not matter when we have actually observed E; the relationship
between the two is purely a logical relationship, and the quantities that go into
the calculation (likelihoods, priors) will be the same, regardless of when E is
observed. As my colleague Tom Loredo observed when I showed him Glymour’s
argument, “Time plays the same role in probability theory as it does in logic:
That is to say, no role whatsoever.”[5]

In a valid Bayesian calculation, there is one and only one way to take into
account ones knowledge of a particular piece of data, and that is to condition on
that piece of data. Furthermore, it is essential that this conditioning be called
out explicitly in the notation, as Jaynes advises. Conditioning on a piece of data
without explicitly calling it out in the notation, as Glymour did, is a reliable
route to disaster.

Glymour’s error resulted from a failure to follow these basic principles. Using
the principles of his “proof” I was able to derive a contradiction that seems not
to have been noticed up to this point, but which is sufficient to demonstrate that
Glymour’s alleged proof is invalid. The bottom line is that Bayesians can and
do learn from old data, when they do the calculation carefully and correctly.
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