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This paper is concerned with the finite-time stability and stabilization problems for linear Itô stochastic singular systems. The
condition of existence and uniqueness of solution to such class of systems are first given.Then the concept of finite-time stochastic
stability is introduced, and a sufficient condition under which an Itô stochastic singular system is finite-time stochastic stable is
derived.Moreover, the finite-time stabilization is investigated, and a sufficient condition for the existence of state feedback controller
is presented in terms of matrix inequalities. In the sequel, an algorithm is given for solving the matrix inequalities arising from
finite-time stochastic stability (stabilization). Finally, two examples are employed to illustrate our results.

1. Introduction

Stochastic systems, especially for the systems governed by
Itô-type stochastic differential equations, have received con-
siderable attention due to its both theoretical and practical
importance. Some results for this class of systems have
been reported in the monographs and literatures, for exam-
ple, stochastic stability and stabilization [1–3], linear/non-
linear stochastic 𝐻

∞
control and filtering [4–7], and out-

put tracking control for high-order stochastic nonlinear
systems [8]. Meanwhile, singular systems (descriptor sys-
tems, implicit systems, generalized state-space systems, and
differential-algebraic systems) have also attracted much
attention of researchers and made a rapid progress. Many
results have been achieved on different subjects related to
such class of systems, for example, stability and impulsive eli-
mination [9, 10], linear quadratic optimal control [11],
and 𝐻

∞
control/filtering and 𝐻

2
/𝐻
∞

control [12–14]. Con-
sequently, Itô stochastic singular systems have received atten-
tion in recent years. Reference [15] is concerned with the
problems of stability of Itô singular stochastic systems with
Markovian jumping. Reference [16] investigated the 𝐻

∞

control/filtering for a class of singular stochastic time-delay
systems. To the best of our knowledge, most of the results on

stability of Itô stochastic singular systems are concerned with
Lyapunov asymptotic stability or exponential stability, which
is defined over an infinite-time interval.

In many practical situations, however, we are interested
in stability of the system over a fixed finite-time interval.
Such kind of stability is called finite-time stability (FTS).
The concept of FTS was first introduced in the Russian
literature. Later, this concept appeared in the western control
literatures. Roughly speaking, a system is said to be finite-
time stable if, given a bound on the initial condition, its
state does not exceed a certain threshold during a specified
time interval. Compared with infinite-time stability, the FTS
can be used in the problem of controlling the trajectory of
a space vehicle from an initial point to a final point in a
prescribed time interval and all those applicationswhere large
values of the states should be attained, for instance, in the
presence of saturations. Much effort has been devoted to FTS
for its stability analysis and stabilization, for instance, linear
continuous-time systems [17], linear discrete-time systems
[18], stochastic systems [19–22], singular systems/Markovian
jumping singular systems [23, 24], and stochastic singular
biological economic systems [25]. Nevertheless, the FTS in
[17–25] only requires that the state trajectory does not exceed
a given upper bound during a prespecified time interval.
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Recently, [26] gave a new “finite-time stochastic stability”
for linear Itô stochastic systems, which quantifies the state
trajectory of some complex practical systems over a finite-
time interval in more detail. Roughly speaking, a stochastic
Itô system is called finite-time stochastically stable if its state
trajectories do not exceed an upper bound 𝑐

2
and are not less

than a lower bound 𝑐
1
(𝑐
1

< 𝑐
2
) in the mean square sense

during a specific time interval.
In this paper, motivated by [26], we consider finite-time

stability and stabilization problems for Itô stochastic singular
systems. Because of the special structure of Itô stochastic sin-
gular systems, the problems considered are of more complex-
ity than those in [26]. By using stochastic analysis technology,
the stability criterion and some stabilizing conditions are
obtained. The contributions of this paper lie in the following
three aspects: (1) the condition for the existence and unique-
ness of solution to linear Itô stochastic singular systems is
given. Our proof is different from that in [15], whichmay bet-
ter reflect the essential characteristics of this class of systems.
(2) The definition of finite-time stochastic stability for linear
Itô stochastic singular systems is given. By the generalized Itô
formula and mathematical expectation properties, some new
stability criteria and the conditions of existence for state feed-
back controller are obtained as well. (3) A solving algorithm
for the matrix inequalities arising from finite-time stochastic
stability (stabilization) is given. By adjusting the parameters
in this algorithm, the less conservative results can be attained.

The remainder of this paper is organized as follows.
The definition of finite-time stochastic stability of linear
Itô stochastic singular systems and some preliminaries are
presented in Section 2. A sufficient condition to verify finite-
time stochastic stability is given in Section 3. Section 4 gives
some sufficient conditions for finite-time stochastic stabi-
lization and a solving algorithm for the matrix inequalities
arising from finite-time stochastic stability (stabilization).
Section 5 employs two examples to illustrate the results.
Finally, concluding remarks are made in Section 6.

Notation. 𝐴𝑇 is transpose of a matrix or vector 𝐴. 𝐴 > 0

(𝐴 ≥ 0) is positive definite (positive semidefinite)
symmetric matrix. 𝐼

𝑛×𝑛
is identity matrix. tr(𝐴) is trace of a

matrix 𝐴. 𝜆max(𝐴) (𝜆min(𝐴)) is the maximum (minimum)
eigenvalue of a real symmetric matrix 𝐴. (Ω,F, {F

𝑡
}
𝑡≥0

,P)

is a probability space with natural filtration {F
𝑡
}
𝑡≥0

,
and E[⋅] stands for the mathematical expectation
operator with respect to the given probability measure:
𝛿(𝑡) = {

∞, 𝑡=0,

0, otherwise.

2. Preliminaries and Problem Statement

Consider an 𝑛-dimensional Itô stochastic singular system

𝐸𝑑𝑥 (𝑡) = 𝐴𝑥 (𝑡) 𝑑𝑡 + 𝐻𝑥 (𝑡) 𝑑𝑤 (𝑡) ,

𝑥 (0) = 𝑥
0
,

(1)

on 𝑡 ≥ 0 with initial data 𝑥(0) = 𝑥
0

∈ R𝑛; 𝑥(𝑡) ∈ R𝑛 is
the state vector; 𝐸, 𝐴, 𝐻 are 𝑛 × 𝑛-dimensional matrices
with 0 < rank(𝐸) = 𝑟 ≤ 𝑛. 𝑤(𝑡) is a scalar Brownian motion

defined on the probability space (Ω,F, {F
𝑡
}
𝑡≥0

). In order to
guarantee the existence and uniqueness of solution for the
system (1), the following lemma is given.

Lemma 1. If there is a pair of nonsingular matrices 𝑃 ∈

R𝑛×𝑛, 𝑄 ∈ R𝑛×𝑛 or 𝑃
1

∈ R𝑛×𝑛, 𝑄
1

∈ R𝑛×𝑛 for the triplet
(𝐸, 𝐴,𝐻) such that (at least) one of the following conditions
is satisfied:

𝑃𝐸𝑄 = [
𝐼
𝑟

0

0 𝑁
𝑛−𝑟

] ,

(𝐼) 𝑃𝐴𝑄 = [
𝐴
1

0

0 𝐼
𝑛−𝑟

] ,

𝑃𝐻𝑄 = [
𝐻
1

𝐻
2

0 0
𝑛−𝑟

] ,

(2)

𝑃
1
𝐸𝑄
1
= [

𝐼
𝑟

0

0 0
𝑛−𝑟

] ,

(𝐼𝐼) 𝑃
1
𝐴𝑄
1
= [

𝐴
11

𝐴
12

𝐴
21

[𝐴
22
]
𝑛−𝑟

] ,

𝑃
1
𝐻𝑄
1
= [

H
1

H
2

0 0
𝑛−𝑟

] ,

(3)

where 𝑁 is nilpotent matrix with nilpotent index ℎ, then (1)
has a unique solution.

Proof. Let 𝜁(𝑡) = 𝑄
−1

𝑥(𝑡) = [𝜁
𝑇

1
(𝑡) 𝜁

𝑇

2
(𝑡)]
𝑇, 𝜁𝑇
1
(𝑡) ∈ R𝑟 and

𝜁
𝑇

2
(𝑡) ∈ R𝑛−𝑟, then under the conditions of (I), the system (1)

is equivalent to

𝑑𝜁
1
(𝑡) = 𝐴

1
𝜁
1
(𝑡) 𝑑𝑡 + [𝐻

1
𝜁
1
(𝑡) + 𝐻

2
𝜁
2
(𝑡)] 𝑑𝑤 (𝑡) , (4)

𝑁𝑑𝜁
2
(𝑡) = 𝜁

2
(𝑡) 𝑑𝑡, (5)

which are called the slow and fast subsystems, respectively.
Note that the slow subsystem (4) is nothing more than

an Itô stochastic differential equation. Applying the existence
and uniqueness theorem of stochastic differential equations
[27], the solution of (4) exists and is unique.

We note that the fast subsystem (5) is actually an ordinary
differential equation. Taking the Laplace transforms on both
sides of (5) and letting ℓ[𝜁

2
(𝑡)] = Γ(𝑠), we have

(𝑠𝑁 − 𝐼) Γ (𝑠) = 𝑁𝜁
2
(0) . (6)

From this equation, we obtain

Γ (𝑠) = (𝑠𝑁 − 𝐼)
−1

𝑁𝜁
2
(0) . (7)

Taking the inverse Laplace transform on both sides of (7)
gives

𝜁
2
(𝑡) = −

ℎ−1

∑

𝑖=1

𝛿
(𝑖−1)

(𝑡)𝑁
𝑖

𝜁
2
(0) , (8)

which implies that (5) has a unique solution. So (1) has a
unique solution.
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When triplet (𝐸, 𝐴,𝐻) satisfies the condition (II), the
proof can be referred to [15].

The proof is different from that in [15], which may better
reflect the essential characteristics of this class of systems,
such as, impulse behaviors. It is obviously observed from the
proof of Lemma 1 that the response of system (1) may contain
impulse terms. For convenience, we introduce the following
definition.

Definition 2. If the state response of an Itô stochastic singular
system, starting from an arbitrary initial value, does not
contain impulse terms, then the system is called impulse-free.

Referring to some results on impulse-free of singular
systems in [28], the following result is obtained.

Proposition 3. The following statements are equivalent under
the conditions of Lemma 1:

(a) system (1) is impulse-free;
(b) 𝑁 = 0 in (2);
(c) deg det(𝑠𝐸 − 𝐴) = rank(𝐸);
(d) det(𝐴

22
) ̸= 0 in (3).

Proof. According to Definition 2 and the proof of Lemma 1,
we can obtain the conclusion (a) ⇔ (b).

By (2), 𝑃(𝑠𝐸 − 𝐴)𝑄 = diag(𝑠𝐼 − 𝐴
1
, 𝑠𝑁 −

𝐼). Obviously, 𝑁 = 0 if and only if deg det(𝑠𝐸 − 𝐴) =

deg det(𝑠𝐼 − 𝐴
1
) = rank 𝐸. So, we get (b) ⇔ (c).

By (3), it is easy to obtain that det(𝐴
22
) ̸= 0 if and only

if deg det(𝑠𝐸 − 𝐴) = deg det [ 𝑠𝐼−𝐴11 −𝐴12
−𝐴
21
−𝐴
22

] = rank𝐸. So, (c)
⇔ (d).

Next, we extend the finite-time stochastic stability in [26]
to Itô stochastic singular systems.

Definition 4. Given some positive scalars 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
,

𝑇 with 0 < 𝑐
1
< 𝑐
3
< 𝑐
4
< 𝑐
2
and a positive definite matrix 𝑅,

system (1) is said to be finite-time stochastically stable with
respect to (𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, 𝑅), if

𝑐
3
≤ 𝑥
𝑇

(0) 𝐸
𝑇

𝑅𝐸𝑥 (0) ≤ 𝑐
4

󳨐⇒ 𝑐
1
< E [𝑥

𝑇

(𝑡) 𝐸
𝑇

𝑅𝐸𝑥 (𝑡)] < 𝑐
2
, ∀𝑡 ∈ [0, 𝑇] .

(9)

Definition 4 can be described as follows: system (1) is said to
be finite-time stochastically stable if, given a bound on the
initial condition and a fixed time interval, its state trajectories
are required to remain in a certain domain of ellipsoidal shape
in the mean square sense during this time interval.

A 2-dimension case of Definition 4 is illustrated by
Figure 1. A point 𝐴 lies in the shaped area. The tra-
jectory starting from point 𝐴 cannot escape the disc
from 0 to 𝑐

2
during the time interval [0, 𝑇] in the mean

square sense.

Remark 5. In [17–25], the finite-time stability only requires
the state trajectory not to exceed a given upper bound. A 2-
dimension case of this finite-time stability can be illustrated
by Figure 2. Nevertheless, the current finite-time stability

A

c3

c1

c2

c4

Figure 1: Illustration of finite-time stochastic stability in this paper.

A

c1

c2

Figure 2: Illustration of finite-time stability in [17–25].

requires the state trajectory not only not to exceed a given
upper bound but also not to be less than a given lower bound.

In the following, we give a proposition equivalent to
Definition 4.

Proposition 6. System (1) is finite-time stochastically stable
with respect to (𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, 𝑅) if and only if

𝑐
3
≤ 𝑥
𝑇

(0) 𝐸
𝑇

𝑅𝐸𝑥 (0) ≤ 𝑐
4
󳨐⇒ 𝑐
1
< tr (𝐸𝑇𝑅𝐸𝑋 (𝑡)) < 𝑐

2
,

∀𝑡 ∈ (0, 𝑇] ,

(10)

where 𝑋(𝑡) > 0 is the solution to

𝐸𝐸
𝑇

�̇� (𝑡) = 𝐴𝑋 (𝑡) 𝐸
𝑇

+ 𝐸𝑋 (𝑡) 𝐴
𝑇

+ 𝐻𝑋 (𝑡)𝐻
𝑇

, (11)

𝑋 (0) = 𝑥 (0) 𝑥
𝑇

(0) . (12)
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Proof. Letting 𝑋(𝑡) = E[𝑥(𝑡)𝑥(𝑡)
𝑇

], we easily obtain

E [𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑅𝐸𝑥 (𝑡)]

= E tr (𝐸𝑇𝑅𝐸𝑥 (𝑡) 𝑥
𝑇

(𝑡)) = tr (𝐸𝑇𝑅𝐸E𝑥 (𝑡) 𝑥
𝑇

(𝑡))

= tr (𝐸𝑇𝑅𝐸𝑋 (𝑡)) .

(13)

Applying Itô’s formula to E[𝑥(𝑡)𝐸𝐸
𝑇

𝑥
𝑇

(𝑡)], we obtain

𝐸𝐸
𝑇

�̇� (𝑡) = 𝐴𝑋 (𝑡) 𝐸
𝑇

+ 𝐸𝑋 (𝑡) 𝐴
𝑇

+ 𝐻𝑋 (𝑡)𝐻
𝑇

, (14)

𝑋 (0) = 𝑥 (0) 𝑥
𝑇

(0) . (15)

Under the conditions of Lemma 1, (14) has unique
solution 𝑋(𝑡). So the proof is completed.

By Kronecker’s product theory, (14) can be rewritten as

(𝐸 ⊗ 𝐸)
̇

�⃗� (𝑡) = [𝐸 ⊗ 𝐴 + 𝐴 ⊗ 𝐸 + 𝐻 ⊗ 𝐻] �⃗� (𝑡) , (16)

where �⃗� denotes the vector formed by stacking the rows
of 𝑋 = (𝑋

𝑖𝑗
)
𝑛×𝑛

into one long vector; that is,

�⃗� = [𝑋
11
, 𝑋
12
, . . . , 𝑋

1𝑛
, 𝑋
21
, 𝑋
22
, . . . ,

𝑋
2𝑛
, . . . , 𝑋

𝑛1
, 𝑋
𝑛2
, . . . , 𝑋

𝑛𝑛
]
𝑇

,

(17)

and ⊗ represents the Kronecker product of two matrices.

Remark 7. Proposition 6 is actually to solve a set of ordinary
differential equations and avoids solving a stochastic differ-
ential equation (1), which provides an easier method to test
finite-time stochastic stability of system (1).

Remark 8. If 𝐸 = 𝐼, then system (1) becomes normal Itô
stochastic systems and Proposition 6 reduces to Proposition
1 in [26].

Based onDefinition 4, we define the finite-time stochastic
stabilization as follows.

Definition 9. The following Itô stochastic singular controlled
system

𝐸𝑑𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡)] 𝑑𝑡 + 𝐻𝑥 (𝑡) 𝑑𝑤 (𝑡) (18)

is said to be finite-time stochastically stabilizable, if there
exists a state feedback control law 𝑢(𝑡) = 𝐾𝑥(𝑡), such that

𝐸𝑑𝑥 (𝑡) = (𝐴 + 𝐵𝐾) 𝑥 (𝑡) 𝑑𝑡 + 𝐻𝑥 (𝑡) 𝑑𝑤 (𝑡) (19)

is finite-time stochastically stable.

Before proceeding further, we give some lemmas which
will be used in the next sections.

Lemma 10 (Gronwall inequality). Letting 𝜃(𝑡) be a nonnega-
tive function such that

𝜃 (𝑡) ≤ 𝑎 + 𝑏∫

𝑡

0

𝜃 (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇 (20)

for some constants 𝑎, 𝑏 ≥ 0, then one has

𝜃 (𝑡) ≤ 𝑎 exp (𝑏𝑡) , 0 ≤ 𝑡 ≤ 𝑇. (21)

Lemma 11 (modified Gronwall inequality [26]). Letting 𝜃(𝑡)

be a nonnegative function such that

𝜃 (𝑡) ≥ 𝑎 + 𝑏∫

𝑡

0

𝜃 (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇 (22)

for some constants 𝑎, 𝑏 ≥ 0, then one has

𝜃 (𝑡) ≥ 𝑎 exp (𝑏𝑡) , 0 ≤ 𝑡 ≤ 𝑇. (23)

Lemma 12 (see [24]). (i) Assume that rank(𝐸) = 𝑟, there
exist two nonsingular matrices 𝑈 and 𝑉 such that 𝐸 has the
decomposition as

𝐸 = 𝑈𝐸𝑉 = diag {𝐼
𝑟
, 0} . (24)

(ii) Define Φ = 𝑉[0 𝐼
𝑛−𝑟

]
𝑇, obviously, rankΦ = 𝑛 −

𝑟, 𝐸Φ = 0. If 𝑃 satisfies

𝐸𝑃
𝑇

= 𝑃𝐸
𝑇

≥ 0, (25)

then �̃� = 𝑈𝑃[𝑉
−1

]
𝑇 with 𝑈 and 𝑉 satisfying (24) if and only

if

�̃� = [
𝑃
11

𝑃
12

0 𝑃
22

] (26)

with 𝑃
11

≥ 0 ∈ R𝑟×𝑟. In addition, when 𝑃 is nonsingular, one
has 𝑃
11

> 0 and det(𝑃
22
) ̸= 0. Furthermore, 𝑃 satisfying (25)

can be parameterized as

𝑃 = 𝐸𝑉𝑀𝑉
𝑇

+ 𝑈
−1

𝑁Φ
𝑇

, (27)

where 𝑀 = diag{𝑃
11
, ∗1}, 𝑁 = [𝑃

𝑇

12
𝑃
𝑇

22
]
𝑇, and Φ ∈

R(𝑛−𝑟)×(𝑛−𝑟) is an arbitrary parameter matrix.
(iii) If 𝑃 is a nonsingular matrix, 𝑅 and Φ are two sym-

metric positive definite matrices, 𝑃 and 𝐸 satisfy (25), 𝑀 is a
diagonal matrix from (27), and the following equality holds:

𝑃
−1

𝐸 = 𝐸
𝑇

𝑅
1/2

𝑄𝑅
1/2

𝐸. (28)

Then the symmetric positive definite matrix 𝑄 =

𝑅
−1/2

𝑈
𝑇

𝑀
−1

𝑈𝑅
−1/2 is a solution of (28).

3. Finite-Time Stochastic Stability

In this section, we provide an impulse-free and finite-time
stochastic stability condition for system (1).
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Theorem 13. Under the conditions of Lemma 1, if there exist
positive matrices 𝑄 > 0, nonsingular matrix 𝑃, and two
scalar 𝛼 ≥ 0 and 𝛽 ≥ 0 satisfying

𝐸
𝑇

𝑃 = 𝑃
𝑇

𝐸 ≥ 0 (29)

𝐸
𝑇

𝑃 = 𝐸
𝑇

𝑅
1/2

𝑄𝑅
1/2

𝐸 (30)

𝜆max (𝑄) 𝑐
4
𝑒
𝛼𝑇

− 𝑐
2
𝜆min (𝑄) < 0 (31)

𝑐
1
𝜆max (𝑄) − 𝑐

3
𝜆min (𝑄) < 0 (32)

𝐴
𝑇

𝑃 + 𝑃
𝑇

𝐴 + 𝐻
𝑇

𝑄𝐻 − 𝛼𝐸
𝑇

𝑃 < 0 (33)

𝛽𝐸
𝑇

𝑃 − 𝐴
𝑇

𝑃 − 𝑃
𝑇

𝐴 + 𝐻
𝑇

𝑄𝐻 < 0, (34)

then the system (1) is impulse-free and finite-time stochastically
stable with respect to (𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, 𝑅).

Proof. We split the proof of Theorem 13 into three steps as
follows.

Step 1. We prove system (1) to be impulse-free. By condition
(33), we obtain

𝑃
𝑇

𝐴 + 𝐴
𝑇

𝑃 − 𝛼𝐸
𝑇

𝑃 < 0. (35)

Take nonsingular 𝑈 and 𝑉 such that 𝐸 has the decom-
position as

𝐸 = 𝑈𝐸𝑉 = diag {𝐼
𝑟
, 0} . (36)

Denote

𝐴 = 𝑈𝐴𝑉 = [
𝐴
11

𝐴
12

𝐴
21

𝐴
22

] ,

𝑃 = [𝑈
−1

]
𝑇

𝑃𝑉 = [
𝑃
11

𝑃
12

𝑃
21

𝑃
22

] .

(37)

From (36), (37), and (29), it is easy to obtain

𝑃
11

≥ 0, 𝑃
12

= 0. (38)

Substitute (37) and (38) into (35), then it becomes

[
Σ
1

Σ
2

Σ
𝑇

2
𝑃
𝑇

22
𝐴
22

+ 𝐴
𝑇

22
𝑃
22

] < 0, (39)

where Σ
1
= 𝑃
𝑇

11
𝐴
11

+ 𝑃
𝑇

21
𝐴
21

+ 𝐴
𝑇

11
𝑃
11

+ 𝐴
𝑇

21
𝑃
21

− 𝛼𝑃
11
, Σ
2
=

𝑃
𝑇

11
𝐴
12

+ 𝑃
𝑇

21
𝐴
22

+ 𝐴
𝑇

21
𝑃
22
.

From (39), 𝐴𝑇
22
𝑃
22

+ 𝑃
𝑇

22
𝐴
22

< 0, which implies that 𝐴
22

is nonsingular, by Proposition 3, system (1) is impulse-free.

Step 2. 𝑥𝑇(0)𝐸𝑇𝑅𝐸𝑥(0) < 𝑐
4
⇒ E[𝑥

𝑇

(𝑡)𝐸
𝑇

𝑅𝐸𝑥(𝑡)] < 𝑐
2
.

Construct a stochastic quadratic function as

𝑉 (𝑥 (𝑡)) = 𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑃𝑥 (𝑡) , (40)

where 𝑃 satisfies (29)–(33).

Applying generalized Itô formula [1, 15] for 𝑉(𝑥(𝑡)) along
the trajectory of system (1) and considering condition (29),
we have

L𝑉 (𝑥 (𝑡)) = [𝐴𝑥 (𝑡)]
𝑇

𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃
𝑇

[𝐴𝑥 (𝑡)]

+ [𝐻𝑥 (𝑡)]
𝑇

𝑄 [𝐻𝑥 (𝑡)] ,

(41)

which leads to

L𝑉 (𝑥 (𝑡)) − 𝛼𝑉 (𝑥 (𝑡))

= 𝑥
𝑇

(𝑡) [𝐴
𝑇

𝑃 + 𝑃
𝑇

𝐴 + 𝐻
𝑇

𝑄𝐻 − 𝛼𝐸
𝑇

𝑃] 𝑥 (𝑡) .

(42)

By condition (33), it is easy to see that

L𝑉 (𝑥 (𝑡)) < 𝛼𝑉 (𝑥 (𝑡)) . (43)

Integrating both sides of (43) from 0 to 𝑡 with 𝑡 ∈

[0, 𝑇] and then taking the expectation, it yields that

E𝑉 (𝑥 (𝑡)) < 𝑉 (𝑥 (0)) + 𝛼∫

𝑡

0

E𝑉 (𝑥 (𝑠)) 𝑑𝑠. (44)

By Lemma 10, we obtain

E𝑉 (𝑥 (𝑡)) < 𝑉 (𝑥 (0)) 𝑒
𝛼𝑡

. (45)

According to condition (30), it follows that

E𝑉 (𝑥 (𝑡)) = E [𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑃𝑥 (𝑡)]

= E [𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑅
1/2

𝑄𝑅
1/2

𝐸𝑥 (𝑡)]

≥ 𝜆min (𝑄)E [𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑅𝐸𝑥 (𝑡)] ,

𝑉 (𝑥 (0)) 𝑒
𝛼𝑡

= [𝑥
𝑇

(0) 𝐸
𝑇

𝑃𝐸𝑥 (0)] 𝑒
𝛼𝑡

= [𝑥
𝑇

(0) 𝐸
𝑇

𝑅
1/2

𝑄𝑅
1/2

𝐸𝑥 (0)] 𝑒
𝛼𝑡

≤ [𝜆max (𝑄) 𝑥
𝑇

(0) 𝐸
𝑇

𝑅𝐸𝑥 (0)] 𝑒
𝛼𝑡

≤ [𝜆max (𝑄)] 𝑐
1
𝑒
𝛼𝑇

.

(46)

From (46), we easily obtain

E [𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑅𝐸𝑥 (𝑡)] ≤
𝜆max (𝑄)

𝜆min (𝑄)
𝑐
1
𝑒
𝛼𝑇

. (47)

By condition (31), it is obvious that E[𝑥
𝑇

(𝑡)𝐸
𝑇

𝑅𝐸𝑥(𝑡)] <

𝑐
2
.

Step 3. 𝑐
3
< 𝑥
𝑇

(0)𝐸
𝑇

𝑅𝐸𝑥(0) ⇒ 𝑐
1
< E[𝑥

𝑇

(𝑡)𝐸
𝑇

𝑅𝐸𝑥(𝑡)].
By (34) and (41), we obtain

L𝑉 (𝑥 (𝑡)) > 𝛽𝑉 (𝑥 (𝑡)) . (48)

Integrating both sides of (48) from 0 to 𝑡 with 𝑡 ∈

[0, 𝑇] and then taking the expectation, it yields that

E𝑉 (𝑥 (𝑡)) > 𝑉 (𝑥 (0)) + 𝛽∫

𝑡

0

E𝑉 (𝑥 (𝑠)) 𝑑𝑠. (49)
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By Lemma 11, we conclude that

E𝑉 (𝑥 (𝑡)) > 𝑉 (𝑥 (0)) 𝑒
𝛽𝑡

. (50)

According to condition (30), it follows that

E𝑉 (𝑥 (𝑡)) = E [𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑃𝑥 (𝑡)]

= E [𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑅
1/2

𝑄𝑅
1/2

𝐸𝑥 (𝑡)]

≤ 𝜆max (𝑄)E [𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑅𝐸𝑥 (𝑡)] ,

𝑉 (𝑥 (0)) 𝑒
𝛽𝑡

= [𝑥
𝑇

(0) 𝐸
𝑇

𝑃𝑥 (0)] 𝑒
𝛽𝑡

= [𝑥
𝑇

(0) 𝐸
𝑇

𝑅
1/2

𝑄
1
𝑅
1/2

𝐸𝑥 (0)] 𝑒
𝛽𝑡

≥ [𝜆min (𝑄) 𝑥
𝑇

(0) 𝐸
𝑇

𝑅𝐸𝑥 (0)] 𝑒
𝛽𝑡

≥ [𝜆min (𝑄)] 𝑐
3
.

(51)

From (32), (51), we obtain

𝑐
1
<

𝑐
3
𝜆min (𝑄)

𝜆max (𝑄)
< E [𝑥

𝑇

(𝑡) 𝐸
𝑇

𝑅𝐸𝑥 (𝑡)] . (52)

So, the proof is completed.

Theorem 13 provides a criterion for finite-time stochastic
stability of system (1). To design finite-time controller conve-
niently, the following corollary is given.

Corollary 14. Under the conditions of Lemma 1, if there exist
positive matrices𝑄 > 0, nonsingular matrix 𝑃, and two scalars
𝛼 ≥ 0, 𝛽 ≥ 0 satisfying

𝐸𝑃
𝑇

= 𝑃𝐸
𝑇

≥ 0 (53)

𝑃
−1

𝐸 = 𝐸
𝑇

𝑅
1/2

𝑄𝑅
1/2

𝐸 (54)

𝜆max (𝑄) 𝑐
4
𝑒
𝛼𝑇

− 𝑐
2
𝜆min (𝑄) < 0 (55)

𝑐
1
𝜆max (𝑄) − 𝑐

3
𝜆min (𝑄) < 0 (56)

𝑃𝐴
𝑇

+ 𝐴𝑃
𝑇

+ 𝑃𝐻
𝑇

𝑄𝐻𝑃
𝑇

− 𝛼𝑃𝐸
𝑇

< 0 (57)

𝛽𝑃𝐸
𝑇

− 𝑃𝐴
𝑇

− 𝐴𝑃
𝑇

+ 𝑃𝐻
𝑇

𝑄𝐻𝑃
𝑇

< 0, (58)

then the system (1) is impulse-free and finite-time stochastically
stable with respect to (𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, 𝑅).

Proof. Premultiply and postmultiply (53) by the matrices 𝑃−1

and [𝑃
−1

]
𝑇. Premultiply and postmultiply (57) and (58) by

𝑃
−1 and [𝑃

−1

]
𝑇. Let [𝑃

−1

]
𝑇

= 𝑃, by (29)–(33), this proof
completes.

Remark 15. If 𝐸 = 𝐼, then Corollary 14 reduces to Theorem 1
in [26].

4. Finite-Time Stochastic Stabilization

In this section, we aim to design a finite-time stabilizing
controller for system (18). To this aim, the following result is
obtained.

Theorem 16. Under the conditions of Lemma 1, if there exist
positive matrices𝑄 > 0, nonsingular matrix 𝑃, and two scalars
𝛼 ≥ 0, 𝛽 ≥ 0 satisfying (53)–(56) and matrix inequalities

𝑃𝐴
𝑇

+ 𝑋
𝑇

𝐵
𝑇

+ 𝐴𝑃
𝑇

+ 𝐵𝑋 + 𝑃𝐻
𝑇

𝑄𝐻𝑃
𝑇

− 𝛼𝑃𝐸
𝑇

< 0,

(59)

𝛽𝑃𝐸
𝑇

− 𝑃𝐴
𝑇

− 𝑋
𝑇

𝐵
𝑇

− 𝐴𝑃
𝑇

− 𝐵𝑋 + 𝑃𝐻
𝑇

𝑄𝐻𝑃
𝑇

< 0,

(60)

then system (18) is impulse-free and finite-time stochastically
stabilizable with respect to (𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, 𝑅). In addition, the

feedback controller gain can then be given by 𝐾 = 𝑋[𝑃
−1

]
𝑇.

Proof. If the state feedback controller is taken into account,
then the state equation of system (18) becomes

𝐸𝑑𝑥 (𝑡) = [(𝐴 + 𝐵𝐾) 𝑥 (𝑡)] 𝑑𝑡 + 𝐻𝑥 (𝑡) 𝑑𝑤 (𝑡) , 𝑡 ∈ [0, 𝑇] .

(61)

Therefore, we can replace 𝐴 by 𝐴 + 𝐵𝐾 in Corollary 14. As a
result, condition (57) and (58) turn to

𝑃𝐴
𝑇

+ 𝑃𝐾
𝑇

𝐵
𝑇

+ 𝐴𝑃
𝑇

+ 𝐵𝐾𝑃
𝑇

+ 𝑃𝐻
𝑇

𝑄𝐻𝑃
𝑇

− 𝛼𝑃𝐸
𝑇

< 0,

(62)

𝛽𝑃𝐸
𝑇

− 𝑃𝐴
𝑇

− 𝑃𝐾
𝑇

𝐵
𝑇

− 𝐴𝑃
𝑇

− 𝐵𝐾𝑃
𝑇

+ 𝑃𝐻
𝑇

𝑄𝐻𝑃
𝑇

< 0 .

(63)

By setting 𝑋 = 𝐾𝑃
𝑇, (62) and (63) become (59) and (60),

respectively. This completes the proof of Theorem 16.

On the basis of Theorem 16, the following theorem gives
a sufficient condition for designing a finite-time stabilizing
controller of (18), which is easy to solve.

Theorem 17. Under the conditions of Lemma 1, if there exist
positive matrices 𝑀 = diag{𝑃

11
, ∗1} > 0, 𝑄 > 0,

matrices 𝑁 ∈ R𝑛×(𝑛−𝑟), 𝑋, and scalars 𝛼 ≥ 0, 𝛽 ≥ 0, 𝜆
1

>

0, 𝜆
2
> 0, satisfying the following matrix inequalities:

[
Ω − 𝛼𝑃𝐸 𝑃𝐻

𝑇

𝑈
𝑇

∗ −𝑀
] < 0 (64)

[
𝛽𝑃𝐸 − Ω 𝑃𝐻

𝑇

𝑈
𝑇

∗ −𝑀
] < 0 (65)

𝜆
1
𝐼 < 𝑅
1/2

[𝑈
−1

]
󸀠

𝑀𝑈
−1

𝑅
1/2

< 𝜆
2
𝐼 (66)

𝜆
2
𝑐
4
𝑒
𝛼𝑇

− 𝑐
2
𝜆
1
< 0 (67)

𝑐
1
𝜆
2
− 𝑐
3
𝜆
1
< 0, (68)
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then there exists a controller such that close-loop system of
system (18) is impulse-free and finite-time stochastically stable
with respect to (𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑇, 𝑅), where Ω = 𝑃𝐴

𝑇

+ 𝑋
𝑇

𝐵
𝑇

+

𝐴𝑃
𝑇

+𝐵𝑋, 𝑃(𝑀,𝑁) = 𝐸𝑉𝑀𝑉
𝑇

+𝑈
−1

𝑁Φ
𝑇 is nonsingular. In

addition, the feedback controller is 𝑢(𝑡) = 𝑋[𝑃
𝑇

(𝑀,𝑁)]
−1

𝑥(𝑡).

Proof. By Lemma 12, 𝑃 satisfying (53) in Theorem 16 can be
parameterized as

𝑃 = 𝐸𝑉𝑀𝑉
𝑇

+ 𝑈
−1

𝑁Φ
𝑇

, (69)

and (54) holds when 𝑄 = 𝑅
−1/2

𝑈
𝑇

𝑀
−1

𝑈𝑅
−1/2, where 𝑀 =

diag{𝑃
11
, ∗1}, 𝑁 = [𝑃

𝑇

12
𝑃
𝑇

22
]
𝑇.

Substituting 𝑄 = 𝑅
−1/2

𝑈
𝑇

𝑀
−1

𝑈𝑅
−1/2 into (59) and

(60), by Schur Complement, (53) and (65) are obtained,
respectively.

Since

𝜆max (𝑄) = [𝜆min (𝑅
1/2

[𝑈
−1

]
𝑇

𝑀𝑈
−1

𝑅
1/2

)]

−1

, (70)

𝜆min (𝑄) = [𝜆max (𝑅
1/2

[𝑈
−1

]
𝑇

𝑀𝑈
−1

𝑅
1/2

)]

−1

, (71)

it is easy to check that conditions (55)-(56) are guaranteed by
(66)-(68). This completes the proof.

Remark 18. It is important to notice that once we have
fixed the values for 𝛼 and 𝛽, the feasibility of the conditions
stated in Theorem 17 can be turned into the following
LMIs based feasibility problem. The algorithm of how to
choose 𝛼 and 𝛽 for Theorem 17 is given in the following.

Algorithm 19. Consider the following steps.

Step 1. Given 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑅, and 𝑇.

Step 2. Take a series of 𝛼
𝑖
(𝑖 = 1, . . . , 𝑛) by a step size 𝑑

1
and

a series of 𝛽
𝑗
(𝑗 = 1, . . . , 𝑚) by a step size 𝑑

2
.

Step 3. Set 𝑖 = 1, take a 𝛼
𝑖
.

Step 4. Set 𝑗 = 1, take a 𝛽
𝑗
.

Step 5. If (𝛼
𝑖
, 𝛽
𝑗
)makes (53)–(68) have feasible solutions, then

store (𝛼
𝑖
, 𝛽
𝑗
) into (𝑋(𝑖), 𝑌(𝑗)) and 𝛽

𝑗
= 𝛽
𝑗+1

, go to Step 5;
otherwise go to Step 6.

Step 6. If 𝑖 + 1 < 𝑛, then 𝛼
𝑖
= 𝛼
𝑖+1

and take 𝛽
1
, go to Step 5.

Otherwise, go to Step 7.

Step 7. Stop. If (𝑋, 𝑌) = (0, 0), then we cannot
find (𝛼, 𝛽) making (53)–(68) have feasible solution;
otherwise, there exists (𝛼, 𝛽) making (53)–(68) have
feasible solution.

Remark 20. By Algorithm 19, we can obtain a region
surrounded by 𝛼 and 𝛽, if it exists, which is used to
select 𝛼 and 𝛽 for appropriate conditions.

Remark 21. If 𝑃(𝑀,𝑁) obtained from LMIs (53)–(68) is
singular, then we can adjust 𝛼 and 𝛽 such that 𝑃(𝑀,𝑁) is
non-singular.

5. Examples

In this section, we will present two examples to illustrate the
obtained results.

Example 1. Consider the Itô stochastic singular system (1)
with

𝐸 = [
1 0

2 0
] , 𝐴 = [

−1 −2

−2 3
] , 𝐻 = [

1 1

2 2
] ,

𝑥 (0) = [1.6 0]
󸀠

, 𝑐
1
= 1, 𝑐

2
= 20,

𝑐
3
= 10, 𝑐

4
= 15, 𝑇 = 0.25, 𝑅 = 𝐼.

(72)

For system (1), there exists a pair of nonsingular matrices

𝑈 = [
−
3

2
1

−2 1

] , 𝑉 = [
2 0

0 2
] (73)

such that

𝑈𝐸𝑉 = [
1 0

0 0
] , 𝑈𝐴𝑉 = [

−1 0

0 2
] , 𝑈𝐻𝑉 = [

1 1

0 0
] ,

(74)

which satisfy Lemma 1, so system (1) has a unique solution
and is also impulse-free. We find that system (1) is equivalent
to the following system:

𝑑𝑥
1
(𝑡) = −𝑥

1
(𝑡) 𝑑𝑡 + 𝑥

1
(𝑡) 𝑑𝑤 (𝑡) ,

𝑥
2
(𝑡) = 0.

(75)

Based on this, E[𝑥
𝑇

(𝑡)𝐸
𝑇

𝑅𝐸𝑥(𝑡)] = E[5𝑥
2

1
(𝑡)].

By Proposition 3, we solve (16), where

𝐸 ⊗ 𝐸 =

[
[
[

[

1 0 0 0

2 0 0 0

2 0 0 0

4 0 0 0

]
]
]

]

,

𝐸 ⊗ 𝐴 + 𝐴 ⊗ 𝐸 + 𝐻 ⊗ 𝐻 =

[
[
[

[

−1 −1 −1 1

−2 5 −2 2

−2 −2 5 2

−4 10 10 4

]
]
]

]

.

(76)

By a simple calculation, we obtain �⃗�(𝑡) = [2.56𝑒
−𝑡

0 0 0].
It is easy to obtain that 1 < tr(𝐸𝑇𝑅𝐸𝑋(𝑡)) = 5 × 2.56𝑒

−𝑡

<

20, 𝑡 ∈ [0, 0.25], so (1) is finite-time stochastically stable
with respect to (1, 20, 10, 15, 0.25, 𝐼). Figure 3 depicts the
evolution of E[𝑥

𝑇

(𝑡)𝐸
𝑇

𝑅𝐸𝑥(𝑡)] of system (1).
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t (s)

Figure 3: The evolution of E[𝑥
𝑇

(𝑡)𝐸
𝑇

𝑅𝐸𝑥(𝑡)] of system (1).

Example 2. Consider the Itô stochastic singular system (18)
with

𝐸 = [

[

1 0 0

0 1 0

0 0 0

]

]

, 𝐴 = [

[

0.8 1 0

−0.2 1 0

0 0 1

]

]

,

𝐻 = [

[

1 1 2

2 1 2

0 0 0

]

]

, 𝐵 = [0.8 1 1]
𝑇

,

𝑥
1
(0) = 1.5, 𝑥

2
(0) = 1, 𝑥

3
(0) = 0, 𝑐

1
= 1,

𝑐
2
= 20, 𝑐

3
= 3, 𝑐

4
= 4, 𝑇 = 0.5, 𝑅 = 𝐼.

(77)

By Lemma 12, we obtain 𝑈 = 𝐼, 𝑉 = 𝐼 and Φ = [0 0 1]
𝑇.

Apply Algorithm 19 to Theorem 17, a region surrounded
by 𝛼 and 𝛽, which is illustrated in Figure 4.

Selecting 𝛼 = 2, 𝛽 = 0.2 and solving (53)–(68), we obtain

𝑀 = [

[

98.8729 12.1890 0

12.1890 137.9050 0

0 0 114.8137

]

]

,

𝑁 = [−71.1246 −77.6051 −7.9438]
𝑇

,

𝑋 = [−50.0746 −76.8002 26.0568] ,

𝜆
1
= 87.0062, 𝜆

2
= 154.6197.

(78)

Hence, the feedback gain matrix is given by

𝐾 = 𝑋[𝐸𝑀 + 𝑁Φ]
−𝑇

= [−2.5981 − 2.1731 − 3.2801] .

(79)

Under the following state feedback controller

𝑢 (𝑡) = [−2.5981 −2.1731 −3.2801] 𝑥 (𝑡) , (80)

the closed-loop system of (18) is impulse-free and finite-time
stochastically stable with respect to (1, 20, 3, 4, 0.5, 𝐼).

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

𝛽

𝛼

Figure 4: A region by 𝛼 and 𝛽.

0 0.1 0.2 0.3 0.4 0.5
0
1
3
4

t (s)

E
[x

2 1
+
x
2 2
+
x
2 3
]

10

15

20

Figure 5: The evolution of E[𝑥
𝑇

(𝑡)𝐸
𝑇

𝑅𝐸𝑥(𝑡)] of the closed-system
of (18).

Figure 5 depicts the evolution of E[𝑥
𝑇

(𝑡)𝐸
𝑇RE𝑥(𝑡)] of

system (18). Figure 6 gives the evolution of 𝑢(𝑡).

6. Conclusion

In this paper, we have dealt with finite-time stability and sta-
bilization problems for linear Itô stochastic singular systems
and also established a condition of the existence and unique-
ness of solution of linear Itô stochastic singular systems. A
new sufficient condition has been provided to guarantee that
the linear Itô stochastic singular system is impulse-free and
finite-time stochastic stable. Based on the obtained result,
we have also derived the corresponding stabilization criteria.
Moreover, the finite-time stochastic stabilization has been
studied via state feedback, and somenew sufficient conditions
have been given. Two examples are presented to illustrate
the effectiveness of the proposed results. In addition, we
can refer to [29–31] and extend the results of this paper
to Markovian jump systems, networked systems, and linear
parameter varying systems.
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Figure 6: The evolution of 𝑢(𝑡).
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