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Recently, extensive researches on estimating the value of e have been studied. In this paper, the structural characteristics of I. Schur
type inequalities are exploited to generalize the corresponding inequalities by variable parameter techniques. Some novel upper
and lower bounds for the I. Schur inequality have also been obtained and the upper bounds may be obtained with the help ofMaple
and automated proving package (Bottema). Numerical examples are employed to demonstrate the reliability of the approximation
of these new upper and lower bounds, which improve some known results in the recent literature.

1. Introduction

It is well known that 𝑥
𝑛
= (1 + (1/𝑛))

𝑛 and 𝑦
𝑛
= (1 +

(1/𝑛))
𝑛+1 are, respectively, monotone increasing and mono-

tone decreasing, and both of them converge to the constant
𝑒. In fact, extensive researches for the estimated value of 𝑒
have been studied [1–4], and the methods for estimating the
value of 𝑒 are of benefit to the improvements of the Hardy
inequality, Carleman inequality, Gamma function inequality,
and so forth [5–13], which is an essential motivation for
this work. Klambauer and Schur have reached the following
conclusion.

Lemma 1 (see [14]). Both 𝑠
𝑛
= (1 + (1/𝑛))

𝑛+𝛼 and 𝑡
𝑛
= (1 +

(1/𝑛))
𝑛+1

(1 + (𝛼/𝑛)) are monotone decreasing sequences if and
only if 𝛼 ≥ (1/2).

In fact, it is not hard to prove that

𝑒 < (1 +

1

𝑛

)

𝑛+(1/2)

= √1 +

1

𝑛

(1 +

1

𝑛

)

𝑛

, (1)

which has been proved by different ways; refer to [14–17].

Besides, Fischer and Qi had further studied this issue
(see [18–20]) and they demonstrated that 𝑥

𝑛
is a monotone

increasing sequence if and only if

𝛼 ≤

2 ln 3 − 3 ln 2
2 ln 2 − ln 3

= 0.409 . . . . (2)

Moreover, Alzer and Qi have obtained the necessary
and sufficient conditions for the monotonicity of generalized
types of 𝑏

𝑛
= (1 + (𝛼/𝑛))

𝑛+𝛽 and 𝐹
𝛼,𝛽
(𝑥) = (1 + (𝛼/𝑥))

𝑥+𝛽; see
[21, 22] for details.

Recently, I. Schur has obtained the so-called I. Schur
inequality as follows:

𝑝
𝑛
< 𝑒 < 𝑞

𝑛
, (3)

where 𝑝
𝑛
= 𝑥
𝑛
(1 + (1/(2𝑛 + 1))) and 𝑞

𝑛
= 𝑥
𝑛
(1 + (1/2𝑛)).

It can also solve the problem proposed by Klambauer in
[15]: “Is the 𝑒 contained in a quarter of the interval of (1 +
(1/𝑛))

𝑛

< 𝑒 < (1 + (1/𝑛))
𝑛+1?”Therefore, here 𝑒 is included in

the interval length of

𝐸 = (1 +

1

2𝑛

) − (1 +

1

2𝑛 + 1

) =

1

2𝑛 (2𝑛 + 1)

≤

1

6

,

𝑛 = 1, 2, . . . .

(4)
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In [23], Xu and Yang have obtained a series of improved
forms of the I. Schur inequalities, from which there is one
conclusion which can be drawn that the necessary and
sufficient condition for (1 + (1/𝑛))𝑛(1 + (1/𝑎𝑛)) < 𝑒 < (1 +
(1/𝑛))

𝑛

(1 + (1/2𝑛)) is 𝑎 > (2/(𝑒 − 2)).
Many new estimated values on 𝑒 have been obtained

when researchers study the improvements of the Carleman
inequality; see [24–26] for details. We mainly analyze the
structural characteristics of I. Schur type inequalities and find
out their upper and lower bounds are closely related to the
mean value sequences of 𝑥

𝑛
and 𝑦

𝑛
. At last, we generalized

a series of conclusions on the developments of I. Schur
inequality via introducing variable parameters.

The rest of work is organized as follows. In Section 2,
upper and lower bounds for a series of the I. Schur type
inequalities are improved. Meanwhile, novel I. Schur-like
inequalities are obtained by means of the variable parameter
method. Some numerical examples are given to show the reli-
ability of the approximation of new upper and lower bounds
in Section 3. Finally, the paper closes with conclusions in
Section 4.

2. Main Results and Proofs

2.1. Improvements Based on Computation of Mean Value.
In this section, we consider the arithmetic mean value
𝐴
𝑛
, geometric mean value 𝐺

𝑛
, logarithmic mean value 𝐿

𝑛
,

harmonic mean value 𝐻
𝑛
, and antilogarithmic mean Ω

𝑛
of

𝑥
𝑛
and 𝑦

𝑛
, respectively; they are

𝐴
𝑛
=

𝑥
𝑛
+ 𝑦
𝑛

2

=

(1 + (1/𝑛))
𝑛

+ (1 + (1/𝑛))
𝑛+1

2

= 𝑥
𝑛
(1 +

1

2𝑛

) ,

𝐺
𝑛
= (𝑥
𝑛
𝑦
𝑛
)
1/2

= [(1 +

1

𝑛

)

𝑛

(1 +

1

𝑛

)

𝑛+1

]

1/2

= 𝑥
𝑛
(1 +

1

𝑛

)

1/2

,

𝐻
𝑛
=

2𝑥
𝑛
𝑦
𝑛

𝑥
𝑛
+ 𝑦
𝑛

= 𝑥
𝑛
(1 +

1

2𝑛 + 1

) ,

𝐿
𝑛
=

𝑦
𝑛
− 𝑥
𝑛

ln𝑦
𝑛
− ln𝑥

𝑛

= [

(1 + (1/𝑛))
𝑛+1

− (1 + (1/𝑛))
𝑛

ln (1 + (1/𝑛))𝑛+1 − ln (1 + (1/𝑛))𝑛
]

=

𝑥
𝑛

𝑛 ln (1 + (1/𝑛))
,

Ω
𝑛
=

𝑥
𝑛
𝑦
𝑛
(ln𝑦
𝑛
− ln𝑥

𝑛
)

𝑦
𝑛
− 𝑥
𝑛

= 𝑥
𝑛
(1 +

1

𝑛

) ln𝑥
𝑛

= 𝑥
𝑛
(𝑛 + 1) ln(1 + 1

𝑛

) ,

(5)

where 𝐻
𝑛
is a monotone increasing sequence, see [14] for a

discussion of this issue, which means that the left-hand side
of I. Schur inequality is valid. A lower bound for I. Schur
inequality can be obtained via the monotone convergence
theorem [27, pp. 87-88]. Moreover, it has been confirmed
that 𝐴

𝑛
and Ω

𝑛
are monotone decreasing in [28]: both 𝐴

𝑛
=

𝑥
𝑛
(1+ (1/2𝑛)) andΩ

𝑛
= 𝑥
𝑛
(𝑛+1) ln(1+ (1/𝑛)) are monotone

decreasing sequences, and we obtained two inequalities as
follows:

𝑒 < 𝑥
𝑛
(1 +

1

2𝑛

) , 𝑒 < 𝑥
𝑛
(𝑛 + 1) ln(1 + 1

𝑛

) ,

𝑛 = 1, 2, . . . .

(6)

The first inequality has verified the rationality of the right-
hand side of I. Schur inequality, and the second inequality
has put forward a method for sharpening the upper bound
of I. Schur inequality because of (1 + (1/2𝑛)) > (𝑛 + 1) ln(1 +
(1/𝑛)), 𝑛 ∈ 𝑁

∗. Besides, the monotonicity of the remaining
mean value sequences𝐺

𝑛
, 𝐿
𝑛
should also be checked, and the

conclusions can be drawn as follows.

Proposition 2. 𝐺
𝑛
= 𝑥
𝑛
(1+(1/𝑛))

1/2

(𝑛 ∈ 𝑁
∗

) is a monotone
decreasing sequence.

Remark 3. (1)We can also continue to construct geometric
mean value sequence 𝑄

𝑛
= ((1 + (1/𝑛))

2𝑛

(1 + (1/𝑛))
1/2

)

1/2

=

𝑥
𝑛
(1 + (1/𝑛))

1/4. By Lemma 1 and (1/4) = 0.25 < ((2 ln 3 −
3 ln 2)/(2 ln 2 − ln 3)) = 0.409 . . ., we can obtain that 𝑄

𝑛
=

𝑥
𝑛
(1 + (1/𝑛))

1/4 is a monotone decreasing sequence; thus
𝑥
𝑛
(1 + (1/𝑛))

1/4

< 𝑒.
(2) Consider 𝑚 ≥ 2, 𝑚 ∈ 𝑁∗, times of geometric mean

value operation by combining with Lemma 1 and (1/2𝑚) <
((2 ln 3 − 3 ln 2)/(2 ln 2 − ln 3)) = 0.409 . . ., and we have
𝑄
𝑛
= 𝑥
𝑛
(1 + (1/𝑛))

1/2
𝑚

< 𝑒, which is a monotone increasing
sequence for each𝑚.

Theorem 4. 𝐿
𝑛
= 𝑥
𝑛
/(𝑛 ln(1 + (1/𝑛))) is a monotone

increasing sequence, and the following inequality

𝐿
𝑛
=

𝑥
𝑛

𝑛 ln (1 + (1/𝑛))
> 𝑒 (7)

holds for 𝑛 ∈ 𝑁∗.

Proof. We consider the monotonicity of 𝑓(𝑥) = (𝑥/ ln𝑥),
(1 < 𝑥 < 𝑒), and

𝑓


(𝑥) =

ln𝑥 − 1
(ln𝑥)2

, (8)

when 𝑥 ∈ (1, 𝑒), 𝑓(𝑥) < 0 and hence 𝑓(𝑥) is monotone
decreasing. It is known that 𝑥

𝑛
= (1 + (1/𝑛))

𝑛 is monotone
increasing, and 𝑥

𝑛
= (1 + (1/𝑛))

𝑛

∈ (1, 𝑒). According
to monotonous property of the composite functions, 𝐿

𝑛
=

𝑥
𝑛
/(𝑛 ln(1 + (1/𝑛))) is a monotone decreasing sequence; thus

𝑓 (𝑥) =

𝑥

ln𝑥
> 𝑓 (𝑒) =

𝑒

ln 𝑒
= 𝑒. (9)
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Take 𝑥 = (1 + (1/𝑛))𝑛 ∈ (1, 𝑒); then

𝐿
𝑛
=

𝑥
𝑛

𝑛 ln (1 + (1/𝑛))
> 𝑒. (10)

Based on this conclusion, it is not hard to note that it is an
improvement of upper bound for I. Schur inequality.There is
another conclusion shown as follows (see [14]).

Proposition 5. The double inequality

(1 +

1

𝑛

)

𝑛+𝛼

≤ 𝑒 ≤ (1 +

1

𝑛

)

𝑛+𝛽

(11)

for 𝑛 ≥ 1 is valid in the sense that the maximum 𝛼 = (1/ ln 2)−
1 and minimum 𝛽 = 1/2 in (11) are best possible.

Then we study the necessary and sufficient condition for
the validness of the class of (1+(1/(2𝑛+𝛽)))𝑥

𝑛
≤ 𝑒 and obtain

the following.

Proposition 6. The inequality (1 + (1/(2𝑛 + 𝛽)))𝑥
𝑛
≤ 𝑒 holds

if and only if 𝛽 ≥ (5/6), and 𝛽 = 5/6 is the best constant.

In fact, the proof of this theorem can be introduced via
the conclusions in [14] as follows:

6𝑒

12𝑥 + 11

< 𝑒 − (1 +

1

𝑥

)

𝑥

<

7𝑒

14𝑥 + 12

(𝑥 ≥ 1) . (12)

Use the left-hand side of (12) and change 𝑥 into 𝑛, 𝑛 ∈ 𝑁∗;
then

(1 +

1

𝑛

)

𝑛

< 𝑒 −

6𝑒

12𝑛 + 11

=

12𝑛 + 5

12𝑛 + 11

𝑒, 𝑛 ∈ 𝑁
∗ (13)

and we can also obtain (1 + (1/(2𝑛 + (5/6))))𝑥
𝑛
≤ 𝑒. The

conclusion on the best optimality of 𝛽 can be found in [13]. It
needs to be mentioned that the authors have made a mistake
when they cited this inequality in [14]; for instance, let 𝑥 =
(1/10); then 𝑒−(1+(1/𝑥))𝑥 = 1.447300213 . . ., but (7𝑒/(14𝑥+
12)) = 1.419997970 . . .. It means that the right-hand side of
the inequality may not be valid. It is found that they mistake
𝑥 ≥ 1 for 𝑥 > 0 after checking the original paper [8]. In fact,
we can prove 𝑒 − (1 + (1/𝑥))𝑥 < (𝑒/(2𝑥 + 𝛼)), 𝑥 > 0, and the
constant 𝛼 = 𝑒/(𝑒 − 1) is the best possible.

Theorem 7. The sequence

𝑆
𝑛
=

𝑝
𝑛
+ 𝑞
𝑛

2

= 𝑥
𝑛

8𝑛
2

+ 8𝑛 + 1

8𝑛
2
+ 4𝑛

(14)

is monotone decreasing, and the inequality 𝑥
𝑛
(1 + (4𝑛 +

1)/(8𝑛
2

+ 4𝑛)) > 𝑒 holds for 𝑛 ∈ 𝑁∗.

Proof. We consider 𝑔(𝑥) = ln(8𝑥2 + 8𝑥 + 1) − ln(8𝑥2 + 4𝑥) +
𝑥 ln(𝑥 + 1) − 𝑥 ln𝑥, 𝑥 > 0; then

𝑔


(𝑥) =

16𝑥 + 8

8𝑥
2
+ 8𝑥 + 1

−

16𝑥 + 4

8𝑥
2
+ 4𝑥

+ ln (𝑥 + 1) − ln𝑥 − 1

𝑥 + 1

,

𝑔


(𝑥) =

16

8𝑥
2
+ 8𝑥 + 1

−

(16𝑥 + 8)
2

(8𝑥
2
+ 8𝑥 + 1)

2

−

16

8𝑥
2
+ 4𝑥

+

(16𝑥 + 4)
2

(8𝑥
2
+ 4𝑥)
2
−

1

𝑥(𝑥 + 1)
2

= (128𝑥
6

+ 384𝑥
5

+ 488𝑥
4

+ 336𝑥
3

+125𝑥
2

+ 21𝑥 + 1)

× ((8𝑥
2

+ 8𝑥 + 1)

2

(2𝑥 + 1)
2

(𝑥 + 1)
2

𝑥
2

)

−1

> 0,

(15)

where 𝑥 > 0. By lim
𝑥→∞

𝑔


(𝑥) = 0, we obtain 𝑔(𝑥) < 0
(𝑥 > 0). Therefore, 𝑆

𝑛
is monotone decreasing, and we can

straightforwardly prove the desired inequality of the theorem
with lim

𝑛→∞
𝑆
𝑛
= 𝑒.

Theorem 8. The sequence

𝑇
𝑛
=

2𝑝
𝑛
𝑞
𝑛

𝑝
𝑛
+ 𝑞
𝑛

= 𝑥
𝑛

8𝑛
2

+ 12𝑛 + 4

8𝑛
2
+ 8𝑛 + 1

(16)

is monotone decreasing, and the following inequality

𝑥
𝑛

8𝑛
2

+ 12𝑛 + 4

8𝑛
2
+ 8𝑛 + 1

= 𝑥
𝑛
(1 +

4𝑛 + 3

8𝑛
2
+ 8𝑛 + 1

) > 𝑒 (17)

holds for 𝑛 ∈ 𝑁∗.

Proof. Weconsider ℎ(𝑥) = ln(8𝑥2+12𝑥+4)−ln(8𝑥2+8𝑥+1)+
𝑥 ln(𝑥+1)−𝑥 ln𝑥,𝑥 ≥ 1, then ℎ(𝑥) = ((16𝑥+12)/(8𝑥2+12𝑥+
4))−((16𝑥+8)/(8𝑥

2

+8𝑥+1))+ln(𝑥+1)+(𝑥/(𝑥+1))−ln𝑥−1,
and

ℎ


(𝑥) =

16

8𝑥
2
+ 12𝑥 + 4

−

(16𝑥 + 12)
2

(8𝑥
2
+ 12𝑥 + 4)

2
−

16

8𝑥
2
+ 8𝑥 + 1

+

(16𝑥 + 8)
2

(8𝑥
2
+ 8𝑥 + 1)

2
+

2

𝑥 + 1

−

𝑥

(𝑥 + 1)
2
−

1

𝑥

=

128𝑥
4

+ 256𝑥
3

+ 152𝑥
2

+ 24𝑥 − 1

𝑥 (𝑥 + 1) (8𝑥
2
+ 8𝑥 + 1)

2

(2𝑥 + 1)
2

> 0,

(18)

where 𝑥 ≥ 1. According to lim
𝑥→∞

ℎ


(𝑥) = 0, we obtain
ℎ


(𝑥) < 0 (𝑥 ≥ 1). Therefore, 𝑇
𝑛
is monotone decreasing, and

we can straightforwardly prove the desired inequality with
lim
𝑛→∞

𝑇
𝑛
= 𝑒.
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In fact, the previous theorems can be viewed as the differ-
ent improvements of original I. Schur inequality. The above
improved inequalities follow the motivation of researching
mean value sequences of the upper and lower bounds for
original inequalities; the authors study the monotonicity of
the sequences constructed by the mean value of upper and
lower bounds for I. Schur inequality and its relationship with
𝑒. The arithmetic mean value should be replaced with the
“weighted” mean value𝑊

𝑛
= (𝑥
𝑛
+𝜆𝑦
𝑛
)/(1+𝜆) = [1+𝜆/(𝜆+

1)𝑛]𝑥
𝑛
, 𝜆 ∈ R; then we have the following.

Theorem 9. For 𝜆 ∈ [(−1 −√3)/4, (−1 +√3)/4] and 𝑛 ∈ 𝑁∗,
the sequence 𝑊

𝑛
is monotone decreasing, and the inequality

𝑥
𝑛
[1 + 𝜆/(𝜆 + 1)𝑛] < 𝑒 holds.

Proof. Weconsider 𝑑(𝑥) = ln(𝑥+𝜆𝑥+𝜆)−ln(𝑥+𝜆𝑥)+𝑥 ln(𝑥+
1) − 𝑥 ln𝑥 (𝑥 > 0); then

𝑑


(𝑥) =

1 + 𝜆

𝑥 + 𝜆𝑥 + 𝜆

−

1 + 𝜆

𝑥 + 𝜆𝑥

+ ln (𝑥 + 1)

+

𝑥

𝑥 + 1

− ln𝑥 − 1,
(19)

𝑑


(𝑥) = −

(1 + 𝜆)
2

(𝑥 + 𝜆𝑥 + 𝜆)
2
+

(1 + 𝜆)
2

(𝑥 + 𝜆𝑥)
2
+

2

𝑥 + 1

−

𝑥

(𝑥 + 1)
2
−

1

𝑥

= (2𝜆𝑥
2

+ 3𝜆
2

𝑥
2

+ 3𝜆
2

𝑥

+𝑥
3

𝜆
2

− 𝑥
3

+ 𝜆
2

+ 2𝜆𝑥)

× ((𝑥 + 1)
2

𝑥
2

(𝑥 + 𝜆𝑥 + 𝜆)
2

)

−1

.

(20)

Now rewrite numerator of (20) and denote 𝐼
𝑥
(𝜆) = (3𝑥

2

+

3𝑥+𝑥
3

+1)𝜆
2

+ (2𝑥+2𝑥
2

)𝜆−𝑥
3. This is a quadratic function

of 𝜆, and its discriminant is

Δ = (2𝑥 + 2𝑥
2

)

2

+ 4 (3𝑥
2

+ 3𝑥 + 𝑥
3

+ 1) 𝑥
3

> 0. (21)

We note that two roots of 𝐼
𝑥
(𝜆) are

𝜆
1
= −

(1 + √1 + 𝑥
2
+ 𝑥) 𝑥

(𝑥 + 1)
2

,

𝜆
2
=

(−1 + √1 + 𝑥
2
+ 𝑥) 𝑥

(𝑥 + 1)
2

.

(22)

It is not hard to prove that {−((1+√1 + 𝑥2 + 𝑥)𝑥/(𝑥+1)2)}∞
𝑥=1

is strictly monotone decreasing, and

−1 < −

(1 + √1 + 𝑥
2
+ 𝑥) 𝑥

(𝑥 + 1)
2

≤ −

1 + √3

4

= −0.6830127 . . . ,

(23)

and {(−1 + √1 + 𝑥2 + 𝑥)𝑥/(𝑥 + 1)2}∞
𝑥=1

is strictly monotone
increasing; we also have

−1 + √3

4

= 0.1830127 . . . ≤

(−1 + √1 + 𝑥
2
+ 𝑥) 𝑥

(𝑥 + 1)
2

< 1.

(24)

Hence, the inequality 𝐼
𝑥
(𝜆) ≤ 0 always holds for𝑥 ≥ 1 and𝜆 ∈

[(−1 −√3)/4, (−1 +√3)/4]. By using lim
𝑥→∞

𝑑


(𝑥) = 0, thus
𝑑


(𝑥) ≥ 0. It shows that sequence𝑊
𝑛
= [1 + 𝜆/(𝜆 + 1)𝑛]𝑥

𝑛
is

monotone increasing under this condition, and the inequality
in this theorem can be proved by using lim

𝑛→∞
𝑊
𝑛
= 𝑒.

2.2. Further Discussions Based on Introducing the Parameters.
Here we study the monotonicity of two new sequences and
their relationships with 𝑒 by introducing real parameter 𝜆.
Two sequences are, respectively, 𝑖

𝑛
= (1 + (𝜆/𝑛))

𝑛 and
𝑗
𝑛
= (1 + (𝜆/𝑛))

𝑛+1, where 𝜆 > 0, and it is easy to
obtain lim

𝑛→∞
𝑖
𝑛
= lim

𝑛→∞
𝑗
𝑛
= 𝑒
𝜆. Next, we consider

their arithmetic mean value sequence, geometric mean value
sequence, and harmonic mean value sequence, respectively;
consider

𝐴
1
(𝑛, 𝜆) =

𝑖
𝑛
+ 𝑗
𝑛

2

= (1 +

𝜆

2𝑛

)(1 +

𝜆

𝑛

)

𝑛

,

𝐺
1
(𝑛, 𝜆) = (𝑖

𝑛
𝑗
𝑛
)
1/2

= (1 +

𝜆

𝑛

)

1/2

(1 +

𝜆

𝑛

)

𝑛

,

𝐻
1
(𝑛, 𝜆) =

2𝑖
𝑛
𝑗
𝑛

𝑖
𝑛
+ 𝑗
𝑛

= (1 +

𝜆

2𝑛 + 𝜆

)(1 +

𝜆

𝑛

)

𝑛

.

(25)

Theorem 10. For 0 < 𝜆 ≤ 1 and 𝑛 ∈ 𝑁∗, the sequences
𝐴
1
(𝑛, 𝜆) = (1 + (𝜆/2𝑛))(1 + (𝜆/𝑛))

𝑛 are monotone decreasing,
and the inequality 𝑒𝜆 < (1 + (𝜆/2𝑛))(1 + (𝜆/𝑛))𝑛 holds.

Proof. We consider𝑀(𝑥) = 𝑥 ln(𝑥+𝜆)−𝑥 ln𝑥+ ln(2𝑥+𝜆)−
ln(2𝑥), 𝑥 > 0; then

𝑀


(𝑥) = ln (𝑥 + 𝜆) + 𝑥

𝑥 + 𝜆

− ln𝑥 − 1 + 2

2𝑥 + 𝜆

−

1

𝑥

,

𝑀


(𝑥) = 2

1

𝑥 + 𝜆

−

𝑥

(𝑥 + 𝜆)
2
−

1

𝑥

−

4

(2𝑥 + 𝜆)
2
+

1

𝑥
2

= − (𝜆 (4𝑥
3

𝜆 + 4𝑥
2

𝜆
2

+ 𝑥𝜆
3

− 4𝑥
3

− 9𝑥
2

𝜆

−6𝑥𝜆
2

− 𝜆
3

)) × (𝑥
2

(𝑥 + 𝜆)
2

(2𝑥 + 𝜆)
2

)

−1

.

(26)

Denote the numerator of𝑀(𝑥) in (26) as

𝑁(𝑥) := −𝜆 (4𝑥
3

𝜆 + 4𝑥
2

𝜆
2

+ 𝑥𝜆
3

− 4𝑥
3

− 9𝑥
2

𝜆

−6𝑥𝜆
2

− 𝜆
3

) := 𝜆𝑌 (𝑥) ,

(27)
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where 𝑌(𝑥) := 4𝑥3 − 4𝑥3𝜆 + 9𝑥2𝜆 − 4𝑥2𝜆2 + 6𝑥𝜆2 − 𝑥𝜆3 + 𝜆3.
Take ∀𝑝 ≥ 0; then 𝜆 := 1/(𝑝 + 1) ∈ (0, 1] and

𝑌 (𝑥) := 4𝑥
3

−

4𝑥
3

𝑝 + 1

+

9𝑥
2

𝑝 + 1

−

4𝑥
2

(𝑝 + 1)
2
+

6𝑥

(𝑝 + 1)
2

−

𝑥

(𝑝 + 1)
3
+

1

(𝑝 + 1)
3

= (4𝑥
3

𝑝
3

+ 8𝑥
3

𝑝
2

+ 4𝑥
3

𝑝 + 9𝑥
2

𝑝
2

+14𝑥
2

𝑝 + 5𝑥
2

+ 6𝑥𝑝 + 5𝑥 + 1) × ((𝑝 + 1)
3

)

−1

.

(28)

It is found that if 0 < 𝜆 ≤ 1 and 𝑥 > 0, then 𝑌(𝑥) ≥ 0.
Furthermore, it implies that

𝑁(𝑥) = 𝜆𝑌 (𝑥) ≥ 0; (29)

then𝑀(𝑥) is monotone increasing, and lim
𝑥→∞

𝑀


(𝑥) = 0

has been verified, such that 𝑀(𝑥) < 0, and 𝐴
1
(𝑛, 𝜆) =

(1 + (𝜆/2𝑛))(1 + (𝜆/𝑛))
𝑛 are monotone decreasing; hence

𝑒
𝜆

< (1 + (𝜆/2𝑛))(1 + (𝜆/𝑛))
𝑛 can be proved because of

lim
𝑛→∞

𝐴
1
(𝑛, 𝜆) = 𝑒

𝜆.

Theorem 11. For 0 < 𝜆 ≤ 1 and 𝑛 ∈ 𝑁∗, the sequences
𝐺
1
(𝑛, 𝜆) = (1+(𝜆/𝑛))

1/2

(1+(𝜆/𝑛))
𝑛 are monotone decreasing,

and the inequality (1 + (𝜆/𝑛))1/2(1 + (𝜆/𝑛))𝑛 > 𝑒𝜆 holds.

Proof. We consider 𝑓
1
= 𝑥 ln(1+ (𝜆/𝑥)) + (1/2) ln(1+ (𝜆/𝑥)),

𝑥 ≥ 1; then

𝑓


1
(𝑥) = ln(1 + 𝜆

𝑥

) −

𝜆

𝑥 (1 + (𝜆/𝑥))

−

𝜆

2𝑥
2
(1 + (𝜆/𝑥))

,

(30)

𝑓


1
(𝑥) =

−𝜆
2

𝑥
3
(1 + (1/𝑥))

2
+

𝜆

𝑥
3
(1 + (𝜆/𝑥))

−

𝜆
2

2𝑥
4
(1 + (𝜆/𝑥))

2
=

−𝜆 (2𝜆𝑥 − 2𝑥 − 𝜆)

2𝑥
2
(𝑥 + 𝜆)

2

=

(−2𝑥 + 1) 𝜆
2

+ 2𝜆𝑥

2𝑥
2
(𝑥 + 𝜆)

2
.

(31)

Denote the numerator of (31) as 𝛿(𝜆) = (−2𝑥 + 1)𝜆2 + 2𝑥𝜆,
which is a quadratic function of 𝜆. And its discriminant is
Δ
1
= 4𝑥
2

> 0. Then two roots of 𝛿(𝜆) are

𝜆
1
= 0, 𝜆

2
=

2𝑥

2𝑥 − 1

. (32)

We note that {2𝑥/(2𝑥 − 1)}∞
𝑥=1

is strict monotone decreasing
and 1 < (2𝑥/(2𝑥 − 1)) ≤ 2, 𝑥 ≥ 1. According to the
characteristic of parabola curve, 𝛿(𝜆) = (−2𝑥 + 1)𝜆2 + 2𝑥𝜆 >
0 always holds for 0 < 𝜆 ≤ 1 and 𝑥 ≥ 1; then from
lim
𝑥→∞

𝑓


1
(𝑥) = 0, 𝑓

1
(𝑥) ≤ 0. It shows that the sequences

𝐺
1
(𝑛, 𝜆) are monotone decreasing.

Theorem 12. If 𝜆 ≥ 1, then 𝐻
1
(𝑛, 𝜆) = (2𝑖

𝑛
𝑗
𝑛
)/(𝑖
𝑛
+ 𝑗
𝑛
) =

(1 + 𝜆/(2𝑛 + 𝜆))(1 + (𝜆/𝑛))
𝑛 are monotone increasing, and the

following inequality

(1 +

𝜆

2𝑛 + 𝜆

)(1 +

𝜆

𝑛

)

𝑛

< 𝑒
𝜆 (33)

holds for 𝑛 ∈ 𝑁∗.

Proof. We consider 𝜑(𝑥) = ln(2𝑥+2𝜆)− ln(2𝑥+𝜆)+𝑥 ln(𝑥+
𝜆) − 𝑥 ln𝑥, 𝑥 > 0; then

𝜑


(𝑥) =

2

2𝑥 + 2𝜆

−

2

2𝑥 + 𝜆

+ ln (𝑥 + 𝜆) + 𝑥

𝑥 + 𝜆

− ln𝑥 − 1,
(34)

𝜑


(𝑥) =

−4

(2𝑥 + 2𝜆)
2
+

4

(2𝑥 + 𝜆)
2
+

2

𝑥 + 𝜆

−

𝑥

(𝑥 + 𝜆)
2

−

1

𝑥

= − (𝜆 (−4𝑥
2

− 3𝜆𝑥 + 4𝜆𝑥
2

+ 4𝑥𝜆
2

+ 𝜆
3

))

× ((𝑥 + 𝜆)
2

(2𝑥 + 𝜆)
2

𝑥)

−1

.

(35)

Denote numerator of (35) as
𝛾 (𝑥) = −𝜆 (−4𝑥

2

− 3𝜆𝑥 + 4𝜆𝑥
2

+ 4𝑥𝜆
2

+ 𝜆
3

) := −𝜆𝑍 (𝑥) ,

(36)

where 𝑍(𝑥) := −4𝑥2 − 3𝜆𝑥 + 4𝜆𝑥2 + 4𝑥𝜆2 + 𝜆3. Since 𝜏 + 1 :=
𝜆 ≥ 1, that is, 𝜏 ≥ 0, we have

𝑍 (𝑥) := −4𝑥
2

− 3𝑥 (𝜏 + 1) + 4𝑥
2

(𝜏 + 1)

+ 4𝑥(𝜏 + 1)
2

+ (𝜏 + 1)
3

= 4𝑥
2

𝜏 + (𝜏 + 1) (4𝜏 + 1) 𝑥 + (𝜏 + 1)
3

≥ 0.

(𝑥 > 0, 𝜏 ≥ 0)

(37)

It implies that the inequality 𝛾(𝑥) = −𝜆𝑍(𝑥) ≤ 0 always
holds for 𝑥 > 0, 𝜆 ≥ 1. Then 𝜑(𝑥) is monotone decreasing,
and according to lim

𝑥→∞
𝜑


(𝑥) = 0, we have 𝜑(𝑥) > 0.
Hence,𝐻

1
(𝑛, 𝜆) = (1 + 𝜆/(2𝑛 + 𝜆))(1 + (𝜆/𝑛))

𝑛 are monotone
increasing sequences, and we prove that

𝑒
𝜆

> (1 +

𝜆

2𝑛 + 𝜆

)(1 +

𝜆

𝑛

)

𝑛

. (38)

A remaining issue of Theorem 12 can be described as
follows: when 𝜆 < 1, are the 𝐻

1
(𝑛, 𝜆) monotone increasing

or monotone decreasing? With the help of the Bottema
(available at the site of http://old.irgoc.org/Soft/ShowSoft.
asp?SoftID=15, and the practical implementing Maple codes
also are available by the authors’ email) (developed by Yang
and Xia and based on the Maple programme; see [29] and
references therein), we can find that the inequality 𝛾(𝑥) ≥ 0
holds for 0 < 𝜆 ≤ (4/5), 𝑥 ≥ 1. Moreover, it can be also shown
in Algorithm 1.

Then we can conclude that 𝐻
1
(𝑛, 𝜆), 𝑛 = 1, 2, . . ., is

monotone decreasing under the previous discussion in the
proof of the Theorem 12. The further conclusions need to be
studied and proven by analyticalmethods in futurework.
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Table 1: Using𝐻
1
(𝑁, 𝜆) to approximate the 𝑒𝜆, when 𝜆 = 1, 3/2, 2, 3, 4 with different 𝑛.

𝑛

𝐻
1
(𝑛, 1) 𝐻

1
(𝑛, 2) 𝐻

1
(𝑛, 3) 𝐻

1
(𝑛, 4) 𝐻

1
(𝑛, 3/2)

𝑒 ≈ 2.71828 𝑒
2

≈ 7.3891 𝑒
3

≈ 20.0855 𝑒
4

≈ 54.5982 𝑒
3/2

≈ 4.481689

1000 2.71828 7.3817 20.0255 54.2724 4.480010
3000 2.71828 7.3866 20.0655 54.4892 4.481129
5000 2.71828 7.3876 20.0735 54.5327 4.481353
7000 2.71828 7.3880 20.0769 54.5514 4.481449
9000 2.71828 7.3882 20.0788 54.5618 4.481502
11000 2.71828 7.3884 20.0801 54.5684 4.481536
13000 2.71828 7.3885 20.0809 54.5730 4.481560
15000 2.71828 7.3886 20.0815 54.5763 4.481577

Input:
(i) read “D:/Program Files/bottema2009”;
(ii) ineq:= -lambda∗(-4∗x ∧ 2-3∗x∗lambda+4∗x ∧ 2∗lambda+4∗x∗lambda ∧ 2+lambda ∧ 3);

(iii) xprove(ineq >= 0, [lambda <= 4/5, x >= 1]);

Output:
Found border curves. . .

(−4𝑥
2

− 3𝑥𝜆 + 4𝑥
2

𝜆 + 4𝑥𝜆
2

+ 𝜆
3

)(5𝜆 − 4)(𝑥 − 1)𝑥𝜆

Start to project curves. . ., 3.307
[𝑥, 𝜆]

do 1-th partition. . .
Start to find the sample points., 3.307

in 1-dimensional space. . .
finished in 1-dimensional space.

in 2-dimensional space. . .
finished in 2-dimensional space.

number(s) of sample points:, 1, 3.322
[𝑥, 𝜆]

[[2,

1

2

]]

−1
The inequality holds.

true

Algorithm 1

3. Numerical Examples

In this section, we will display some new upper and lower
bounds of the I. Schur inequality by using the Matlab 2011b
in a personal computer. We give some figures to show
their variation trend; the symbols 𝐿

0
–𝐿
4
here mean the

corresponding real continuous function for 𝐿
0
= 𝑥
𝑛
(1 +

(1/2𝑛)), 𝐿
1
= 𝑥
𝑛
(𝑛 + 1) ln(1 + (1/𝑛)), 𝐿

2
= (𝑥
𝑛
/(𝑛 ln(1 +

(1/𝑛)))), 𝐿
3
= 𝑥
𝑛
(1 + ((4𝑛 + 1)/(8𝑛

2

+ 4𝑛))), and 𝐿
4
=

𝑥
𝑛
(1 + ((4𝑛 + 3)/(8𝑛

2

+ 8𝑛 + 1))), respectively.
Form Figure 1, we can note that the original upper bound

𝐿
0
of the I. Schur inequality is not better than the other novel

upper bounds 𝐿
1
–𝐿
4
; the 𝐿

1
is the best upper bound among

five upper bounds. Moreover, we note that the variation
curves of 𝐿

3
, 𝐿
4
are greatly similar; they are both the other

alternatives. This figure also shows that the improvement of
the upper bound of the I. Schur inequality is beneficial.

Firstly, we define the corresponding real continuous
function for 𝑇

1
= 𝑥
𝑛
(1 + (1/(2𝑛 + 1))), 𝑇

2
= 𝑥
𝑛
(1 + (1/𝑛))

1/8,
𝑇
3
= 𝑥
𝑛
(1 + (1/𝑛))

1/4, 𝑇
4
= 𝑥
𝑛
(1 + ((1/100)/(1 + (1/100))𝑛)),

and 𝑇
5
= 𝑥
𝑛
(1 + (−1/3)/(1 − (1/3))𝑛), respectively. From

Figure 2, we can note that the original lower bound 𝑇
1
of

the I. Schur inequality is better than the other novel lower
bounds 𝑇

2
–𝑇
5
; the 𝑇

3
is an alternative among other novel

lower bounds. This figure shows that we improve the lower
bound of the I. Schur inequality and it is not very successful.
But we give some generalized upper and lower bounds for
the 𝑒𝜆, 𝜆 ∈ (0, 1); this work is meaningful in terms of the
generalized type of the I. Schur inequality.

From Table 1, we find that 𝐻
1
(𝑛, 𝜆) can be viewed as a

good lower bound of 𝑒𝜆, 𝜆 ≥ 1 in terms of approximating
precision, especially for the case with 𝜆 = 1. It is favorable to
note that the reliability of the approximation of 𝑒𝜆 based on
𝐻
1
(𝑁, 𝜆) depends on the closeness between 𝜆 and 1.

4. Conclusions

In the previous sections, we have studied the monotonicity
of the sequences and their variants based on various mean
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Figure 1: The variation trend of the different upper bounds value of
the I. Schur inequality.
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Figure 2:The variation trend of the different lower bounds value of
the I. Schur inequality.

values of 𝑥
𝑛
and 𝑦

𝑛
, such as the arithmetic mean value, geo-

metric mean value, logarithmic mean value, and harmonic
mean value. Besides, we have given some extensions and
remarks for known results in the recent literature. At the same
time, we extend some ideas and conclusions in [26, 30–32].
In conclusion, it is not hard to find that the conclusions of
previous generalized sequences with variable parameters are

in terms of the I. Schur type inequality via the parameter
techniques and are a kind of extensions of I. Schur type
inequality.
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