ON MENNICKE GROUPS OF DEFICIENCY ZERO I

MUHAMMAD A. ALBAR

Department of Mathematical Sciences University of Petroleum and Minerals Dhahran, Saudi Arabia

(Received March 26, 1985 and in revised form May 20, 1985)

ABSTRACT. The Mennicke group $M(m,n,r) = \langle x,y,z | x^y = x^m, y^z = y^n, z^x = z^r \rangle$ is one of the few known 3-generator groups of deficiency zero. Several cases of M(m,n,r) are studied.

KEY WORDS AND PHRASES. Presentation, Reidemeister-Schreier method, relation matrix. 1980 AMS SUBJECT CLASSIFICATION CODE. 20F05.

Mennicke [1] has given a class of three generator three relation groups defined by $M(m,n,r) = \langle x,y,z | x^y = x^m, y^z = y^n, z^x = z^r \rangle$ which he proves to be finite for m = n = r $r \ge 3$ (see also Higman [2].) Macdonald [3] has shown that the above group is finite provided that neither $m^2 = 1$, $n^2 = 1$, nor $r^2 = 1$. For general m,n,r the above group is difficult to consider. Wamsley [3] discussed the group for some cases with m = n = r . The aim of this paper is to consider the group for several cases with general m,n,r.

a) The group $M = M(3,3,3) = \langle x, y, z | x^{y} = x^{3}, y^{z} = y^{3}, z^{x} = z^{3} \rangle$. Wamsley has shown that M' is abelian and |M| divides 2^{11} . We use his result that M' is abelian and prove: THEOREM 1. $|M| = 2^{11}$.

PROOF. We notice that $\frac{M}{M!} = Z_2 \times Z_2 \times Z_2$. A straightforward application of the Reidemeister-Schreier rewriting process can be used to find the order of M'. We suppress the details and merely notice that the relation matrix for M' is

Therefore $M' = Z_8 \times Z_8 \times Z_4$ and $|M| = 2^3 (2^3 \times 2^3 \times 2^2) = 2^{11}$. REMARK 1. Another group of deficiency zero is Johnson's group [4],

• /

$$J(m,n,r) = \langle x,y,z | x^{y} = y^{n-2} x^{-1} y^{n+2}, y^{z} = z^{r-2} y^{-1} z^{r+2}, z^{x} = x^{m-2} z^{-1} x^{m+2} \rangle.$$

The order of J = J(2,2,2) is 7.2¹¹, [4]. A question could be raised here if M and

the 2-Sylow subgroup of J are isomorphic. To answer this question let $H = \langle x^{-1} y^2, y^2 \rangle$ $y^{-1} z^2$, $z^{-1} x^2 > \langle J \rangle$. We find that $H \triangleleft J$ and $\frac{J}{H} = Z_7$. Therefore H is the 2-Sylow subgroup of J. Using the Redemeister-Schreier process we write a presentation for H which gives $\frac{H}{H^{\dagger}} = Z_2 \times Z_2 \times Z_2 = \frac{M}{M^{\dagger}}$. A student K. F. Lee of David L. Johnson showed that M and H are different. b) The group $M = M(m,n,0) = \langle x,y | x^y = x^m, y^{n-1} = e^{\lambda}, m > 2, n > 2$. The relations $x^{y} = x^{m}$ and $y^{n-1} = e$ imply that the order of x is $(m^{n-1} - 1)$. We consider $H = \langle x |$ $x^{(m^{n-1} - 1)} = Z(m^{n-1} - 1), \quad \frac{M}{H} = Z_{n-1}$. Therefore M is metacyclic and it is the split extension of Z_{n-1} by $Z(m^{n-1} - 1)$. THEOREM 2. M' = Z_d where $d = \frac{m^{n-1} - 1}{m - 1}$. PROOF: We consider $H = \langle a = x^{m-1} \rangle$. The relations $a^{x} = a$ and $a^{y} = a^{m}$ imply that $H \triangleleft M$. $\frac{M}{H}$ is abelian implies that $H \supseteq M'$. But $a = x^{-1} y^{-1} xy \in M' \Longrightarrow H \subseteq M'$. Therefore H = M'. The order of a is $\frac{m^{n-1}-1}{(m-1, m^{n-1}-1)} = \frac{m^{n-1}-1}{m-1} = m^{n-2} + m^{n-3} + \dots + m^2 + m + 1$. REMARK 2. The above theorem could be proved using the Reidemeister-Schreier process. REMARK 3. $\left|\frac{M}{MT}\right| = (m-1) (n-1)$ implies that $|M| = (n-1) (m^{n-1} - 1)$. REMARK 4. The above theorem implies that M is a finite metabilian group. REMARK 5. It is easy to see that $M(a, b, c) \cong M(b, c, a) \cong M(c, a, b)$ and M(a,b,c) ≇ M(a,c,b) in general. REMARK 6. In working with Mennicke's group we find the commutator identity (known as the Witt identity) $[x, y, z^{X}][z, x, y^{Z}][y, z, x^{Y}] = e$ quite helpful. This identity holds for any x, y and z in any group. We define [x, y, z] = [[x,y], z] and $[x,y] = x^{-1}y^{-1}xy$. c) $M = M(2,2,2) = \langle x, y, z | x^{y} = x^{2}, y^{z} = y^{2}, z^{x} = z^{2} \rangle$. Using the Witt identity we get $[x, z^2][z, y^2][y, x^2] = e$. We use the relations of M to get $x^2y^2z^2 = e$. Thus $z^2 = y^{-2}x^{-2}$ which together with $z^x = z^2$ gives $z = xy^{-2}x^{-3}$. We substitute in $y^2 = y^2$ and use $x^{y} = x^{2}$ to get $y = x^{17}$. Finally $y = x^{17}$ and $x^{y} = x^{2}$ imply that x = e. The relations of M give z = y = e. Therefore, M = E. d) $M(-1, -1, -1) = \langle x, y, z | x^{y} = x^{-1}, y^{z} = y^{-1}, z^{x} = z^{-1} \rangle$. $\frac{M}{M^{*}} \approx z_{2} \times z_{2} \times z_{2} \cdot A$ straightforward application of the Reidemeister-Schreier process gives that M' = Z imes Z generated by $z \ge z^{-1}z^{-1}$ and $z \ge z^{-1}y^{-1}$. Therefore, we have proved: THEOREM 3. M is an infinite metabilian group.

e) M(2, 2, -1) = <x, y, $z | x^y = x^2$, $y^z = y^2$, $z^x = z^{-1}$. Using the Witt identity we get $z^{-1}y^{-1}z^{-2}yz = x$. We use this relation together with the relations of M to get

 $x = z^{-4}$. Substituting in $z^{x} = z^{-1}$ we get $z^{2} = e$ and so x = e. We notice that $v = v^{2^{2}} = (v^{2})^{2} = v$ $y^{3} = e$. The relation $y^{2} = y$ becomes $(yz)^{2} = e$. Thus $M = \langle y, z | y^3 = z^2 = (yz)^2 = e^3 = S_3$. f) M(-1, -1, 0) = $\langle x, y, z | x^{y} = x^{-1}, y^{2} = e \rangle$. $\frac{M}{M!} = Z_{2} \times Z_{2}$. Using the Reidemeister-Schreier process we get that M' is infinite cyclic generated x^2 : THEOREM 4. M is an infinite metabilian group. REMARK 7. It is possible to find M' as follows. Let $H = \langle x^2 | \rangle$. It is easy to see that H M and $\frac{M}{H} = z_2 \times z_2$. Therefore, $H \supset M'$. But $x^2 = y^{-1}x^{-1}yx \in M'$ $H \subset M'$. Thus H = M'. g) M(1, 0, -1) = $\langle x, z | z^X = z^{-1} \rangle$. It is easy to see that H = $\langle z | \rangle$ is normal in M and $\frac{M}{H} = \langle x | \rangle$. Therefore M is the split extension of $\langle x | \rangle$ by $\langle z | \rangle$ where the action is given by $z^{x} = z^{-1}$, see [5]. We also notice that $(z^{2})^{x} = z^{-2}$ and $xz^{2}x^{-1} = z^{-2}$ Therefore $K = \langle z^2 \rangle \triangleleft M$. $\frac{M}{K} = Z \times Z_2 \implies K \supset M'$. $z^2 = x^{-1}z^{-1}xz \implies K \subset M'$. Thus K = M'. THEOREM 5. M is an infinite metabilian group. h) It is easy to show the following cases: (i) $M(1, 1, 1) = Z \times Z \times Z$ (ii) $M(1, 1, 0) = Z \times Z$ (iii) M(1, 0, 0) = Z = M(1, 2, 0) (iv) $M(3, 2, 0) = Z_2$ (v) M(0, 0, 0) = M(2, 2, 0) = M(2, 0, 0) = E (vi) $M(2, 3, 0) = S_3$. (vii) $M(1, n, 0) = Z \times Z_{n-1}$ for n > 1. (viii) $M(m, 2, 0) = M(m, 0, 0) = Z_{m-1}$ for m > 2. (ix) M(1, m, n) is infinite because $\frac{M(1, m, n)}{M'(1, m, n)}$ is infinite. (x) $M(1, -1, 0) = Z \times Z_2$ (xi) $M(-m, 0, 0) = Z_{m+1}$, m > 0(xii) $M(-m, 2, 0) = Z_{m+1}, m > 0$.

Mennicke's group was a generalization of a group given by Higman [2]. Another generalization of Higman's group was considered by Fluch [6] as

 $H = \langle a, b, c | b^{-\alpha} a b^{\alpha} = a^{m}, c^{-\beta} b c^{\beta} = b^{n}, a^{-\gamma} c a^{\gamma} = c^{r}.$ We notice that when $\alpha = \beta = \gamma = 1$ then H = M(m, n, r).

Another generalization of Mennicke's group was given by Post [7] as follows:

 $G(m,n,r,s,t) = \langle a,b,c | ab^{m}a^{-1} = b^{n}, bc^{r}b^{-1} = c^{s}, cac^{-1} = a^{t} \rangle$.

ACKNOWLEDGEMENT. I thank Dr. D. L. Johnson for his useful comments on this paper. I also thank the University of Petroleum and Minerals for the support I get for conducting research.

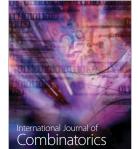
REFERENCES

- MENNICKE, J. Einige endliche Gruppen mit drei Erzeugenden und drei Relationen, <u>Arch. Math.</u>, <u>10</u> (1959) 409-18.
- HIGMAN, G. A finitely generated infinite simple group, <u>J. London Math. Soc. 26</u> (1951), 61-64.

- WAMSLEY, J. W. The deficiency of finite groups, A Ph.D. thesis, University of Queensland, 1968.
- 4. JOHNSON, D. L. A new class of 3-generator finite groups of deficiency zero, J. London Math. Soc. 2 (1979), 59-61.
- ALBAR, M. A. On presentation of group extensions, <u>Communications in Algebra</u>, <u>12</u> (1984) 2967-2975.
- FLUCH, W. A generalized Higman group, <u>Nederl</u>. <u>Akad</u>. <u>Wetensch</u>. <u>Indag</u>. <u>Math.</u>, <u>44</u> (1982), 153-166.
- POST, M. J. Finite three-generator groups with zero deficiency, <u>Comm. Algebra</u>, <u>6</u>(1978), 1289-1296.

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

