ON MENNICKE GROUPS OF DEFICIENCY ZERO I

MUHAMMAD A. ALBAR

Department of Mathematical Sciences University of Petroleum and Minerals Dhahran, Saudi Arabia

(Received March 26, 1985 and in revised form May 20, 1985)

ABSTRACT. The Mennicke group $M(m,n,r) = \langle x,y,z \, | \, x^y = x^m, y^z = y^n, z^x = z^r \rangle$ is one of the few known 3-generator groups of deficiency zero. Several cases of $M(m,n,r)$ are studied.

KEY WORDS AND PHRASES. Presentation, Reidemeister-Schreier method, relation matrix. 1980 AMS SUBJECT CLASSIFICATION CODE. 20F05.

Mennicke [i] has given a class of three generator three relation groups defined by $M(m,n,r) = \langle x,y,z | x^y = x^m, y^z = y^n, z^x = z^r \rangle$ which he proves to be finite for $m = n$ $r \geq 3$ (see also Higman [2].) Macdonald [3] has shown that the above group is finite provided that neither $m^2 = 1$, $n^2 = 1$, nor $r^2 = 1$. For general m,n,r the above group is difficult to consider. Wamsley [3] discussed the group for some cases with $m = n = r$. The aim of this paper is to consider the group for several cases with general m,n,r

a) The group $M = M(3, 3, 3) = \langle x, y, z | x^y = x^3, y^z = y^3, z^x = z^{3} \rangle$. Wamsley has shown that M' is abelian and $|M|$ divides 2^{11} . We use his result that M' is abelian and prove: THEOREM 1. $|M| = 2^{11}$.

PROOF. We notice that $\frac{M}{M}$, = Z₂ × Z₂ × Z₂. A straightforward application of the Reidemeister-Schreier rewriting process can be used to find the order of M' . We suppress the details and merely notice that the relation matrix for M' is

$$
\begin{bmatrix}\n1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 8 & 0 & 0 \\
0 & 0 & 0 & 8 & 0 \\
0 & 0 & 0 & 0 & 4\n\end{bmatrix}
$$

Therefore $M' = Z_8 \times Z_8 \times Z_4$ and $|M| = 2^3(2^3 \times 2^3 \times 2^2) = 2^{11}$. REMARK I. Another group of deficiency zero is Johnson's group [4],

$$
J(m,n,r) = \langle x,y,z | x^y = y^{n-2} x^{-1} y^{n+2}, y^z = z^{r-2} y^{-1} z^{r+2}, z^x = x^{m-2} z^{-1} x^{m+2}.
$$

The order of $J = J(2,2,2)$ is 7.2¹¹, [4]. A question could be raised here if M and

the 2-Sylow subgroup of J are isomorphic. To answer this question let $H = \langle x \rangle ^{-1} y^2,$ y^{-1} z^2 , z^{-1} x^2 < J. We find that HII and $\frac{J}{H}$ = Z₇. Therefore H is the 2-Sylow subgroup of J. Using the Redemeister-Schreier process we write a presentation for H which gives $\frac{H}{H} = Z_2 \times Z_2 \times Z_2 = \frac{M}{M}$ which gives $\frac{1}{H}r = Z_2 \times Z_2 \times Z_2 = \frac{1}{M}r$. A student K. F. Lee of David L. Johnson showed
that M and H are different.
b) The group M = M(m,n,0) = <x,y|x^y = x^m, yⁿ⁻¹ = e>, m > 2, n > 2. The relations that M and H are different. $x^y = x^m$ and $y^{n-1} = e$ imply that the order of x is $(m^{n-1} - 1)$. We consider $H = \langle x |$ $\left(\mathbf{x}\right)^{n-1}$ - 1), $\frac{\mathbf{M}}{\mathbf{H}}$ = \mathbf{Z}_{n-1} . Therefore M is metacyclic and it is the split extension of Z_{n-1} by $Z(m^{n-1} - 1)$. n-I THEOREM 2. $M' = Z_d$ where $d = \frac{m'}{2}$ m PROOF: We consider $H = \langle a = x^{m-1} \rangle$. The relations $a^X = a$ and $a^Y = a^m$ imply that H \triangleleft M \cdot $\frac{M}{H}$ is abelian implies that $H \supseteq M'$. But $a = x^{-1} y^{-1}$ xy ϵ M' \implies H \subset M' Therefore $H = M'$. The order of a is $\frac{m-1}{(m-1, m^{n-1} - 1)} = \frac{m^{n-1} - 1}{m - 1} = m^{n-2} + m^{n-3} + \dots + m^2 + m +$ REMARK 2. The above theorem could be proved using the Reidemeister-Schreier process. REMARK 3. $\left|\frac{M}{M'}\right|$ = (m-1) (n-1) implies that $|M| = (n-1) (m^{n-1} - 1)$. REMARK 4. The above theorem implies that M is a finite metabilian group. REMARK 5. It is easy to see that $M(a, b, c) \cong M(b, c, a) \cong M(c, a, b)$ and $M(a, b, c) \neq M(a, c, b)$ in general. REMARK 6. In working with Mennicke's group we find the commutator identity (known as the Witt identity) $[x, y, z^x][z, x, y^z][y, z, x^y] = e$ quite helpful. This identity holds for any x, y and z in any group. We define $[x, y, z] = [[x,y], z]$ and $[x,y] = x^{-1} y^{-1} xy$. c) M = M(2,2,2) = <x, y, z $|x^y = x^2$, $y^z = y^2$, $z^x = z^2$ > . Using the Witt identity we get $[x, z^2][z, y^2][y, x^2] = e$. We use the relations of M to get $x^2y^2z^2 = e$. Thus $z^2 = y^{-2}x^{-2}$ which together with $z^X = z^2$ gives $z = xy^{-2}x^{-3}$. We substitute in $y^Z = y^2$ and use $x^y = x^2$ to get $y = x^{17}$. Finally $y = x^{17}$ and $x^y = x^2$ imply that $x = e$. The relations of M give $z = y = e$. Therefore, $M = E$. d) $M(-1, -1, -1) = \langle x, y, z | x^y = x^{-1}, y^z = y^{-1}, z^x = z^{-1} \rangle$. $\overline{M}^* \stackrel{*}{=} z_2 \times z_2 \times z_2$. A
ss gives that $M' = Z$,
e proved: <code>straightforward</code> application of the <code>Reidemeister–Schreier</code> process gives that $\,$ M' = Z \times Z generated by $z \times z^{-1}x^{-1}$ and $z \times z^{-1}y^{-1}$. Therefore, we have proved: THEOREM 3. ^M is an infinite metabilian group.

e) M(2, 2, -1) = <x, y, z $|x^y = x^2$, $y^z = y^2$, $z^x = z^{-1}$ >. Using the Witt identity we get $z^{-1}y^{-1}z^{-2}yz = x$. We use this relation together with the relations of M to get

 $x = z^{-4}$. Substituting in $z^{X} = z^{-1}$ we get $z^{2} = e$ and so $x = e$. We notice that $y = y^2 = (y^2)^2 = y$ $y^3 = e$. The relation $y^2 = y$ becomes $(yz)^2 = e$. Thus $M = \langle y, z | y^3 = z^2 = (yz)^2 = e^2 = S_3$. f) $M(-1, -1, 0) = \langle x, y, z | x^y = x^{-1}, y^2 = e \rangle$. $\frac{M}{M'} = Z_2 \times Z_2$. Using the Reidemeister-Schreier process we get that $\,$ M' is infinite cyclic generated $\,$ x $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ THEOREM 4. M is an infinite metabilian group. REMARK 7. It is possible to find M' as follows. Let $H = \langle x^2 | >$. It is easy to see that H M and $\frac{M}{u} = z_2 \times z_2$. Therefore, $H \supset M'$. But $x^2 = y^{-1}x^{-1}yx \in M'$ $H \subseteq M'$ Thus $H = M'$. g) $M(1, 0, -1) = \langle x, z \mid z^X = z^{-1} \rangle$. It is easy to see that $H = \langle z \mid \rangle$ is normal in M and $\frac{M}{H} = \langle x | \rangle$. Therefore M is the split extension of $\langle x | \rangle$ by $\langle z | \rangle$ where the action is given by $z^X = z^{-1}$, see [5]. We also notice that $(z^2)^X = z^{-2}$ and $xz^2x^{-1} = z^{-2}$ Therefore $K = \langle z^2 \rangle$ d M $\frac{M}{K} = Z \times Z_2 \implies K \supset M'$ \therefore $z^2 = x^{-1}z^{-1}xz \implies K \subseteq M'$ T^{\dagger} us K = M'. THEOREM 5. M is an infinite metabilian group. h) It is easy to show the following cases: (i) $M(1, 1, 1) = Z \times Z \times Z$ (ii) $M(1, 1, 0) = Z \times Z$ (iii) $M(1, 0, 0) = Z = M(1, 2, 0)$ (iv) $M(3, 2, 0) = Z_2$ (v) $M(0, 0, 0) = M(2, 2, 0) = M(2, 0, 0) = E$ (vi) $M(2, 3, 0) = S_3$. (vii) $M(1, n, 0) = Z \times Z_{n-1}$ for $n > 0$ (viii) $M(m, 2, 0) = M(m, 0, 0) = Z_{m-1}$ for $m > 2$. (ix) M(1, m, n) is infinite because $\frac{M(1, m, n)}{M'(1, m, n)}$ is infinite. (x) $M(1, -1, 0) = Z \times Z_2$ (xi) $M(-m, 0, 0) = Z_{m+1}$, $m > 0$ (xii) $M(-m, 2, 0) = Z_{m+1}$, $m > 0$.

Mennicke's group was a generalization of a group given by Higman [2]. Another generalization of Higman's group was considered by Fluch [6] as

 $H = \langle a, b, c \mid b^{-\alpha}ab^{\alpha} = a^{m}, c^{-\beta}bc^{\beta} = b^{n}, a^{-\gamma}ca^{\gamma} = c^{r}$ We notice that when $\alpha = \beta = \gamma = 1$ then $H = M(m, n, r)$.

Another generalization of Mennicke's group was given by Post [7] as follows:

$$
G(m, n, r, s, t) = \langle a, b, c | ab^m a^{-1} = b^n, bc^r b^{-1} = c^s, cac^{-1} = a^t \rangle
$$

ACKNOWLEDGEMENT. I thank Dr. D. L. Johnson for his useful comments on this paper. ^I also thank the University of Petroleum and Minerals for the support ^I get for conducting research.

REFERENCES

- i. MENNICKE, J. Einige endliche Gruppen mit drei Erzeugenden und drei Relationen, Arch. Math., 10 (1959) 409-18.
- 2. HIGMAN, G. A finitely generated infinite simple group, J. London Math. Soc. 26 (1951), 61-64.
- 3. WAMSLEY, J. W. The deficiency of finite groups, A Ph.D. thesis, University of Queensland, 1968.
- 4. JOHNSON, D. L. A new class of 3-generator finite groups of deficiency zero, J. London Math. Soc. ² (1979), 59-61.
- 5. ALBAR, M. A. On presentation of group extensions, Communications in Algebra, 12 (1984) 2967-2975.
- 6. FLUCH, W. A generalized Higman group, Nederl. Akad. Wetensch. Indag. Math., 44 (1982), 153-166.
- 7. POST, M. J. Finite three-generator groups with zero deficiency, Comm. Algebra, 6(1978), 1289-1296.

http://www.hindawi.com Volume 2014 Operations Research Advances in

http://www.hindawi.com Volume 2014

http://www.hindawi.com Volume 2014

http://www.hindawi.com Volume 2014

Journal of
Probability and Statistics http://www.hindawi.com Volume 2014

Differential Equations International Journal of

^{Journal of}
Complex Analysis

http://www.hindawi.com Volume 2014

Submit your manuscripts at http://www.hindawi.com

Hindawi

 \bigcirc

http://www.hindawi.com Volume 2014 Mathematical Problems in Engineering

Abstract and Applied Analysis http://www.hindawi.com Volume 2014

Discrete Dynamics in Nature and Society

International Journal of Mathematics and **Mathematical**

http://www.hindawi.com Volume 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014

Journal of http://www.hindawi.com Volume 2014 Function Spaces Volume 2014 Hindawi Publishing Corporation New York (2015) 2016 The Corporation New York (2015) 2016 The Corporation

http://www.hindawi.com Volume 2014 Stochastic Analysis International Journal of

Optimization