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The accuracy of most of the existing semisupervised clustering algorithms based on small size of labeled dataset is low when
dealing with multidensity and imbalanced datasets, and labeling data is quite expensive and time consuming in many real-world
applications. This paper focuses on active data selection and semisupervised clustering algorithm in multidensity and imbalanced
datasets and proposes an active semisupervised clustering algorithm. The proposed algorithm uses an active mechanism for
data selection to minimize the amount of labeled data, and it utilizes multithreshold to expand labeled datasets on multidensity
and imbalanced datasets. Three standard datasets and one synthetic dataset are used to demonstrate the proposed algorithm,
and the experimental results show that the proposed semisupervised clustering algorithm has a higher accuracy and a more
stable performance in comparison to other clustering and semisupervised clustering algorithms, especially when the datasets are
multidensity and imbalanced.

1. Introduction

Semisupervised clustering algorithm has been studied rece-
ntly as a method for improving the performance of clustering
algorithm, and it allows the human expert to incorporate
domain knowledge into the process of clustering and thus
guides it to get better results. The use of domain knowledge
in clustering task is motivated by the fact that the priori
knowledge for some data objects can be obtained in many
applications, the priori knowledge can be the labels of the
data objects or the relationships between data objects. The
“must-link” and “cannot-link” constraints capture relation-
ships among data objects. Labeled objects could be used in
clustering algorithms to help determine the groups and get
moremeaningful results.Most of the existing semisupervised
clustering algorithms can be divided into three categories:
method based on labeled data [1–9], pairwise constraints
method [10–16], and fuzzy semisupervised method [17–22].

Semisupervised clustering algorithms based on labeled
data utilized the label information to improve the per-
formance of clustering. Semisupervised k-means clustering

algorithm is a popular semisupervised clustering method [1–
4]. Basu et al. exploited labeled data to generate initial seed
clusters [1]. Bilenko et al. proposed a principled probabilistic
framework based on hidden markov random fields for
semisupervised clustering and presented HMRF-KMEANS
based on EM and hidden markov random fields framework
[2]. Leng et al. used labeled data to initialize the process of
k-means clustering and obtained the similarity threshold of
clusters based on the label information; they also utilized
similarity threshold to guide k-means clustering algorithm
[3]. Dang et al. presented a novel initialization method by
propagating the labels of labeled data to more unlabeled
data [4]. Zhong used deterministic annealing to expand
three semisupervised clustering methods seeded clustering,
constrained clustering, and feedback clustering, and their
performances were compared with real text datasets [5].
Semisupervised density-based clustering is another kind of
popular semisupervised clustering method [6, 7]. Lelis and
Sander exploited labeled data to find values for 𝜀. They gave
a fixed value of MinPts and used the minimum spanning tree
(MST) to partition dataset [6]. Böhm and Plant expanded
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the clusters starting at all labeled objects simultaneously and
proposed a semisupervised hierarchical clustering algorithm
[7]. Guan et al. proposed an asymmetric similarity measure
for two different documents and a new semisupervised
clustering algorithm by expanding affinity propagation [8].
Shiga and Mamitsuka combined soft spectral clustering and
label propagation and proposed a semisupervised clustering
algorithm by learning locally informative data from multiple
graphs [9].

The concepts of two basic pairwise constraints were
defined by Wagstaff et al. [10]; they made the insertion of
domain knowledge into the clustering (𝑘-means in this case)
process, and the pairwise constraints were given as the must-
link and cannot-link. Reference [11] divided the pairwise
constraints method into instance-level semisupervised clus-
tering [10, 12, 13] and space-level semisupervised clustering
[11, 14–16]. Wagstaff et al. viewed the pairwise constraints
as instance-level constraints in the process of clustering
and proposed the semisupervised clustering algorithm COP-
KMeans [10]. Ruiz et al. proposed a semisupervised clustering
algorithm called C-DBSCAN [12], which built a set of initial
local clusters by partitioning data space into denser subspaces
and cannot-link constraints, then merged density-connected
local clusters and enforced the must-link constraints, finally,
C-DBSCANmerged adjacent neighborhoods in a bottom-up
fashion and enforced the remaining cannot-link constraints.
Wang and Davidson combined spectral clustering and pair-
wise constraints in a principled andflexiblemanner [13].They
used a user-specified threshold to lower-bound how well the
given constraints were satisfied, instead of trying to satisfy
every given constraint, and they proposed a flexible and
generalized framework for constrained spectral clustering.
Instance-level semisupervised clustering method introduces
pairwise constraints into clustering only and does not utilize
the priori knowledge with the highest degree. Space-level
semisupervised clustering not only makes use of constraints
but also employs the space information provided by the
constraints to adjust the process of clustering.

Fuzzy clustering model adopts membership to show the
results of clustering, and membership grades are used as
probabilities that each data object belongs to every class. In
order to improve the performance of fuzzy clustering, the
priori knowledge has been applied into it, and most of them
used the priori knowledge to modify the objective fun-
ction. Labeled data [17–19] and pairwise constraints [20–22]
are two principal forms of priori knowledge in the fuzzy
semisupervised clustering. Pedrycz and Waletzky improved
the performance of clustering algorithm by using the infor-
mation provided by labeled patterns to aid the process of clus-
tering [17]. Bouchachia and Pedrycz utilized the information
provided by labeled data to modify the objective function
of fuzzy c-means [18]. Gao et al. proposed a fuzzy sem-
isupervised clustering algorithm based on distance, which
guided the process of clustering by using background infor-
mation provided by labeled data and optimized the objective
function by adding the label information into it [19]. Grira et
al. added the information of pairwise constraints into the pro-
cess of updating memberships and proposed a fuzzy semisu-
pervised clustering algorithm based on pairwise constraints,
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Figure 1: An imbalanced and multidensity dataset which contains
4 clusters.

which guided the process of solving membership matrix
[20]. Pedrycz et al. used pairwise constraints information
to optimize fuzzy c-means by adding an optimization step
into the iteration process [21]. Yan et al. proposed fuzzy sem-
isupervised coclustering algorithm for document by using the
pairwise constraints to guide the process of constructing it
[22].

Most of the semisupervised clustering algorithms assume
that the labeled dataset or pairwise constraints are given. In
practice, getting the priori knowledge is very expensive and
time consuming. In addition, if the size of labeled dataset
is too small in the process of constructing semisupervised
clustering based on labeled data, some clusters may have
no labeled data in imbalanced dataset, and then the data in
those clusters will be assigned to other clusters forcibly. For
example, the dataset shown in Figure 1 contains four clusters
(these clusters are labeled with shapes “⋅”, “◼”, “󳵳”, and “∗”,
resp.). The size of cluster “◼” is much less than that of the
rest of the clusters. If the labeled data are randomly selected
from thewhole dataset, the data objects in cluster “◼” are very
difficult to be selected. If cluster “◼” has no labeled data, then
most of the semisupervised clustering algorithms will miss
the cluster “◼”. How to select data from imbalanced dataset to
guarantee that each cluster has more than one data that can
be selected is one work of this paper. One of the solutions to
this problem is to adopt active learning method to guide the
process of selecting data points, which aims to cover as many
clusters as possible.

The active learning method, which aims to achieve high
accuracy using labeled data as few as possible, selects info-
rmative data actively and labels them by oracle. The active
learning method can minimize the cost of obtaining labeled
data points greatlywithout compromising the performance of
clustering algorithm, and this is very attractive and valuable
in real-world applications.

Perhaps the simplest and most commonly used active
learning technique is uncertainty sampling [23], and least
confident strategy, margin sampling, and entropy are the
most popular uncertainty sampling strategies. Since the
most likely label sequence can be efficiently computed using
dynamic programming, least confident strategy has been
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popular with statistical sequence models in information
extraction tasks [24, 25]. However, the least confident strategy
only considers information about the most probable label,
and it discards information about the remaining label dis-
tribution, whereas margin sampling was proposed to correct
for a shortcoming in least confident strategy by incorporating
the second most likely label [26]. Entropy may be the most
popular uncertainty sampling strategy, and it is easily applied
to more complex structured instances, such as sequences
[25] and trees [27]. Scheffer and Wrobel presented an active
learning algorithm to reduce the required data labeling effort
and increase the quality of the learning model by selecting
“difficult” unlabeled samples [28].

Although most of the active learning strategies are
applied into classification tasks, in the recent years, active
learning is also introduced into clustering [29–35]. Mal-
lapragada et al. selected constraints through using a min-
max criterion to improve the performance of semisupervised
clustering algorithms by selecting most uncertain data [29].
The uncertainty sampling technique selects the data objects
which lie in the boundaries of clusters, and they are not
“representative” of other data in the same cluster. Since
knowing their labels is unlikely to improve the performance
of the clustering algorithm as a whole, the “representative”
method was proposed to solve this problem [30, 31]. Nguyen
and Smeulders selected the most representative samples to
avoid repeatedly labeling samples in the same cluster [30].
Vu et al. selected useful examples according to a min-max
approach to determine the set of labeled data [31]. Active
learning technique was also introduced into semisupervised
clustering based on pairwise constraints [32–35]. Zhao et
al. selected informative document pairs for obtaining user
feedback by using active learning approach and incorporated
instance-level constraints to guide the clustering process in
DBSCAN [32]. Grira et al. defined an active mechanism for
the selection of candidate constraints tominimize the amount
of constraints required [33]. Wang and Davidson presented
an active query strategy based on maximum expected error
reduction and a constrained spectral clustering algorithm
that can handle both hard and soft constraints [34]. Huang et
al. conducted a preliminary clustering process to estimate the
true clustering assignments and chose informative document
pairs by means of learning the intermediate cluster structure
[35].

Most of the existing active learning algorithms are pool-
based or stream-based, and they are mainly applied in
supervised learning. Although active learning is introduced
into semisupervised clustering, the performances of these
clustering algorithms are unsatisfiying when dealing with the
imbalanced and multidensity datasets. The most uncertain
data lies on the boundaries of clusters, and it is not “rep-
resentative” of other data in the same cluster. So knowing
its label is unlikely to improve the performance of the
clustering algorithm as a whole. This paper selects the data
withmax density from each cluster which is the result ofMST
clustering.

Since the dataset is imbalanced, the distribution of labeled
data in a given dataset is not the same as the whole data space,
and a data point and its 𝑘-nearest labeled data may not be

in the same cluster, which leads to the result that most of
the existing semisupervised learning algorithms cannot work
well, especially when the size of labeled dataset is very small.
However, in the whole data space, the label of a data point
should be the same as that of most of its k-nearest neighbors.
The proposed semisupervised clustering algorithmwith label
propagation is based on this idea. It expands the labeled
dataset by labeling k-nearest neighbors of labeled dataset
based on a threshold. Once an unlabeled data is labeled,
it should be added into labeled dataset. If the difference of
density between clusters is large in multidensity datasets, the
expanding process cannot use the same threshold, and the
threshold should be generated automatically according to
the density of each cluster to which the labeled data point
belongs. A new active semisupervised clustering algorithm,
called active semisupervised clustering algorithm for imbal-
anced and multidensity datasets, is proposed based on the
facts previously described. The presented algorithm tries to
ensure that the selected data can cover as many clusters
as possible in a given imbalanced and multidensity dataset.
Those selected data are labeled by oracle, and they are viewed
as the initial set of labeled data in the process of semisu-
pervised clustering. The proposed algorithm expands the
labeled dataset by propagating labels according to expanded
threshold obtained automatically based on the character of
each cluster which is obtained by running MST clustering
algorithm. The proposed clustering algorithm mainly has
the following two advantages in comparison with other
semisupervised clustering methods.

(1) The proposed semisupervised clustering method uti-
lizes MST clustering to select data points actively
so as to avoid labeling data in the same cluster
repeatedly. If we need 𝑚 labeled data objects, we
partition the given dataset into 𝑚 clusters by using
MST clustering and select actively only one data from
each cluster. This method can reduce the number of
labeled data points greatly without compromising the
performance of clustering, and the selected data can
cover as many clusters as possible.

(2) The proposed clustering algorithm achieves label
propagation by using labeled data to expand their k-
nearest neighbors according to the criterion that is
automatically obtained based on the density of the
cluster to which the labeled data point belongs, and
the expanding model only requires one parameter.

The rest of this paper is organized as follows. Section 2
gives the proposed semisupervised clustering algorithm. In
Section 3, three datasets fromUCIMachine Learning Repos-
itory and one synthetic dataset are used to demonstrate the
proposed algorithm. We summarize our work in Section 4.

2. Active Semisupervised Clustering for
Imbalanced and Multidensity Datasets

The k-nearest neighbors algorithm is most often used for
classification, and it gives the label of an unlabeled data
by comparing it to the first 𝑘 most similar objects in the
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Figure 2: Low accuracy of KNN on an imbalanced dataset.

training set. Given a dataset 𝐷 = 𝐷𝑙 ∪ 𝐷𝑢, where 𝐷𝑙 is
the labeled dataset and 𝐷𝑢 is the unlabeled dataset, the 𝑘-
nearest neighbors algorithm labels an unlabeled data 𝑦 with
themost frequent label among its 𝑘-nearest labeled neighbors.
The label of an unlabeled data is given as follows:

𝑦
𝑙
= argmax

𝑙

∑

𝑥∈KNN(𝑦,𝐷𝑙)
[𝑥
𝑙
== 𝑙] , (1)

where 𝑦𝑙 and 𝑥𝑙 are the labels of the data objects 𝑦 and 𝑥,
respectively, and the meaning of KNN(𝑦, 𝐷𝑙) is defined as
given in Definition 1.

Definition 1. KNN(𝑥, 𝐶). Given one cluster 𝐶 and one data
object 𝑥 ∈ 𝐶, KNN(𝑥, 𝐶) is the set of k-nearest neighbors of 𝑥
in 𝐶.

Each classification algorithm requires enough labeled
data to achieve high classification accuracy.However, labeling
data is quite expensive and time consuming in many real-
world applications, and we can get a very small size of labeled
dataset. For instance, there are 3 classes in Figure 2, and 𝐷𝑙
contains 5 data objects (3 data objects in 𝐶1, 2 data objects
in 𝐶2, and no data objects in 𝐶3). The size of labeled dataset
is very small compared with the whole dataset; suppose that
we let 𝑘 = 1 for k-nearest neighbors algorithm and use it to
label the unlabeled data. All unlabeled data objects in 𝐶3 and
four unlabeled data objects in 𝐶2 are assigned to 𝐶1.

There are two problems for most of classifications and
semisupervised clustering algorithms like k-nearest neighbors
that lead those unlabeled data to wrong class when the size of
labeled dataset is too small.

(1) The first one is that the whole dataset is imbalanced
and the size of labeled dataset is too small, and
using random method to select labeled data cannot
guarantee that each class has more than one data
object to be selected.

(2) The second is that the class label of some unlabeled
data and that of its k-nearest labeled neighbors are not
the same.

An active semisupervised clustering algorithm with label
propagation for imbalanced and multidensity datasets is
proposed to solve the previously mentioned problems. It uses
MST clustering to partition the given dataset into clusters
and selects one data object from each cluster as labeled data.
Thismethod for data selection can guarantee that the selected
data can cover as many clusters as possible. Although the
k-nearest labeled neighbors of each data in 𝐶3 are not in
𝐶3, the k-nearest neighbors are in 𝐶3 (if 𝑘 ≤ 4). Since
k-nearest neighbors of each data in 𝐶3 are unlabeled, k-
nearest neighbors algorithm has to find the nearest labeled
neighbor from 𝐶1 and 𝐶2. The proposed algorithm selects
more important data objects as labeled data and expands its
label to its neighbors.

Some definitions are given as follows in order to describe
the proposed active semisupervised clustering algorithm.

Definition 2. 𝑑𝑖𝑠 KNN (𝑥, 𝑦, 𝐶). Given one cluster 𝐶, one
data object 𝑥 ∈ 𝐶, and 𝑦 ∈ KNN (𝑥, 𝐶), 𝑑𝑖𝑠 KNN (𝑥, 𝑦, 𝐶)
is the distance between 𝑥 and 𝑦.

Definition 3. 𝑘 𝑎V𝑔𝑑𝑖𝑠 (𝐶). Given one cluster𝐶, 𝑘 𝑎V𝑔𝑑𝑖𝑠 (𝐶)
is defined as follows:

𝑘 𝑎V𝑔𝑑𝑖𝑠 (𝐶) =
∑
𝑥∈𝐶

max 𝑑𝑖𝑠 KNN (𝑥, 𝑦, 𝐶)
|𝐶|

, (2)

where |𝐶| is the number of data in cluster 𝐶.

Definition 4. 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑥, 𝐶). Given one cluster 𝐶 and a data
object 𝑥 ∈ 𝐶, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑥, 𝐶) is defined as follows:

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑥, 𝐶) =

1

max 𝑑𝑖𝑠 KNN (𝑥, 𝑦, 𝐶)
. (3)

The proposed active semisupervised clustering process
can be divided into two algorithms: active data selection
algorithm (Algorithm 1) and semisupervised clustering algo-
rithm with label propagation (Algorithm 2). Algorithm 1
selects important data which do not lie in the boundaries of
clusters and outputs those selected data after labeling them.
Algorithm 2 expands the labeled datasets by propagating
themselves labels to their neighbors.

If the dataset is imbalanced and we select small number
of data points from this kind of datasets randomly, then
there exist some clusters which have no data to be selected.
Using these selected data as the labeled data to guide the
process of clustering, the data objects in clusters which have
no data being selected are assigned to other clusters forcibly.
Thus, decreases the accuracy of semisupervised clustering
algorithm, and the clustering results are unsatisfying. In
order to make the selected data cover as many clusters as
possible, an active mechanism of selecting data points is
presented. It partitions a given dataset into 𝑚 clusters by
using MST clustering algorithm; here, 𝑚 is the number of
the data objects which will be selected, and only one data
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(1) Let𝑚 = |𝐷| × 𝑝,𝑚 is the number of data points
to be selected, |𝐷| is the size of dataset𝐷.

(2) Use Prime method to construct MST of𝐷.
(3) Foreach edge in MST do
(4) Compute edge’s inconsistent value 𝑓.
(5) End Foreach
(6) Sort all edges in descending order according to 𝑓.
(7) Insert the sorted edges into a list: edgesLst.
(8) Foreach edge in edgesLst do
(9) Delete edge fromMST
(10) Check the number of partitions in MST, num
(11) If num ==m then
(12) Generate num clusters 𝑇1, 𝑇2, . . . , 𝑇𝑚 from MST
(13) Break
(14) End If
(15) End Foreach
(16) Foreach cluster T in 𝑇1, 𝑇2, . . . , 𝑇𝑚 do
(17) Compute density of each point in T
(18) Select one data with max density and add it to𝐷𝑙
(19) End Foreach
(20) Query oracle about labels of data in𝐷𝑙.
(21) Return 𝑇1, 𝑇2, . . . , 𝑇𝑚 and𝐷𝑙.

Algorithm 1: Selecting data by using MST clustering algorithm (𝑆𝑒𝑙𝑒𝑐𝑡𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡 (𝐷, 𝑝)).

(1) Input the value of k.
(2) 𝑆𝑒𝑙𝑒𝑐𝑡𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡 (𝐷, 𝑝).
(3) Suppose that the number of different labels in𝐷𝑙 is p.
(4) Merge 𝑇1, 𝑇2, . . . , 𝑇𝑚 into 𝐶1, 𝐶2, . . . , 𝐶𝑝 according

to labels of data in𝐷𝑙.
(5) Foreach cluster 𝐶 in 𝐶1, 𝐶2, . . . , 𝐶𝑝 do
(6) Foreach data point x in C do
(7) Compute the KNN (𝑥, 𝐶)
(8) End Foreach
(9) Compute 𝑘 𝑎V𝑔𝑑𝑖𝑠 (𝐶)s
(10) End Foreach
(11) Foreach cluster 𝐶 in 𝐶1, 𝐶2, . . . , 𝐶𝑝 do
(12) 𝐸𝑥𝑝𝑒𝑛𝑑(𝐶, 𝑘 𝑎V𝑔𝑑𝑖𝑠 (𝐶) , 𝐷𝑙)
(13) End Foreach
(14) Label the rest unlabeled data according to KNN rule.
(15)Output the clustering results.

Algorithm 2: Semisupervised clustering algorithm with label propagation.

point is chosen in each cluster. Since only one data point
in each cluster is selected, each of selected data should be
the better representations of corresponding cluster, and the
centers of clusters and the data with maximum density are
two better representation of each cluster. This paper utilizes
the method of label propagation to achieve a high accuracy
of semisupervised clustering algorithm, and the data objects
with maximum densities are chosen by us and are labeled
by oracle. The details of selecting data points are shown in
Algorithm 1.

Algorithm 1 has two parameters 𝐷 and 𝑝. 𝐷 is the
dataset which will be clustered, and 𝑝 is the percent of the
selected data in 𝐷. Algorithm 1 uses the MST clustering to

partition 𝐷 into 𝑚 clusters, and the value of 𝑚 is larger
than or equal to the real number of clusters in the dataset 𝐷.
MST clustering algorithm used in Algorithm 1 is
proposed by Zahn [36]. In the process of labeling the
data, we should select the certain data objects which do not
lie in the boundaries of clusters. Since the selected data are
“representative” of other data in the same cluster, their labels
are easy to be labeled, and this can reduce the required data
labeling effort and increase the quality of the labeled data.
The proposed semisupervised clustering algorithm requires
very small number of labeled data, and even some cluster has
only one data to be selected as labeled data. The data with
max density in one cluster is easier to be labeled compared
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(1) Get all the labeled data which belong to C from𝐷𝑙.
(2) Let𝐷𝑙

𝐶
denote these labeled data.

(3) Foreach x in𝐷𝑙
𝐶
do

(4) Compute density of data x, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑥, 𝐶)
(5) End Foreach
(6) Sort𝐷𝑙

𝐶
in descending order according to data

density
(7)While (𝐷𝑙

𝐶
is not null)

(8) Take out the first data x from𝐷
𝑙

𝐶

(9) Compute KNN (𝑥, 𝐶)
(10) Foreach y in KNN (𝑥, 𝐶) do
(11) If 𝑑𝑖𝑠 KNN (𝑥, 𝑦, 𝐶) ≤ 𝑎V𝑔𝑑𝑖𝑠
(12) 𝑦

𝑙
← 𝑥
𝑙

(13) Insert y into𝐷𝑙
𝐶
, and add y into𝐷𝑙

(14) End If
(15) End Foreach
(16) Delete x from𝐷

𝑙

𝐶

(17) End while
(18)Return𝐷𝑙

Algorithm 3: 𝐸𝑥𝑝𝑒𝑛𝑑(𝐶, 𝑘 𝑎V𝑔𝑑𝑖𝑠 (𝐶) , 𝐷𝑙).

with the rest of data, so Algorithm 1 selects the data with
max density in each cluster and labels them by querying the
oracle about labels of the selected data.

How to use small number of labeled data to achieve a
higher accuracy of clustering algorithm is a challengingwork,
especially when the dataset is imbalanced and multidensity.
The semisupervised clustering algorithms should use the
character of labeled dataset to guide their clustering process.
In this paper, firstly, the clustering results of MST are merged
according to the label of its labeled data (each cluster has
and only has one labeled data). Since the density of each
cluster is not unique and the densities of clusters may be
different, we should not use the same expanding threshold
when utilizing the method of label propagation to expand
the labeled dataset. Secondly, the expanding threshold of each
cluster should be obtained based on its density automatically,
and it is used to expand the labeled dataset in one cluster.
Finally, the rest of unlabeled data are assigned with the most
frequent label among its k-nearest labeled neighbors. More
detailed information is given in Algorithm 2.

The 𝑘 in step 1 of Algorithm 2 is the parameter of k-
nearest neighbors. Step 2 uses Algorithm 1 to select 𝑚 data
points. Since the value of 𝑚 is not less than that of 𝑝 and
if 𝑚 is larger than 𝑝, then some clusters in 𝑇1, 𝑇2, . . . , 𝑇𝑚 are
in the same cluster. Algorithm 2 can be divided into three
stages. Firstly, Step 4 merges the clusters which should be
in the same cluster into one. 𝑥𝑖 and 𝑥𝑗 are two data points
in 𝐷𝑙, and 𝑥𝑖

𝑙 and 𝑥𝑗
𝑙 are the labels of them, respectively. If

𝑥𝑖

𝑙
== 𝑥𝑗

𝑙, then Step 4 merges 𝑇𝑖 and 𝑇𝑗 into one. Secondly,
different clusters may have different densities in multidensity
datasets, which leads to the result that the process of label
expanding cannot adopt the same expanding threshold on
the whole data space when the difference of density between
clusters is very large. It should adopt different expanding
threshold according to its density of the cluster to which

it belongs. Step 9 computes the expanding threshold for
each cluster. In each cluster 𝐶𝑖 (1 ≤ 𝑖 ≤ 𝑝), the labeled
data which are in 𝐶𝑖 expand their labels to their k-nearest
neighbors based on the threshold which is obtained in 𝐶𝑖

automatically, and function𝐸𝑥𝑝𝑒𝑛𝑑(𝐶, 𝑘 𝑎V𝑔𝑑𝑖𝑠(𝐶), 𝐷𝑙) uses
the expanding threshold 𝑘 𝑎V𝑔𝑑𝑖𝑠(𝐶) to expand the labeled
dataset 𝐷𝑙 by propagating the labels of labeled data in cluster
𝐶, and the expanding process is given as Algorithm 3. Steps 5
to 13 complete the process of label propagating.Thirdly, since
we use the expanding threshold 𝑘 𝑎V𝑔𝑑𝑖𝑠(𝐶) in the process of
label propagation, then part of unlabeled data in cluster 𝐶 is
not be labeled. We should label these unlabeled data after the
ending of label propagation and use the k-nearest neighbors
rule to deal with the rest of unlabeled data.

Algorithm 3 expands the labeled data in cluster𝐶by using
the mechanism of label propagation. In cluster 𝐶, we find
out the k-nearest neighbors in 𝐶 for each data 𝑥 in 𝐶. In
cluster 𝐶, 𝑘 𝑎V𝑔𝑑𝑖𝑠(𝐶) is used as the expanding threshold,
which is necessary in multidensity dataset. Steps 10 to 15
utilize 𝑘 𝑎V𝑔𝑑𝑖𝑠(𝐶) as the threshold to expand the labeled
data in cluster 𝐶. Firstly, we take out one labeled data 𝑥
which has not been used to expand its label to KNN(𝑥, 𝐶)
in 𝐶. For any data point 𝑦 in KNN(𝑥, 𝐶), if and only if
𝑑𝑖𝑠 KNN(𝑥, 𝑦, 𝐶) is less than 𝑘 𝑎V𝑔𝑑𝑖𝑠(𝐶), the label of 𝑥 is
assigned to 𝑦. After dealing with KNN(𝑥, 𝐶), it takes another
labeled data which has not been used to expand its k-nearest
neighbors in𝐶 and uses the samemethod to label its 𝑘-nearest
neighbors. If all of the labeled data in𝐶 have been used to label
their k-nearest neighbors, Algorithm 3 returns the 𝐷𝑙 as the
result.

3. Experimental Results and Discussion

We use three standard datasets from UCI Machine Learning
Repository [37]—IRIS, Wine, and Ecoli—and one synthetic
dataset which is imbalanced andmultidensity to demonstrate
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the performance of the proposed algorithm. The Euclidean
metric is employed to compute the distances between data
objects. In order to prove that the proposed method has
the ability of dealing with the imbalanced and multidensity
datasets, we construct three imbalanced datasets by deleting
data objects from IRIS, Wine, and Ecoli. Since the priori
knowledge is given as the labeled data, we compare the pro-
posed algorithmwith SSDBSCAN andConstrained-Kmeans.
We use the clustering accuracy to evaluate the clustering
results. The notion of clustering accuracy (CA) of a dataset
𝐷 is defined as follows:

CA =

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
󸀠󵄨󵄨
󵄨
󵄨
󵄨

|𝐷|

× 100%, (4)

where |𝐷| is the size of the unlabeled dataset 𝐷 and |𝐷󸀠| is
the number of labeled data which are labeled correctly by
clustering algorithms in𝐷.

3.1. Standard Datasets. This subsection demonstrates the
performance of the proposed semisupervised clustering algo-
rithm in three UCI datasets: IRIS, Wine, and Ecoli. In order
to test that the proposed algorithm has a higher accuracy
compared with SSDBSCAN and Constrained-Kmeans in
imbalanced and multidensity datasets, three datasets are
constructed by deleting part of data from some clusters of
IRIS, Wine, and Ecoli.

3.1.1. IRIS Dataset. The IRIS dataset, which contains 150 data
objects, is perhaps the most well-known dataset in pattern
recognition and data mining literature. IRIS contains 3
clusters of 50 data objects each.We turn IRIS into imbalanced
and multidensity dataset by deleting 20 data objects from the
second cluster randomly, and let modified IRIS denote this
dataset. Since IRIS contains only 150 data objects, we select
2, 3, 4, 5, 6, 7, 8, 9, and 10 percents of the dataset from IRIS
and the modified IRIS to be labeled datasets, respectively,
and view the rest of the data as the unlabeled datasets. The
experimental results are shown in Figures 3 and 4.

Figure 3 shows the experimental results of the 3 algo-
rithms which run on the IRIS dataset. Figure 3 shows that
the proposed algorithm has a higher accuracy compared
with the SSDBSCAN and Constrained-Kmeans. In addition,
the proposed algorithm is more stable than SSDBSCAN and
Constrained-Kmeans, especially when the size of labeled
dataset is very small.The proposed algorithm can reach stable
state when selecting more than 3% of all data (there are
only 4 labeled data). The accuracy of Constrained-Kmeans
is very low when selecting 3% and 4% of all data, just
because there is one cluster which has no data being selected,
Constrained-Kmeans partitions IRIS dataset into 2 clusters
forcibly, and SSDBSCAN has the same problem.The method
of labeled data selection is based on MST clustering, and the
experimental results show that the accuracy of clustering can
be improved highly when using 4 labeled data to guide the
process of clustering.

Figure 4 displays the experimental results of algorithms
running on the modified IRIS dataset. The proposed algo-
rithm has a much higher accuracy and more stable state
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Figure 3: Clustering accuracy (%) obtained with the proposed
algorithm and other algorithms on IRIS.
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Figure 4: Clustering accuracy (%) obtained with the proposed
algorithm and other algorithms on modified IRIS.

than SSDBSCAN and Constrained-Kmeans. When IRIS is
modified to be imbalanced andmultidensity, the labeled data
which is selected by using random method cannot cover all
clusters, whichmakes some clusters assigned to other clusters
in force, and this is reflected in SSDBSCAN andConstrained-
Kmeans, especially inConstrained-Kmeans. But the accuracy
of the proposed algorithm is little influenced.The accuracy of
the proposed algorithm reaches 93.8% when selecting 3% of
all data, and the presented algorithm can reach stable state
when selecting more than 7 labeled data.

3.1.2. Wine Dataset. Wine dataset contains 178 data objects,
and these data can be assigned to 3 clusters whose sizes are 59,
71, and 48, respectively. We adapt the same method to turn
Wine dataset into an imbalanced andmultidensity dataset by
removing 25 data objects from the first cluster randomly, and
let modified Wine denote this dataset. We select 2, 3, 4, 5,
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Figure 5: Clustering accuracy (%) obtained with the proposed
algorithm and other algorithms on Wine.
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Figure 6: Clustering accuracy (%) obtained with the proposed
algorithm and other algorithms on modified Wine.

6, 7, 8, 9, and 10 percents of the dataset from Wine and the
modified Wine to be labeled datasets, respectively, and view
the rest of the data as unlabeled datasets. Figures 5 and 6 show
the changes of accuracy of the three algorithms.

Figure 5 shows that the proposed algorithm has a more
stable state than SSDBSCAN and Constrained-Kmeans, and
the accuracy of the proposed algorithm is much higher
than that of Constrained-Kmeans. The proposed algorithm
can reach stable state when selecting more than 5% of all
data (there are only 9 labeled data). Since SSDBSCAN and
Constrained-Kmeans use random method to select labeled
datasets, there exists some cluster that has no data that can be
selected as labeled data, and their accuracy fluctuates along
with the change of percent of labeled data and this is also
shown in Figure 5.

Figure 6 shows that the accuracy of Constrained-Kmeans
and SSDBSCAN fluctuates much larger than that of the
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Figure 7: Clustering accuracy (%) obtained with the proposed
algorithm and other algorithms on Ecoli.

proposed method, and the proposed algorithm reaches a
stable state when selecting only 5% of all data. When we
select more than 4% of all data as the labeled data actively,
the accuracy of the proposed method is 94.1%, and when
the percent is more than 5, the accuracy is 96.1%. When the
labeled data cover all clusters, Constrained-Kmeans has a
high clustering accuracywhich is close to that of the proposed
method. But, in the 9 labeled datasets, only two labeled
datasets cover all clusters, and the rest 7 labeled datasets
miss some cluster. The accuracy of Constrained-Kmeans is
less than 80% on the 7 labeled datasets. The accuracy of
SSDBSCAN is less than 80% on all the labeled datasets.

3.1.3. Ecoli Dataset. The Ecoli dataset, which contains 336
data objects, has 8 clusters. The sizes of the 8 clusters are 143,
77, 52, 35, 20, 5, 2, and 2, respectively.

Since the data objects of the last three clusters are less
than 6 and they can be viewed as noises, in the experiment,
we delete these data. We select 2, 3, 4, 5, 6, 7, 8, 9, and 10
percents of the dataset from Ecoli dataset, respectively. The
experimental results are shown in Figure 7. The results are
similar to those in Figures 4 and 6. Figure 7 shows that the
proposed algorithm has a much higher accuracy and more
stable state than SSDBSCAN and Constrained-Kmeans. The
accuracy of Constrained-Kmeans and SSDBSCAN fluctuates
along with the difference of labeled data.

3.2. Synthetic Dataset. In this subsection, we generate 2500
data objects which have two attributes and are viewed as
imbalanced and multidensity datasets, and these data can
be partitioned into 4 clusters whose sizes are 1000, 100,
800, and 600, respectively. These data are shown in Figure 1.
Ten subsets were selected from this synthetic dataset to
demonstrate the three algorithms, and the ratios of them to
the whole dataset are 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 percents,
respectively. The experimental results are shown in Figure 8.

The accuracy of Constrained-Kmeans and SSDBSCAN
depends on the labeled data seriously. Although we select
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Figure 8: Clustering accuracy (%) obtained with the proposed
algorithm and other algorithms on Synthetic.

10% of all data, the second cluster has no one data that
can be selected as the labeled data, and, in the clustering
results, the data objects in the second cluster have to be
assigned to other clusters, and this phenomenon manifests
in the clustering results of SSDBSCAN. In addition, even
if Constrained-Kmeans selects labeled data from all of the
clusters, it assigns some data objects from the rest of the
three clusters to the second cluster, and this is the reason why
the accuracy of Constrained-Kmeans is not improved as the
percent of labeled data increases. Figure 8 also shows that the
proposed algorithm has a much higher accuracy compared
with SSDBSCAN and Constrained-Kmeans. The accuracy of
the proposed algorithm exceeds 98% on the 10 subsets.

4. Conclusion

A new active semisupervised clustering algorithm is pro-
posed which actively selects informative data by dealing
with the clustering results of MST. Labeling these data and
using them to label their k-nearest neighbors are based on
an adaptive threshold. The experimental results show that
the proposed semisupervised clustering can reach a stable
state which only requires very small size of labeled dataset.
However, the accuracy of the proposed semisupervised clus-
tering is much lower in the dataset in which clusters overlap
each other than that in the dataset in which the boundaries
between clusters are not very vague. In the future, we plan
to extend this work to the dataset in which clusters overlap
each other. We will work on the data selection strategy in
an active manner and the method of label propagation in
the imbalanced and multidensity datasets in which clusters
overlap each other.
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