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We consider a multiple vacation queueing system in which a vacation following a busy period has a different distribution from a
vacation that is takenwithout serving at least one customer. For ease of analysis it is assumed that the service times are exponentially
distributed and the two vacation types are also exponentially distributed but with different means. The steady-state solution is
obtained.

1. Introduction

A vacation queueing system is one in which a server may
become unavailable for a random period of time from a
primary service center. The time away from the primary
service center is called a vacation, and it can be the result of
many factors. In some cases the vacation can be the result
of server breakdown, which means that the system must
be repaired and brought back to service. It can also be a
deliberate action taken to utilize the server in a secondary
service center when there are no customers present at the
primary service center. Thus, server vacations are useful for
those systems in which the server wishes to utilize his idle
time for different purposes, and this makes the queueing
model be applicable to a variety of real world stochastic
service systems.

Queueing systems with server vacations have attracted
the attention of many researchers since the idea was first
discussed in the paper of Levy and Yechiali [1]. Several
excellent surveys on these vacation models have been done
by Doshi [2, 3], and the books by Takagi [4] and Tian and
Zhang [5] are devoted to the subject.

There are different types of vacation queueing systems.
In the single vacation scheme, the server takes a vacation of
a random duration when the queue is empty. At the end of
the vacation the server returns to the queue. If there is at least

one customer waiting when the server returns from vacation,
the server performs one of the following actions depending
on the service policy.

(a) Under the exhaustive service policy, the server will
serve all waiting customers as well as those that arrive
while he is still serving at the station.He takes another
vacation when the queue becomes empty.

(b) Under the gated service policy, the server will serve
only those customers that he finds at the queue upon
his return from vacation. At the end of their service
the server will commence another vacation and any
customers that arrive while the server was already
serving at the station will be served when the server
returns from the vacation.

(c) Under the limited service policy, the server will serve
only a predefined maximum number of customers
and thenwill commence another vacation.The single-
service scheme in which exactly one customer is
served is a special type of this policy.

If the queue is empty on the server’s return, the server waits
to complete a busy period using one of the service policies
before taking another vacation.

In the multiple vacation scheme, if the server returns
from a vacation and finds the queue empty, he immediately
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commences another vacation. If there is at least one waiting
customer, then he will commence service according to the
prevailing service policy.

Observe that in the vacation queueing system we have
described the server completely stops service or is switched
off when he is on vacation. Recently, Servi and Finn [6]
introduced the working vacation scheme, in which the server
works at a different rate rather than completely stopping
service during a vacation. They applied the M/M/1 queue
with multiple working vacations to model a Wavelength-
Division Multiplexing optical access network and derived
the probability-generating function (PGF) of the number of
customers in the system. In the original formulation of the
working vacation scheme the server cannot be interrupted
when he is on vacation; he resumes full service only when
his vacation ends.

The working vacation scheme has attracted a lot of
research effort, and several authors have extended the original
model. Wu and Takagi [7] generalized the model in [6] to
an M/G/1 queue with general working vacations. Baba [8]
studied a GI/M/1 queue with working vacations by using
the matrix analytic method. Banik et al. [9] analyzed the
GI/M/1/N queue with working vacations. Liu et al. [10]
established a stochastic decomposition result in the M/M/1
queue with working vacations.

For the batch arrival queues, Xu et al. [11] studied a batch
arrival M𝑋/M/1 queue with single working vacation. Using
the matrix analytic method, they derived the PGF of the sta-
tionary system length distribution. Baba [12] studied a batch
arrival M𝑋/M/1 queue with multiple working vacations. He
obtained the PGF of the stationary system length distribution
and the stochastic decomposition structure of system length
that indicates the relationship with that of M𝑋/M/1 queue
without vacation.

Some researchers have also considered discrete-time
working vacation systems. Tian et al. [13] considered the dis-
crete timeGeo/Geo/1 queue withmultiple working vacations.
Li and Tian [14] analyzed the discrete-time Geo/Geo/1 queue
with single working vacation. Gao and Liu [15] analyzed the
performance of a discrete-time Geo𝑋/G/1 queue with single
working vacation. Li et al. [16] discussed a discrete-time batch
arrival Geo𝑋/GI/1 queue with working vacations.

Li and Tian [17] analyzed a GI/Geo/1 queue with working
vacations and vacation interruption. Under such a policy, the
server can come back to the normal working level before the
vacation ends. They obtained the steady-state distributions
for the number of customers in the system at arrival epochs
and waiting time for an arbitrary customer using the matrix-
geometric solution method. The authors also extended the
model to the M/M/1 queue with working vacation and
vacation interruptions [18]. The GI/M/1 queue with working
vacations and vacation interruption was studied by Li et
al. [19]. Similarly, Zhang and Hou [20] discussed an M/G/1
queue with multiple working vacations and vacation inter-
ruption.

Recall that in the multiple vacation queueing system it is
assumed that the vacation times are independent and identi-
cally distributed. However, there are practical environments

where this assumption may not be valid. Specifically, a
vacation taken after “a hard day’s work” during which many
customers have been served may be longer than a vacation
taken after the server returns from vacation and finds the
queue empty. We define a vacation queueing system that
distinguishes between two kinds of vacations that a server
can take as a vacation queueing system with differentiated
vacations. The analysis of the M/M/1 version of this type of
vacation queueing system is the subject of this paper.

Thus, the paper deals with an M/M/1 queueing system in
which two types of vacations can be taken by the server: a
vacation taken immediately after the server has finished serv-
ing at least one customer and a vacation taken immediately
after the server has just returned from a previous vacation to
find that there are no customers waiting.

The model is motivated by certain aspects of human and
physical system behavior. For example, a computer system
can suffer one of two types of failures: permanent failure
and intermittent failure [21]. A permanent failure, which is
sometimes called a hard failure, requires the physical repair
of the failed system, which usually takes a long time because
it requires the presence of the field services personnel. By
contrast, after a system has suffered an intermittent failure
(or soft failure), no physical repair is required. The system is
restored to operation by means of a system reboot or some
other repair function that does not require the presence of
the field services personnel. As long as the system is not being
used for the intended service, it can be modeled as being on
vacation.Thus, vacations associatedwith intermittent failures
are generally of shorter durations than vacations associated
with permanent failures.

Another example is the following. Consider a gas station
attendant who operates under the following policy. When
there is no customer waiting to be attended he will take
a break that he can use to perform other functions at the
station. At the end of the break if there is still no waiting
customer, he will take another break, but if there is at least
one waiting customer, he will serve exhaustively and will take
a break when all customers have been served. This is the
traditional multiple vacation model. Suppose now that there
are two types of breaks that he can take. Specifically, after
serving all customers in a busy period that includes at least
one customer, he will take a coffee break or a personal break
whose length has a given distribution. If he returns from
a break and there is no waiting customer, he goes back on
another break whose length has another distribution. This
time can be used to attend to other duties at the station and
usually has a shorter mean duration than the coffee/personal
break. Thus, long breaks are associated with the completion
of a busy period with at least one service completion while
short breaks are associated with busy periods of zero length.

In general, differentiated vacations occur in environ-
ments where “breaks” of different durations can occur. In this
paper we have associated these breaks with the durations of
busy periods.

Note that this model is different from the traditional
multiple vacation model because in the traditional multiple
vacation model the durations of vacations are identically
distributed and are independent of the number of customers
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Figure 1: State-transition-rate diagram.

served in the busy period preceding the vacation. In the
differentiated vacation model that we are proposing, there
are two distributions of the durations of vacations: one is
associated with a vacation taken after a nonzero busy period
and the other is associated with a vacation taken after a zero
busy period. The practical application of this model is that
durations of vacations taken after a nonzero busy period can
be longer than those that are taken when the server did not
serve any customer prior to the vacation in order to give the
server a sufficient time to rest following some hectic busy
period.

The paper is organized as follows. The model is more
formally defined in Section 2. Steady-state analysis of the
model is given in Section 3, computational results are given
in Section 4, and concluding remarks are made in Section 5.

2. System Model

We consider a multiple vacation queueing system where
customers arrive according to a Poisson process with rate 𝜆.
The time to serve a customer is assumed to be exponentially
distributed with mean 1/𝜇, where 𝜇 > 𝜆. We assume that
there are two types of vacations: type 1 vacation that is taken
after a busy period of nonzero duration, and type 2 vacation
that is taken when no customers are waiting for the server
when it returns from a vacation. For ease of analysis we
assume that the durations of type 1 vacations are independent
of the busy period and are exponentially distributed with
mean 1/𝛾

1
. (As discussed earlier, there are cases where

this independence assumption is not valid. However, we
make this assumption to simplify the analysis.) Similarly,
durations of type 2 vacations are assumed to be exponentially
distributed with mean 1/𝛾

2
.

Let the state of the system be denoted by (𝑟, 𝑘), where
𝑟 is the number of customers in the system, 𝑘 = 0 if the
server is active serving customers, 𝑘 = 1 if the server is on
a type 1 vacation, and 𝑘 = 2 if the server is on a type 2
vacation. Thus, the system can be modeled by a continuous-
time Markov chain whose state-transition-rate diagram is
shown in Figure 1.

3. Steady-State Analysis

Let 𝑝
𝑛,𝑘

(𝑡) denote the probability that the process is in state
(𝑛, 𝑘) at time 𝑡, and let

𝑝
𝑛,𝑘

= lim
𝑡→∞

𝑝
𝑛,𝑘 (𝑡) . (1)

The main result of the paper is stated via the following
theorem.
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Solving the above equations recursively we obtain
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Thus, in general we obtain
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From the law of total probability, we have that
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which completes the proof.

The mean number of customers in the system is given by
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Finally, from Little’s formula [22] the mean time a customer
spends in the system (or mean delay) is given by
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4. Computational Results
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We also assume that themean duration of type 1 vacation is at
least as long as that of the type 2 duration, which means that
𝛾
2
≥ 𝛾
1
. We assume that 𝛾

2
= 1 and consider different values

of 𝛾
1
: 𝛾
1
= 1, 0.5, 0.25, 0.1, 0.05. Figure 2 shows the variations

of 𝐸[𝑇] with 𝜌. As the figure indicates, 𝐸[𝑇] increases as 1/𝛾
1

increases (corresponding to decreasing 𝛾
1
).

Figure 3 shows the results for 𝛾
2
= 2 and 𝛾

1
= 1, 0.5, 0.25,

0.1, 0.05. The figure shows the same trend observed in
Figure 2.

5. Conclusion

We have considered an interesting class of multiple vacation
queueing systems inwhich two types of vacations are encoun-
tered. The first type is a vacation that is taken at the end
of a busy period of nonzero duration, and the second is a
vacation taken at the end of a busy period of zero duration,
which means that no customer was served. The simple case
of M/M/1 system is considered. The results indicate that the
mean time a customer spends in the system, which we define
as the mean delay, is more sensitive to the mean duration of
the first type of vacation than of the second type, which is to
be expected since the duration of the first type of vacation
is assumed to be longer than that of the second type. This
queueing system reflects many real life experiences where

some vacations can be used for postprocessing activitieswhile
others are actual “breaks” that the server takes.
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