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This paper begins by giving the results obtained by the Crank-Gupta method and Gupta-Banik method for the oxygen diffusion
problem in absorbing tissue, and then we propose a new resolution method for this problem by the Adomian decomposition
method. An approximate analytical solution is obtained, which is demonstrated to be quite accurate by comparison with the
numerical and approximate solutions obtained byCrank andGupta.The study confirms the accuracy and efficiency of the algorithm
for analytic approximate solutions of this problem.

1. Introduction

Thesolution of the oxygen diffusion problem in amedium [1],
which simultaneously absorbs the oxygen, consists of finding
𝑢 and 𝑠 such that

𝜕𝑢

𝜕𝑡

=

𝜕
2
𝑢

𝜕𝑥
2
− 1, 0 < 𝑥 < 𝑠 (𝑡) , (1)

subject to

𝜕𝑢

𝜕𝑥

(𝑡, 0) = 0, (2)

𝑢 (𝑡, 𝑠 (𝑡)) = 0, (3)

𝜕𝑢

𝜕𝑥

(𝑡, 𝑠 (𝑡)) = 0 (4)

and the initial condition

𝑢 (0, 𝑥) =

1

2

(1 − 𝑥)
2
, 0 < 𝑥 < 𝑠 (0) = 1. (5)

The above equations represent a moving boundary problem,
and since not only the concentration of oxygen is always zero
at the boundary but also, in addition, no oxygen diffuses
across the boundary at any time, there is no relationship
which contains the velocity of the moving boundary explic-
itly.

On comparison of this problemwith the one-phase Stefan
problem, we observe that the Neumann boundary condition
is different to the Stefan condition, which explicitly contains
the velocity of the moving boundary [1, 2].

Problems such as this have been treated under the name
of Crank and Gupta problem and approached by numerical
solutions.This is an example of a nonlinear parabolic moving
boundary problem, which is difficult to get the exact solution.

Many approximate methods have been used to solve this
type of problems, for example, the numerical method [2–
9] and the method applies the Keller box finite difference
scheme [10–12].

Crank, Gupta and Banik [1–3] were the first to consider
integral methods applied to the oxygen diffusion problem.
The integral methods have been also discussed in [13].
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In [1], the authors proposed the following polynomial
profile of fourth degree centered at 𝑥 = 𝑠, for the resolution
of (1)–(5):

𝑢
1
(𝑡, 𝑥) =

𝑠
2

2

(1 −

𝑥

𝑠

)

2

+ (4𝑢
0
(𝑡) − 𝑠

2
) (1 −

𝑥

𝑠

)

3

− (3𝑢
0
(𝑡) −

𝑠
2

2

)(1 −

𝑥

𝑠

)

4

,

(6)

where 𝑢
0
(𝑡) = 1/2 − 2√𝑡/𝜋, and then obtained

𝑑

𝑑𝑡

∫

𝑠

0

𝑢 𝑑𝑥 = −𝑠, (7)

which leads to an ODE:

𝑠

(𝑡) =

(20 + 8𝑢


0
(𝑡)) 𝑠

8𝑢
0
(𝑡) + 𝑠

2
with 𝑡 ≥

4

25𝜋

. (8)

A similar analysis has been applied in [2] for the following
polynomial profile of fourth degree centered at 𝑥 = 0:

𝑢
2
(𝑡, 𝑥) = 𝑢

0
+

1

2

(𝑠
2
− 12𝑢

0
) (

𝑥

𝑠

)

2

+ (8𝑢
0
− 𝑠
2
) (

𝑥

𝑠

)

3

+

1

2

(𝑠
2
− 6𝑢
0
) (

𝑥

𝑠

)

4

,

(9)

where 𝑢
0
(𝑡) = 𝑢(𝑡, 0) and 𝑠 is determined from

𝑑

𝑑𝑡

∫

𝑠

0

𝑥𝑢 𝑑𝑥 = 𝑢
0
(𝑡) −

1

2

𝑠
2
. (10)

The resulting ODEs are given by

𝑑𝑢
0

𝑑𝑡

= −

5𝑠
4
+ 30𝑠
2
𝑢
0
+ 24𝑢

2

0

𝑠
2
(5𝑠
2
+ 24𝑢

0
)

,

𝑑𝑠

𝑑𝑡

= −

60 (𝑠
2
− 4𝑢
0
)

𝑠 (5𝑠
2
+ 24𝑢

0
)

.

(11)

The purpose of this paper is to apply the Adomian decom-
position method [14–37] to find the solution of (1), (3), and
(4), that is, the oxygen diffusion 𝑢(𝑡, 𝑥), and then obtain an
expression for the location of the moving boundary, which
gives an ODE to solve for 𝑠(𝑡) as a function of time. In
addition, we will show that the partial solution in the 𝑡-
directions requires less computational work by using the
initial condition only. Also, using an a priori estimate, we
prove the uniqueness of the solution of (1)–(5).

2. Analysis of the Method

Consider the general problem:

𝜕𝑢

𝜕𝑡

=

𝜕
2
𝑢

𝜕𝑥
2
− 𝑔 (𝑥) , 0 < 𝑥 < 𝑠 (𝑡) , (12)

which is the governing equation, subject to the boundary
condition

𝜕𝑢

𝜕𝑥

(𝑡, 0) = ℎ (𝑡) , (13)

the Dirichlet boundary condition

𝑢 (𝑡, 𝑠 (𝑡)) = 𝑝 (𝑡) , (14)

the Neumann boundary condition

𝜕𝑢

𝜕𝑥

(𝑡, 𝑠 (𝑡)) = 𝑞 (𝑡) , (15)

and the initial condition

𝑢 (0, 𝑥) = 𝜑 (𝑥) , 0 < 𝑥 < 𝑠 (0) = 1. (16)

Our problem contains, as a special case, the above system
which describes the oxygen diffusion problem.

Based on the Adomian decomposition method, we write
(12) in Adomian’s operator-theoretic notation as

𝐿
𝑥𝑥
𝑢 =

𝜕𝑢

𝜕𝑡

+ 𝑔 (𝑥) , (17)

where

𝐿
𝑥𝑥

=

𝜕
2

𝜕𝑥
2
. (18)

Applying the inverse linear operator 𝐿−1
𝑥𝑥

= ∫

𝑠(𝑡)

𝑥
∫

𝑠(𝑡)

𝑥
(⋅)𝑑𝑥 𝑑𝑥

to (17) and taking into account that 𝑢(𝑡, 𝑠(𝑡)) = 𝑝(𝑡) and
(𝜕𝑢/𝜕𝑥)(𝑡, 𝑠) = 𝑞(𝑡), we obtain

𝑢 (𝑡, 𝑥) = 𝑝 (𝑡) − 𝑞 (𝑡) (𝑠 − 𝑥)

+ ∫

𝑠(𝑡)

𝑥

∫

𝑠(𝑡)

𝑥

𝑔 (𝑥) 𝑑𝑥 𝑑𝑥 + ∫

𝑠(𝑡)

𝑥

∫

𝑠(𝑡)

𝑥

𝜕𝑢

𝜕𝑡

𝑑𝑥 𝑑𝑥.

(19)

Define the solution 𝑢(𝑡, 𝑥) by an infinite series of components
in the form

𝑢 (𝑡, 𝑥) =

∞

∑

𝑛=0

𝑢
𝑛
(𝑡, 𝑥) . (20)

Consequently, the components 𝑢
𝑛
can be elegantly deter-

mined by setting the recursion scheme:

𝑢
0
= 𝑝 (𝑡) − 𝑞 (𝑡) (𝑠 − 𝑥) + ∫

𝑠(𝑡)

𝑥

∫

𝑠(𝑡)

𝑥

𝑔 (𝑥) 𝑑𝑥 𝑑𝑥,

𝑢
𝑛+1

= ∫

𝑠(𝑡)

𝑥

∫

𝑠(𝑡)

𝑥

𝜕𝑢
𝑛

𝜕𝑡

𝑑𝑥 𝑑𝑥, 𝑛 ≥ 0,

(21)

for the complete determination of these components.
Replace 𝑝(𝑡) = 𝑞(𝑡) = 0 and 𝑔(𝑥) = 1 into the recursion

scheme (21) to get

𝑢
0
=

1

2!

(𝑠 − 𝑥)
2
,

𝑢
1
=

𝑠


3!

(𝑠 − 𝑥)
3
,

𝑢
2
=

𝑠
2

4!

(𝑠 − 𝑥)
4
+

𝑠


5!

(𝑠 − 𝑥)
5
,

⋅ ⋅ ⋅ .

(22)
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A polynomial profile of fifth degree is now obtained by the
Adomian decomposition method, which is the truncated
decomposition series 𝑢(𝑡, 𝑥) = 𝑢

0
(𝑡, 𝑥) + 𝑢

1
(𝑡, 𝑥) + 𝑢

2
(𝑡, 𝑥).

So that

𝑢 (𝑡, 𝑥) =

1

2!

(𝑠 − 𝑥)
2
+

𝑠


3!

(𝑠 − 𝑥)
3
+

𝑠
2

4!

(𝑠 − 𝑥)
4
+

𝑠


5!

(𝑠 − 𝑥)
5

(23)

andwhich automatically satisfies the boundary conditions (3)
and (4).

We can now obtain an expression for the location of the
moving boundary, 𝑠(𝑡). This is derived from integrating (12)
with respect to 𝑥 from 0 to 𝑥 and taking into account that
(𝜕𝑢/𝜕𝑥)(𝑡, 0) = ℎ(𝑡); we obtain

𝜕𝑢

𝜕𝑥

= ℎ (𝑡) + ∫

𝑥

0

𝑔 (𝑥) 𝑑𝑥 + ∫

𝑥

0

𝜕𝑢

𝜕𝑡

𝑑𝑥. (24)

Substitute 𝑥 = 𝑠 into (24) and using the fact that
(𝜕𝑢/𝜕𝑥)(𝑡, 𝑠) = 𝑞(𝑡). Thus

∫

𝑠(𝑡)

0

𝑔 (𝑥) 𝑑𝑥 + ∫

𝑠(𝑡)

0

𝜕𝑢

𝜕𝑡

𝑑𝑥 = 𝑞 (𝑡) − ℎ (𝑡) , 𝑠 (0) = 1.

(25)

Using the following Leibniz’s rule for differentiation under
the integral sign:

𝑑

𝑑𝑡

∫

𝑠(𝑡)

0

𝑢 (𝑡, 𝑥) 𝑑𝑥 = ∫

𝑠(𝑡)

0

𝜕𝑢

𝜕𝑡

𝑑𝑥 + 𝑢 (𝑡, 𝑠 (𝑡))

𝑑𝑠

𝑑𝑡

, (26)

and taking into account that 𝑢(𝑡, 𝑠(𝑡)) = 𝑝(𝑡), we obtain

∫

𝑠(𝑡)

0

𝜕𝑢

𝜕𝑡

𝑑𝑥 =

𝑑

𝑑𝑡

∫

𝑠(𝑡)

0

𝑢 (𝑡, 𝑥) 𝑑𝑥 − 𝑝 (𝑡)

𝑑𝑠

𝑑𝑡

. (27)

Substituting (27) into (25), we get

∫

𝑠(𝑡)

0

𝑔 (𝑥) 𝑑𝑥 +

𝑑

𝑑𝑡

∫

𝑠(𝑡)

0

𝑢 (𝑡, 𝑥) 𝑑𝑥 − 𝑝 (𝑡)

𝑑𝑠

𝑑𝑡

= 𝑞 (𝑡) − ℎ (𝑡) ,

(28)

where 𝑠(0) = 1. If we consider 𝑝(𝑡) = 𝑞(𝑡) = ℎ(𝑡) = 0 and
𝑔(𝑥) = 1, then (28) becomes

𝑑

𝑑𝑡

∫

𝑠(𝑡)

0

𝑢 (𝑡, 𝑥) 𝑑𝑥 = −𝑠. (29)

Substitute the profile equation (23) into (29) gives an ODE to
solve for 𝑠(𝑡), namely,

𝑠
2
𝑠


2!

+

𝑠
3
𝑠
2

3!

+

𝑠
4
𝑠


4!

+

𝑠
4
𝑠
3

4!

+ 3

𝑠
5
𝑠

𝑠


5!

+

𝑠
6
𝑠


6!

= −𝑠, (30)

with 𝑠(0) = 1. So that

𝑠𝑠


2!

+

𝑠
2
𝑠
2

3!

+

𝑠
3
𝑠


4!

+

𝑠
3
𝑠
3

4!

+ 3

𝑠
4
𝑠

𝑠


5!

+

𝑠
5
𝑠


6!

+ 1 = 0. (31)

We now can determine the location of the moving boundary
𝑠(𝑡) as a function of time by solving the nonlinear equation

(31). Indeed, the solution 𝑠(𝑡) follows immediately by setting
the following form:

𝑠 = √1 + 2𝜆𝑡, (32)

where 𝜆 ∈ R is a parameter to be determined. Simple
computations lead to

𝑠𝑠

= 𝜆, 𝑠


𝑠
3
= −𝜆
2
,

𝑠

𝑠
5
= 3𝜆
3
, 𝑠


𝑠

𝑠
4
= −𝜆
3
.

(33)

Substituting these expressions into (31), we obtain

𝜆

2!

+

𝜆
2

3!

−

𝜆
2

4!

+

𝜆
3

4!

− 3

𝜆
3

5!

+ 3

𝜆
3

6!

+ 1 = 0, (34)

or equivalently,

𝜆
3
+ 6𝜆
2
+ 24𝜆 + 48 = 0. (35)

Consequently, we find 𝜆 = −3.192143275966643 ≈ −3.2,
which is a real root of this equation.

Hence, the concentration and the location of the moving
boundary for 0 ≤ 𝑡 < 1/6.4 ≈ 0.156 can be represented fairly
accurately by the approximate expression equation (23) and

𝑠 = √1 − 6.4𝑡, (36)

respectively.
It should be noted that this solution is applicable for the

time 0 ≤ 𝑡 < 1/6.4 only.
Graphs have been drawn to show the concentration

distributions and the positions of the moving boundary at
various times 0 ≤ 𝑡 < 0.156 (Figures 1 and 2).

As it was mentioned in [13], we see that the method of
Gupta and Banik [2] only starts at 𝑡 = 𝑡

∗
= 4/25𝜋, with

𝑠(𝑡
∗
) = 1, and is applicable for the time interval 4/25𝜋 ≤

𝑡 ≤ 𝜋/16. For 𝑡 ≥ 4/25𝜋, Laplace solutions give analytical
solutions for the short time problem [1]. Also, the Gupta and
Banik method [2] requires that 𝑠2 − 4𝑢

0
≥ 0. Since 𝑠(0) = 1

it follows that 𝑢
0
(0) ≤ 0.25. This is incompatible with the

initial condition at 𝑡 = 0 and so this method can only start
at 𝑡 = 𝑡

∗
> 0, with the assumption that 𝑠(𝑡∗) = 0.

Table 1 shows that the values obtained by using the
Adomian decomposition method, which are in a very good
agreement with those calculated by Gupta and Banik, for
small times.

An expression for surface concentration can be obtained
by putting 𝑥 = 0 in (23). Thus

𝑢 (𝑡, 0) =

1

2!

𝑠
2
+

𝑠


3!

𝑠
3
+

𝑠
2

4!

𝑠
4
+

𝑠


5!

𝑠
5
, (37)

which can be compared with the numerical solutions [1]

𝑢
1
(𝑡, 0) =

1

2

− 2√
𝑡

𝜋

. (38)

Comparative figures are given in Table 2.
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Table 1: A comparison for the position of the moving boundary as obtained from (a) numerical evaluation by using Runge-Kutta method,
(b) approximation solution [1], (c) numerical method [1], and (d) ADM.

Values of 𝑥 Numerical solution Approximate solution Numerical method ADM
0 — — — 1
0.051 1 1 0.9967 0.82073
0.060 0.9974 0.9996 0.9922 0.7848
0.080 0.9750 0.9817 0.9719 0.6985
0.100 0.9321 0.9393 0.9352 0.6000

Table 2: A comparison for the surface concentration 𝑢(𝑡, 0) with 𝑢
1
(𝑡, 0) [1].

Values of 𝑥 Analytical Numerical Approximate ADM
0.04 0.274328 0.274496 0.274324 0.229152
0.08 0.180852 0.180969 0.180846 0.150304
0.12 0.109134 0.109228 0.109118 0.0714560
0.15 0.048771 0.048893 0.048648 0.0123200

0

0.1

0.2

0.2

0.3

0.4

0.5

0.4 0.6 0.80 1

u
(
x
,
t
)

x

Figure 1: Concentration distributions 𝑢(𝑥, 𝑡) for different values of
𝑡. Solid line: 𝑡 = 0, dashed line: 𝑡 = 0.01, dash dotted line: 𝑡 = 0.02,
and dotted line: 𝑡 = 0.03.

An important note can be made here that the 𝑡-solution
can be obtained by using the initial condition equation (16)
only. To do this, we apply the inverse linear operator 𝐿−1

𝑡
(⋅) =

∫

𝑡

0
(⋅)𝑑𝑡 to both sides of (12) and use the initial condition

equation (16) to obtain

𝑢 (𝑡, 𝑥) = 𝜑 (𝑥) − 𝑔 (𝑥) 𝑡 + ∫

𝑡

0

𝜕
2
𝑢

𝜕𝑥
2
𝑑𝑡, (39)

where 𝜑(𝑥) = (1/2)(1 − 𝑥)
2 and 𝑔(𝑥) = 1. So that

the decomposition method consists of decomposing the

t

s
(
t
)

0.2

0.4

0.6

0.8

1

0 0.05 0.10 0.15

Figure 2: Variation of the moving boundary position equation (33)
with the time 𝑡 for 0 ≤ 𝑡 < 0.156.

unknown function 𝑢(𝑡, 𝑥) into a sum of components defined
by the series 𝑢(𝑡, 𝑥) = ∑

∞

𝑛=0
𝑢
𝑛
(𝑡, 𝑥). Thus the components

can be elegantly determined in a recursive manner as will be
discussed later; we therefore set the recurrence scheme:

𝑢
0
=

1

2

(1 − 𝑥)
2
− 𝑡,

𝑢
𝑛+1

= ∫

𝑡

0

𝜕
2
𝑢
𝑛

𝜕𝑥
2
𝑑𝑡, 𝑛 ≥ 0.

(40)
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In view of this, the components 𝑢
0
(𝑡, 𝑥), 𝑢

1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥), . . .

are immediately determined as

𝑢
0
=

1

2

(1 − 𝑥)
2
− 𝑡,

𝑢
1
= 𝑡,

𝑢
𝑛+1

= ∫

𝑡

0

𝜕
2
𝑢
𝑛

𝜕𝑥
2
𝑑𝑡 = 0, 𝑛 ≥ 1.

(41)

Consequently, the 𝑡-solution is readily found to be

𝑢 (𝑡, 𝑥) =

1

2

(1 − 𝑥)
2
, (42)

which is a very good approximation and the same approx-
imate solution obtained upon using the Laplace transforms
when it has been assumed that the boundary has not moved
from its original position, 𝑠 = 1 [1].

To obtain 𝑠(𝑡) as a function of time, substituting the profile
equation (42) into (29), we get

𝑑𝑠

𝑑𝑡

= −2

𝑠

(1 − 𝑠)
2
, 𝑠 (0) = 1, (43)

which leads to the implicit solution

ln 𝑠 − 2𝑠 +

𝑠
2

2

= −2𝑡 −

3

2

. (44)

Graph has been drawn to show the solution for the moving
boundary 𝑠(𝑡) in Figure 3.

3. A Priori Estimate

Here we establish an a priori estimate which ensures the
uniqueness of the solution of the given free boundary value
problem.

Proposition 1. For any solution 𝑢(𝑡, 𝑥) of (12) that satisfies
(2)–(5) there exists a positive constant𝐶 independent on 𝑢(𝑡, 𝑥)
such that

sup
0≤𝜏≤𝑇

[∫

𝑠(𝜏)

0

𝑢
2
(𝜏, 𝑥) 𝑑𝑡 𝑑𝑥 + ∫

𝜏

0

∫

𝑠(𝜏)

0

(

𝜕𝑢

𝜕𝑥

)

2

𝑑𝑡 𝑑𝑥]

≤ 𝐶(∫

1

0

𝑔
2
(𝑥) 𝑑𝑥 + ∫

1

0

𝜑
2
(𝑥) 𝑑𝑥) ,

(45)

where 𝑔 ∈ 𝐿
2
[0, 𝑠].

Proof. Multiply both sides of (12) by 𝑢, integrating overΩ𝜏 =
[0, 𝜏] × [0, 𝑠(𝜏)]. After applying integration by parts and
taking into account that 𝑢(𝑡, 𝑠) = 0, (𝜕𝑢/𝜕𝑥)(𝑡, 𝑠) = 0 and
(𝜕𝑢/𝜕𝑥)(𝑡, 0) = 0, we obtain

1

2

∫

𝑠(𝜏)

0

𝑢
2
(𝜏, 𝑥) 𝑑𝑡 𝑑𝑥 −

1

2

∫

𝑠(𝜏)

0

𝜑
2
(𝑥) 𝑑𝑥

+ ∫

𝜏

0

∫

𝑠(𝜏)

0

(

𝜕𝑢

𝜕𝑥

)

2

𝑑𝑡 𝑑𝑥 = −∫

𝜏

0

∫

𝑠(𝜏)

0

𝑔 (𝑥) 𝑢 (𝑡, 𝑥) 𝑑𝑡 𝑑𝑥.

(46)
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Figure 3:Moving boundary position 𝑠(𝑡) in terms of 𝑡 obtained from
(44).

Use the 𝜖-inequality: 2|𝑎𝑏| ≤ (1/𝜖)𝑎
2
+ 𝜖𝑏
2, 𝜖 > 0 to estimate

the term which arises in the right-hand side of (46).
Thus

∫

𝑠(𝜏)

0

𝑢
2
(𝜏, 𝑥) 𝑑𝑡 𝑑𝑥 + 2∫

𝜏

0

∫

𝑠(𝜏)

0

(

𝜕𝑢

𝜕𝑥

)

2

𝑑𝑡 𝑑𝑥

≤

1

𝜖

∫

𝜏

0

∫

𝑠(𝜏)

0

𝑔
2
(𝑥) 𝑑𝑥 + 𝜖∫

𝜏

0

∫

𝑠(𝜏)

0

𝑢
2
(𝑡, 𝑥) 𝑑𝑡 𝑑𝑥

+ ∫

𝑠(𝜏)

0

𝜑
2
(𝑥) 𝑑𝑥.

(47)

SinceΩ𝜏 = [0, 𝜏] × [0, 𝑠(𝜏)] ⊂ [0, 𝑇] × [0, 1], it follows

∫

𝑠(𝜏)

0

𝑢
2
(𝜏, 𝑥) 𝑑𝑡 𝑑𝑥 + ∫

𝜏

0

∫

𝑠(𝜏)

0

(

𝜕𝑢

𝜕𝑥

)

2

𝑑𝑡 𝑑𝑥

≤ 𝑇∫

1

0

𝑔
2
(𝑥) 𝑑𝑥 + ∫

1

0

𝜑
2
(𝑥) 𝑑𝑥

+ 𝜖∫

𝜏

0

∫

𝑠(𝜏)

0

𝑢
2
(𝑡, 𝑥) 𝑑𝑡 𝑑𝑥.

(48)

Using Gronwall’s lemma, we obtain

∫

𝑠(𝜏)

0

𝑢
2
(𝜏, 𝑥) 𝑑𝑡 𝑑𝑥 + ∫

𝜏

0

∫

𝑠(𝜏)

0

(

𝜕𝑢

𝜕𝑥

)

2

𝑑𝑡 𝑑𝑥

≤ 𝐶(∫

1

0

𝑔
2
(𝑥) 𝑑𝑥 + ∫

1

0

𝜑
2
(𝑥) 𝑑𝑥) .

(49)

Now, replacing the right-hand side of (49) by its upper bound
with respect 𝜏 in the interval [0, 𝑇], we obtain the desired
inequality.
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4. Conclusion

In this work we investigated the moving boundary problem
arising from the diffusion of oxygen in absorbing tissue. The
approximate method obtained upon using the ADM would
specially be useful to calculate the concentration and the
position of themoving boundary at an arbitrary time. Graphs
have been drawn to show the concentration-distributions and
the progress of the moving boundary with respect to time at
various times.Thework confirmed the power of theAdomian
method in handling this example of a nonlinear parabolic
moving boundary problem, without an exact solution.
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