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This paper proposes a hybrid programming framework for modeling and solving of constraint satisfaction problems (CSPs)
and constraint optimization problems (COPs). Two paradigms, CLP (constraint logic programming) and MP (mathematical
programming), are integrated in the framework. The integration is supplemented with the original method of problem
transformation, used in the framework as a presolving method. The transformation substantially reduces the feasible solution
space. The framework automatically generates CSP and COP models based on current values of data instances, questions asked
by a user, and set of predicates and facts of the problem being modeled, which altogether constitute a knowledge database for the
given problem.This dynamic generation of dedicatedmodels, based on the knowledge base, together with the parameters changing
externally, for example, the user’s questions, is the implementation of the autonomous search concept. The models are solved using
the internal or external solvers integrated with the framework. The architecture of the framework as well as its implementation
outline is also included in the paper. The effectiveness of the framework regarding the modeling and solution search is assessed
through the illustrative examples relating to scheduling problems with additional constrained resources.

1. Introduction

Constraint satisfaction problems (CSPs) and/or constraint
optimization problems (COPs) can involve the variables
that take values over finite domains (integer, real, binary,
etc.) and constraints of all types and characters [1]. By
connecting variables, constraints affect the feasible variable
domain ranges. Modeling and solving of those problems
make up one of the major interest areas of various com-
puter science communities, including operation research,
mathematical programming, constraint programming, and
artificial intelligence. Problems with constraints like CSP and
COP are frequent in production, distribution, transportation,
logistics, computer networks, software engineering, project
management, planning and scheduling, and so forth. One of
the features resulting from the users’ changeable expectations
is the need to solve the problem multiple times for variable
data instances and parameters. Users express their expec-
tations by asking all kinds of questions. On the one hand,
the question is related to the possibility of realizing the task
with certain resources at the defined time; on the other hand,

it concerns optimal parameters of task realization, and it is
about the optimal configuration of the system. Quite often,
the questions include logical conditions (e.g., relating to
mutual exclusion, dynamic connecting of resources). Because
of the changeability of the questions, parameters, and data
instances, the idea of autonomous search seems to be the
most suitable for solving the problems with constraints. The
autonomous search should have the ability to preferably
modify and change its internal components when exposed
to changing external parameters, requirements, and/or data
instances [2].

The underlying motivation for this study was the idea
of developing a programming and implementation platform,
which would allow effective modeling and solving of CSPs
and COPs and solving these problems in an automatic
mode (using the autonomous search) despite changes in data
instances, parameters, and questions asked by users. The
idea was implemented as a hybrid programming framework.
To build the framework, the authors used hybridization
of various programming paradigms and their own original
method of transformation. In addition, the authors proposed
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a dynamic method for generating dedicated models, based
on the knowledge database made up of facts, predicates, and
questions asked by users.

2. Backgrounds, Methods, and Structures

Models for problems with constraints need environments
that allow modeling and solving the constraints in an easy
and effective way. Historically, operations research, in par-
ticular, mathematical programming, network programming,
and dynamic programming, and so forth, has been used
for this purpose. Numerous models (MIP-mixed integer
programming, MILP-mixed integer linear programming, IP-
integer programming, etc.), algorithms (branch and bound,
symplex, branch and cost, etc.), and good practices have
been developed to facilitate solving problemswith constraints
[3]. All these methods and models, however, have some
limitations concerning the character of constraints (e.g., only
linear constraints) or the character of variables (e.g., only
real variables), and so forth. For different types of constraints
(nonlinear, logical, etc.) and/or decision variables (integer,
binary, etc.), they were either inapplicable or ineffective. For
the approach to be most universal and suitable, a given prob-
lem must be looked at from the perspective of variables and
connecting constraints with the domains of variables taken
into account. Constraint logic programming (CLP) paradigm
allows this approach. Constraint logic programming (CLP)
is a form of constraint programming (CP) paradigm, where
logic programming is extended to include CSP (constraint
satisfaction problem). CLP programs are built from valid
Prolog-based logic data structures. A program is a collection
of predicates, and a predicate is a collection of clauses.
The idea of a clause is to define that something is true.
The simplest form of a clause is the fact. For example,
the following two are facts: technology (product, machine,
and execution time) and vehicle (capacity, type, and cost).
Syntactically, a fact is just a structure (or an atom) terminated
by a full stop [4].

CSP is a triple (𝑋,Dom,Cst)where𝑋 = {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑚
}

represents a set of 𝑚 decision variables, Dom =

{Dom1,Dom2, . . . ,Dom𝑚} represents the set of associated
domains (i.e., possible values for decision variables), and
Cst = {Cst1,Cst2, . . . ,Cst𝑛} represents a set of 𝑛 constraints.
Constraints fall into several types depending on the number
of decision variables in a constraint (unary, binary, and
𝑛-ary). A unary constraint is a constraint on a single decision
variable (e.g., 𝑋 ̸= 6, 𝑌 < 6). A binary constraint is a
constraint over a pair of decision variables (e.g., 𝑋 > 𝑌,
𝑋 + 𝑌 < 8). In general, a 𝑛-ary constraint has a scope of size
𝑛 decision variables [1].

Each constraint Cst𝑖 binds a set of decision variables and
is used to restrict domains of these variables. Solving a CSP
means finding the state/condition of a problem, in which the
assignment of decision variables satisfies all constraints. The
general algorithm for solving a CSP is shown in Figure 1.
The algorithm consists of constraint propagation and variable
distribution activated in the sequence. If this sequence does
not provide a result, backtracking is used and sequence
activation is repeated. The algorithm is very effective for

CSP-solver (CSP-for-solving-problem) 

Create CSP for-solving-problem
while not (solved or infeasible) do

B Remove-inconsistent-values Constraint propagation method 
Select-decision-variable

Variables distribution 
Select-value-for-variable 

End

B- backtracking

Figure 1: The general scheme of the algorithm to solve CSP.

solving the problems, in which aryness of constraints does
not exceed 2. The CSP algorithm is often ineffective in the
case of the problems in which constraints connect more
than two decision variables and the optimization problems
with constraints (COPs). The effectiveness of propagation
is reduced significantly and the number of backtrackings
increases. In extreme cases, the algorithm is able to neither
find any feasible solution within the allowable time nor
ascertain its absence.

In order to overcome this shortcoming, suggestions of
integrating the CP/CLP paradigms with other paradigms
occurred. Since the areas are similar, constraints and decision
variables, the integration usually relates to the paradigm of
mathematical programming [5–9].

Several scenarios of CP/CLP and MP integration have
been reported in the literature [10]:

(i) Double modeling uses both CP and MP models and
exchanges information while solving.

(ii) Search-inference duality views CP and MP methods
as special cases of a search/inference duality.

(iii) Decomposition decomposes problems into a CP part
and an MP part using a Benders scheme.

In the approach proposed in this paper, the scenario for
the integration of both paradigms is supplemented with the
authors’ own method of problem transformation [11–13] and
the idea of autonomous search [12]. All these components
are connected and integrated into the programming hybrid
framework (Section 3).

The method of problem transformation [11, 13] proposed
by authors (Section 3.2) is briefly speaking, the transforma-
tion of the search space performed by removing all points and
areas in which decision variables cannot occur, thus reducing
the size of this space. Transformations are usually performed
through changing the problem specification and adding the
transformed model (with reduced and transformed decision
variables and constraints). The transformation is conducted
on the basis of facts, attributes, and constraints. The idea of
autonomous search (Section 3.3) is implemented through the
transformationmethod and automaticmodel generation.The
models are generated dynamically using adequate CLP pred-
icates, based on the current set of input facts (data instances),
knowledge database (with facts and predicates describing
a given problem), and question(s) asked by users. Both
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Figure 2: The concept of hybrid programming framework and its environment.

the input facts and the questions can change dynamically,
which leads to new model generation/formation.

The main contribution of this study is the concept and
implementation of the hybrid programming framework,
which joins the ideas of (i) hybridization in the form of
integration of MP and CLP, (ii) presolving in the form
of transformation and constraint propagation, and (iii)
autonomous search in the form of automatic generation of
dedicatedmodels to solve. Additionally, formal models of the
scheduling problems for the illustrative examples before and
after transformation are included.

3. The Concept of Hybrid
Programming Framework Using Idea
of an Autonomous Search

Based on the experience of hybridization and integration of
CP/CLP/MP [5–8, 11, 13], the hybrid programing framework
to modeling and solving CSPs and COPs has been proposed.

The main assumptions used in the concept and imple-
mentation of the hybrid programming framework were as
follows:

(i) Integration of CLP and MP environments.
(ii) Introducing the framework presolvingmethods in the

form of transformation and constraint propagation.
(iii) Knowledge base, which contains predicates for con-

straints, questions, methods, tools, and so forth and
facts for data instances.

(iv) Implementation autonomous search in the form of
automatic models generation for CSPs and COPs as
the MP/MIP/MILP models based on knowledge base
(constraints, questions, and data facts).

(v) The ability to solveMIP/MILP/MPmodels by internal
and external solvers (LINGO [14] or SCIP [15] in this
version of framework).

(vi) Replacing the variable distribution methods (Fig-
ure 1) through MP methods and algorithms (e.g.,
branch and bound, cutting plane, relaxation, etc.).

(vii) Implementation of the framework using the CLP
environment (ECLiPSe system [16]).

3.1. Architecture of Hybrid Programming Framework. Figure 2
shows a context scheme of the framework. The framework
communicates with the knowledge database, the user, and
the external MP solver(s). The knowledge database, which
de facto is a part of the framework, consists of a set of
various types of predicates, including thosemost simple facts.
The data instances of a given problem are saved as facts.
Relationships between individual facts define the information
structure of the problem. Predicates and facts may concern
different problems modeled and solved using the framework
and for this reason they are identified through the problem
index (id pro). The set of facts can be logically divided
into two subsets: the subset of constant facts describing
the problem and the subset changing the input facts. A
user communicates with the framework by sending an
inquiry/question in a suitable format and structure:

Question (type, parameters, ID pro) . (1)

The question determines what problem will be solved, with
what parameters (i.e., which facts will be used), and defines
the type of the question (which evaluation criterion will be
used). An appropriate dedicated model will be generated
depending on the formalization of this question, in particular,
on its type.

Predicates can be logically divided into several groups.
Particular groups of predicates (except for facts) that create
the knowledge base are shown in Description of the Group
Predicates.

A simplified functional scheme of the framework is
shown in Figure 3; Algorithm 1 depicts the underlying/basic
scenario of the framework operation, in the form of a
pseudocode.

Theuser’s question initiates the framework operation.The
structure of the question in (1) defines the type of the question
(general, wh-question, logical, etc.) and type of the problem
and its detailed parameters (time, number of resources, size,
etc.). Depending on the question, adequate information is
extracted about the problem, data instances, problem size,
and so forth.

Based on this information, the framework downloads
suitable facts and predicates from the knowledge database.
The facts are converted into lists. The reference model is
built in CLP for a CSP or COP (variables and constraints).
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While new question
Determining the type of the problem (based of questions)
Determining the parameters of the question
Determining the size of the problem (based on facts)
Initiate basic variables
Load data about the problem from set of facts
Basic constraints (load predicates)
while additional conditions resulting from question

Initiate additional variables
Additional constraints (load predicates)

Starting constraint propagation
if transformation of the problem then

Transformation
Starting constraint propagation

Determining the type of the MP Solver
Generation of the MP model in the Solver format or MPS
Start Solver

Algorithm 1: The basic scenario of the framework operation.

The set of predicates
for problem

(#id_pro)

The question
for problem

(#id_pro)

Model CSP/COP

Transformation

Generation
MP model

Internal
solver

Internal
MP solver

External
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Yes

No

The set of general
predicates

The set of facts
for problem
(#id_pro)

Solution

Figure 3: The functional diagram of hybrid programming framework.

The model can be supplemented with additional constraints,
including logic constraints if necessary. In the next step, the
model is subjected to presolving. Two presolving methods
are used in the framework, usually alternately: constraint
propagation and transformation. After presolving, the model
is the basis for generating the final implementation model in
the form of an MP model (usually MILP). The MP model is
then solved using an MP solver.

3.2. Transformation. Transformation has been studied by the
authors [11, 13]. It consists in changing the specification of a
problem to eliminate unacceptable/nonfeasible points from
the solution space prior to solving the problem. As a result,

the number of decision variables is reduced and aggregated
and the constraints are simplified and also the numbers
of constraints is reduced, which leads to a smaller search
space and, hence, shorter search time and the possibility to
solve problems of larger size within allowable time limits.
Facts and problem constraints are used in the process
of transformation. Transformation and constraint propa-
gation are presolving methods applied in the framework.
In real practical problems, the transformation may involve
the removal of unacceptable transportation routes in SCM
problems [13] and the change of the problem specification
from operational to resource type in task group scheduling
[17], and so forth. For the illustration example (Section 4),
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the transformation relies on the change problem represen-
tation through the appropriate aggregation of indices. For
allowable values of indices of machines and products, an
aggregated implementation index is created, the values of
which are determined based on feasible values of base indices
((2a), (2b)). Details of the transformation in terms of indices,
decision variables, constraints, and facts for the illustration
example are presented in Section 4 and Appendices D.1 and
D.2.

3.3. Autonomous Search. Autonomous search, as used in the
framework, is the narrowing of the search space through
the implementation of presolving methods and automatic
generation of dedicated implementation models. Both the
presolving methods (constraint propagation and transfor-
mation) and model generation are based on current data
instances. Users’ questions are also taken into account while
constructing the model.The questions may be related only to
some of the aspects and constraints of the problem. Based on
the current data, instances and users’ questions ensure that
the automatically generated models are dedicated and fit the
specific situation. Such dedicated models have fewer decision
variables and constraints.

This shortens the search time (the search space is consid-
erably reduced relative to that in universal models). A change
of the question and/or data instance results in a new model
adjusted to new parameters.

4. Illustrative Example and
Computational Experiments

Practical use of framework for modeling and solving prob-
lems will be presented for illustrative example. As an illus-
trative example was selected job-shop scheduling problem
with additional resources [18, 19]. Problems of this type can
be found in manufacturing, logistics, computer networks,
software engineering, and so forth.

Formally, the illustrative example is an extension variant
of job-shop scheduling problem and can be defined as
follows. A set of 𝐿𝐼 jobs/orders/products 𝐼 = {𝐼

1
, 𝐼
2
, . . . , 𝐼

𝐿𝐼
}

are given which require, for their processing, a set of 𝐿𝑀
machines𝑀 = {𝑀

1
,𝑀
2
, . . . ,𝑀

𝐿𝑀
} and a set of 𝐿𝑅 additional

resources 𝑅 = {𝑅
1
, 𝑅
2
, . . . , 𝑅

𝐿𝑅
}. Each additional resource 𝑅

𝑟

has a specified limit ko
𝑟
(number of units of the resource

𝑅
𝑘
). Each job/order 𝐼

𝑙
is a sequence of 𝑘 operations. The 𝑘th

operation of job/order 𝐼
𝑖
has to be executed by a specific

machine𝑀
𝑘
∈ 𝑀 for time units (tr

𝑖,𝑘
is integer). Generally,

in job-shop problems, a feasible schedule is such that (a) at
any time eachmachine can execute atmost one operation, (b)
the operations of the same job/order are totally ordered, and
(c) no preemption is allowed. Moreover, in our example, any
time, each operation can be assisted by additional resources
𝑅
𝑟
where 𝑑

𝑖,𝑚,𝑟
determines how much additional resources

𝑅
𝑟
are used to execute job/order 𝐼

𝑖
on machine 𝑀

𝑘
∈

𝑀. Additional resources can be operators, tools, memory,
transportation units, and so forth while basic resources are
the machines/processors/workstations. A formal model of
a scheduling problem for illustrative example, containing
constraints, decision variables, and parameters, is shown in

Appendix D.1. The collection of facts together with their
structure for this model is included in Figure 4 (as the lowest
layer of the information structure).

Both the proposed model and the structure of facts
constitute a significant extension of the classical job-shop
scheduling problem (JSSP) [18, 19]. Firstly, they allow
accounting for additional resources 𝑅, as described above.
Secondly, the structure of constraints of the model, decision
variables, and facts is universal and can describe not only job-
shop scheduling problems but also those in other environ-
ments including flow-shop, open-shop, project, multiproject,
and so forth.

Modeling starts with loading the set of facts for illustrative
example to the knowledge base.Then, the facts are converted
into lists using a general predicate (P1). In the next step, the set
of predicates (P2) is created.This set implements the basic and
additional/logic constraints for illustrative example.Then, the
built or expanded set of predicates (P3) implements various
types of questions (e.g., as in the exemplified questions asked
to the illustrative example) for illustrative example. In the
next step, predicates to transform modeled problem (P4) are
taken from the knowledge base. Transformation for illustra-
tive example involves the aggregation of the relevant facts
(indexes of these facts) and building a list of only the feasible
combinations of facts. The principle of the transformation of
the facts for illustrative example is shown in Figure 5.

Exemplified questions asked to the illustrative example
are as follows

(Q1) What is the min 𝐶max (makespan)?
(Q2A) What is themin𝐶max if the set of additional resources

is ko
1
= ko
2
= ko
3
= ko
4
= 2?

(Q2B) What is themin𝐶max if the set of additional resources
is ko
1
= ko
2
= ko
3
= ko
4
= 3?

(Q3) What is the minimum set of resources 𝑅
1
at 𝐶󸀠max?

(Q4) Is it possible to schedule orders in 𝐶󸀠max and what are
the sets of resources 𝑅

1
, 𝑅
2
, 𝑅
3
, 𝑅
4
?

(Q5) Is it possible to schedule orders in 𝐶󸀠max if resources
𝑅
1
and 𝑅

4
cannot be used simultaneously?

(Q6) Is it possible to schedule orders in 𝐶󸀠max if machines
𝑀
7
and𝑀

9
cannot be used simultaneously?

(Q7) What is the min 𝐶max if resources 𝑅
1
and 𝑅

4
cannot

be used simultaneously?
(Q8A) What is the min 𝐶max if machines𝑀

1
and𝑀

2
cannot

be used simultaneously?
(Q8B) What is the min 𝐶max if machines𝑀

7
and𝑀

9
cannot

be used simultaneously?

The resulting list L index for facts from Appendix B.1 are
presented in the Appendix B.2. Indices (the dimensions of the
problem), decision variables, and constraints of themodel are
also subject to transformation.The transformation of indices
(2a) stems from the fact that not every product 𝑖 has to be
manufactured on everymachine𝑚.Thus, if product 𝑖 is made
on a specific machine 𝑚, the existing values of index pair
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Data facts
F_order

(#id_pro,#id_we,#i,or)

The model file

L_allocation
(#r,#m,#i,d,ko)

L_precedence
(#i,#m,#m)

L_technology
(#i,#m,tr,w,or)

Variable in the memory

L_model(#nr,line)

Model to the solver

Facts

F_model
(#id_pro,#id_wer,#nr,line)

F_machine
(#id_pro,#id_we,#m)

F_allocation
(#id_pro,#id_we,#r,#m,#i,d)

F_technology
(#id_pro,#id_we,#i,#m,tr)

F_precedence
(#id_pro,#id_we,#i,#m,#m) F_resources

(#id_pro,#id_we,#r,ko)

Input facts

F_product
(#id_pro,#id_wer,#i)

Lists

L_index_z(#i,#m,z)

L_data_t(#z,tr,w,or) L_precedence_t(#z,#z)

Files

Figure 4: The information structure for illustrative example implemented in hybrid programming framework.

F_order
(#id_pro,#id_we,#i,or)

F_machine
(#id_pro,#id_we,#m)

F_technology
(#id_pro,#id_we,#i,#m,tr)

F_product
(#id_pro,#id_wer,#i)

L_index_z(#i,#m,z)

Figure 5: The principle of the transformation of the facts for
illustrative example.

(𝑖, 𝑚) are replaced with the values of aggregated/transformed
index 𝑧. In the next step, the decision variables are subjected
to transformation as a result of the aggregation of some
of their indexes (2b). The set of all decision variables of
the model before and after transformation are presented in
Appendices D.1 and D.2, respectively. In the final stage, the
constraints of the model transformed through the change
(reduction) of summations and “for” phrase for the individ-
ual constraints. The constraints for model before and after

the transformation are included in Appendices D.1 and D.2,
respectively:

(𝑖, 𝑚) 󳨀→ (𝑧) (2a)

𝑋
𝑖,𝑚,𝑟,𝑡

󳨀→ 𝑋
𝑧,𝑟,𝑡

| Kp
𝑖,𝑚
󳨀→ Kp

𝑧
| 𝑌
𝑖,𝑚,𝑟,𝑡

󳨀→ 𝑌
𝑧,𝑟,𝑡
. (2b)

The final step is the generation of a dedicated MILP model
(files in the appropriate solver format or Mathematical
Programming System (MPS)) using universal set of predi-
cates for automatic generation (P5). Schematic structure of
information for illustrative example in the form of facts, lists,
and files is shown in Figure 4 and the description is shown in
Table 3.

The scenario of computational experiments was as fol-
lows. For any questions from the exemplified questions asked
to the illustrative example and a given set of data instances
(Appendix B.1), the generation of dedicated MILP models
have been made using a hybrid programming framework.
After that, the automatically generated models were solved
using the external MP solvers like “LINGO” [14] or “SCIP”
[15]. Choosing solver “SCIP” was due to its high efficiency
and the use of the built-in powerful presolving methods [15].
As for the efficiency and effectiveness in the area of MP and
CP, SCIP is the best option of all noncommercial solvers [15].
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Table 1: Results for asked questions to the illustrative example (framework implementation).

Questions 𝑉 𝐶 Parameters Answer 𝑇
1

𝑇
2

Q1 3070 16377 — min𝐶max = 22 7 6
Q2A 3070 16377 ko

1
= ko
2
= ko
3
= ko
4
= 2 min𝐶max = 26 316 146

Q2B 3070 16377 ko
1
= ko
2
= ko
3
= ko
4
= 3 min𝐶max = 22 60 28

Q3 3070 16377 𝐶
󸀠

max = 24 ko
1min = 2, 2 2

Q4 3270 16678 𝐶󸀠max = 24 Yes ko
1
= 3, ko

2
= 4, ko

3
= 4, ko

4
= 2 2 2

𝐶󸀠max = 20 No 1 1
𝐶
󸀠

max = 23 Yes ko
1
= 4, ko

2
= 4, ko

3
= 3, ko

4
= 2 2 1

Q5 3266 16623 𝐶󸀠max = 24 NO 2 2
𝐶󸀠max = 30 YES 12 6

Q6 3560 16917 𝐶
󸀠

max = 24 NO 3 2
𝐶󸀠max = 26 YES 6 2

Q7 3266 16623 min𝐶max = 27 16 8
Q8A 3560 16917 min𝐶max = 22 6 5
Q8B 3560 16917 min𝐶max = 26 4 3

Table 2: Results for asked questions to the illustrative example (MP implementation).

Questions 𝑉 𝐶 Parameters Answer 𝑇
1

𝑇
2

Q1 70604 75343 — 𝐶max = 22 128 67
Q2A 70604 75343 ko

1
= ko
2
= ko
3
= ko
4
= 2 𝐶max = 26 3756 1546

Q2B 70604 75343 ko
1
= ko
2
= ko
3
= ko
4
= 3 𝐶max = 22 546 234

min𝐶max: optimal makespan.
𝐶
󸀠

max: given makespan.
𝑉: the number of decision variables.
𝐶: the number of constraints.
𝑇1: time of finding solution (in seconds) in LINGO.
𝑇2: time of finding solution (in seconds) in SCIP.

CPLEX and Gurobi are certainly faster in solving the same
benchmarks, but being commercial solvers, theymean higher
costs (licenses, etc.).

Obtained results are shown in Table 1. The scope of
the exemplified questions asked to the illustrative example
shows the flexibility and capabilities of a hybrid programming
framework.These are general questions (Q4,Q5, andQ6) and
specified questions (Q1, Q2A, Q2B, and Q3), which require
both optimal and feasible solutions. In addition, questions
can be logical (Q7, Q8), whose modeling directly in an MP
environment is not obvious and simple. To determine the
effectiveness of the proposed framework for questions Q1,
Q2A, and Q2B (for the most demanding computing), models
were generated using the framework (Table 1) and modeled
using only the classicalmathematical programming (Table 2).
Then, both groups of models were solved using LINGO
and SCIP solvers. The answers to these questions using the
framework are obtained 10 to 20 times faster than using
just the pure MP solvers. In each case, the use of “SCIP”
solver accelerated calculations twofold in comparison with
the “LINGO” solver, with the “LINGO” solver (see columns
𝑇
1
and 𝑇

2
of Tables 1 and 2).

The models generated using the framework, respectively,
have 20 times smaller number of decision variables and 3
times smaller number of constraints in relation to the models
created only in MP environments.

The model file for Q1 questions in a format compatible
with the “LINGO” is shown in Appendix C.

The file was generated by group predicates P5 on the basis
of the information structure (Figure 5).

5. Conclusions

The proposed hybrid framework can be used in two modes.
Firstly, it can be a platform for the end user to solve the COP
and the CSP, which are generated and solved on the basis of
existing knowledge base, but also the questions asked by the
user. Secondly, it is a programming framework for modeling
and solving the COP and the CSP. In this case, the user must
know the environment CLP. For each new problem, users
supplement the knowledge base of relevant predicates in P2
and P3 sets (see Description of the Group Predicates).

The concept of hybrid programming framework that
combines (a) two programming paradigms (CLP/MP); (b)
the presolvingmethods (transformation and constraint prop-
agation); (c) autonomous search; and (d) the automatic
generation of dedicated implementationmodels is the flexible
and efficiency solution. Flexibility and easiness of modeling
problems are caused by CLP-based approach which by nature
is declarative. Efficiency is the result of applying the presolv-
ing methods, dedicated implementation models, and math-
ematical programming for solving. The idea of autonomous
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Table 3: Description of the facts, lists, and parameters for the illustrative example.

Facts Keys Parameters
Facts about structure of the problem

F product
(#id pro, #id wer, #𝑖)

#id pro: problem ID
#id wer: version of the data instances
#𝑖: product ID

F machine
(#id pro, #id wer, #𝑚)

#id pro: problem ID
#id wer: version of the data instances
#𝑚: machine ID

F technology
(#id pro, #id wer, #𝑖, #𝑚, parameters)

#id pro: problem ID
#id wer: version of the data instances
#𝑖: product ID
#𝑚: machine ID

tr
𝑖,𝑚

: the execution time of the product 𝑖
on the machine𝑚

F precedence
(#id pro, #id we, #𝑖, #𝑚, #𝑚)

#id pro: problem ID
#id wer: version of the data instances
#𝑖: product ID
#𝑚: machine ID

F resources
(#id pro, #id we, #𝑟, parameters)

#id pro: problem ID
#id wer: version of the data instances
#𝑟: additional resource ID

ko
𝑟
: the total number of additional

resources 𝑟

F allocation
(#id pro, #id we, #𝑟, #𝑚, #𝑖, parameters)

#id pro: problem ID
#id wer: version of the data instances
#𝑟: additional resource ID
#𝑚: machine ID
#𝑖: product ID

𝑑
𝑖,𝑚,𝑟

: the number of additional resources
𝑟 needed to execute a product 𝑖 on the
machine𝑚

F model
(#id pro, #id wer, #𝑛𝑟, parameters)

#id pro: problem ID
#id wer: version of the data instances
#𝑛𝑟: model ID

line
𝑛𝑟
: line of code for model ID

F order
(#id pro, #id we, #𝑖, parameters)

#id pro: problem ID
#id wer: version of the data instances
#𝑖: product ID

or
𝑖
: the size of the order for product 𝑖

Lists
L precedence
(#𝑖, #𝑚, #𝑚)

#𝑚: machine ID
#𝑖: product ID

L technology
(#𝑖, #𝑚, parameters)

#𝑖: product ID
#𝑚: machine ID

tr
𝑖,𝑚

: the execution time of the product 𝑖
on the machine𝑚; 𝑤

𝑖,𝑚
: if the product 𝑖 is

executed on the machine𝑚, 𝑤
𝑖,𝑚

= 1;
otherwise, 𝑤

𝑖,𝑚
= 0; or

𝑖
: the size of the

order for product 𝑖

L allocation
(#𝑟, #𝑚, #𝑖, parameters)

#𝑟: additional resource ID
#𝑚: machine ID
#𝑖: product ID

𝑑
𝑖,𝑚,𝑟

: the number of additional resources
𝑟 needed to execute a product 𝑖 on the
machine𝑚; ko

𝑟
: the total number of

additional resources 𝑟
L model
(#𝑛𝑟, parameters) #𝑛𝑟: model ID line

𝑛𝑟
: line of code for model ID

L index 𝑧
(#𝑖, #𝑚, parameters)

#𝑖: product ID
#𝑚: machine ID 𝑧: the new index after transformation

L data 𝑡
(#𝑧, parameters)

#𝑧: the new index after transformation
(combination of #𝑖 and #𝑚)

tr
𝑧
: the execution time of the product 𝑖 on

the machine𝑚; 𝑤
𝑧
: if the product 𝑖 is

executed on the machine, 𝑤
𝑧
= 1;

otherwise, 𝑤
𝑧
= 0; or

𝑧
: the size of the

order for product 𝑖
L precedence 𝑡
(#𝑧, #𝑧)

#𝑧: the new index after transformation
(combination of #𝑖 and #𝑚)
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search is implemented mainly through the mechanism of
automatic generation of implementation models based on
current data instances and the requirements of users (in the
formof frequently asked questions) whichmeans thatmodels
are better suited to current requirements and conditions and
their solution requires less space search. The knowledge base
of the framework, which is built from predicates and facts,
provides scalability because knowledge base can be updated
with new facts relating to existing models, predicates, and
facts of new models and the facts resulting in answers to user
questions and so on.

Further research will focus on two directions/areas. The
first is to use a framework for modeling and solving other
problems in the area of widely understood computer sci-
ence. The second is the integration framework with other
paradigms such as fuzzy logic and concurrent programming.

A new remotely accessible (e.g., in the cloud [20]) version
of the framework is going to be developed. For licensing
reasons, LINGO solver will be replaced by SCIP in this
version.

Appendix

A. Summary Facts, Lists, and Parameters
for Illustrative Example

See Table 3.

B. Data Instances for Illustrative Example

B.1.The Sets of Facts for Illustrative Example. SeeAlgorithm2.

B.2. The List of New Indices after Transformation. See
Algorithm 3.

C. MILP Model Automatically
Generated by Framework (Set of
Predicates P5) in LINGO Format

See Algorithm 4.

D. Formal Models for Illustrative Example

D.1. Formal/Mathematical Model for Illustrative Example

Indices

𝑚: machine/processor/workstation𝑚 = 1, . . . , 𝐿𝑀,
𝑖: product/service type 𝑖 = 1, . . . , 𝐿𝐼,
𝑟: additional resource (employees, tools, transport
units, etc.) 𝑟 = 1, . . . , 𝐿𝑅,
𝑡: period 𝑡 = 1, . . . , 𝐿𝑇.

Parameters

tr
𝑖,𝑚

: the time required to make a product 𝑖 on the
machine𝑚,

𝑤
𝑖,𝑚

: if the product 𝑖 is made using a machine𝑚, then
𝑤
𝑖,𝑚
= 1; otherwise, 𝑤

𝑖,𝑚
= 0,

ko
𝑟
: the number of additional resource types 𝑟,

𝑑
𝑖,𝑚,𝑟

: if the additional resource 𝑟 is used to make the
product 𝑖 on the machine 𝑚, then 𝑑

𝑖,𝑚,𝑟
determines

the number of additional resources 𝑟 necessary for
this execution; otherwise, 𝑑

𝑖,𝑚,𝑟
= 0,

𝑑1
𝑖,𝑚,𝑟

: if the additional resource 𝑟 is used to make
the product 𝑖 on the machine 𝑚, then 𝑑1

𝑖,𝑚,𝑟
= 1;

otherwise, 𝑑1
𝑖,𝑚,𝑟

= 0,
𝑑𝑜
𝑖,𝑚1,𝑚2

: if the operation of the product 𝑖 on the
machine 𝑚1 to be executed before the operation on
the machine 𝑚2, then 𝑑𝑜

𝑖,𝑚1,𝑚2
= 1; otherwise,

𝑑𝑜
𝑖,𝑚1,𝑚2

= 0.

Inputs

or
𝑖
: demand/order for product 𝑖.

Auxiliary Parameters

op
𝑡
: coefficient for conversion number of periods 𝑡 for

the variable op
𝑡
= 𝑡.

Decision Variables

𝑋
𝑖,𝑚,𝑟,𝑡

: if the additional resource 𝑟 in period 𝑡 is
used to make the product 𝑖 on the machine 𝑚, then
𝑋
𝑖,𝑚,𝑟,𝑡

= 1; otherwise,𝑋
𝑖,𝑚,𝑟,𝑡

= 0,
Kp
𝑖,𝑚

: the number of last periods inwhich the product
𝑖 is made on the machine𝑚,
𝑌
𝑖,𝑚,𝑟,𝑡

: if the period 𝑡 is the latest in which the
additional resource 𝑟 is used to make the product 𝑖 on
themachine𝑚, then𝑌

𝑖,𝑚,𝑟,𝑡
= 1; otherwise,𝑌

𝑖,𝑚,𝑟,𝑡
= 0,

𝐶max: Makespan.

Constraints

(1) Kp
𝑖,𝑚
≤ 𝐶max ∀𝑖 = 1, . . . , 𝐿𝐼,𝑚 = 1, . . . , 𝐿𝑀.

Determination of the makespan.
(2) ∑𝐿𝑇
𝑡=1
𝑑1
𝑖,𝑚,𝑟

⋅ 𝑤
𝑖,𝑚
⋅ 𝑋
𝑖,𝑚,𝑟,𝑡

= tr
𝑖,𝑚
⋅ or
𝑖
∀𝑖 = 1, . . . , 𝐿𝐼,

𝑚 = 1, . . . , 𝐿𝑀, 𝑟 = 1, . . . , 𝐿𝑅 : tr
𝑖,𝑚
> 0.

The allocation of resources 𝑟 to the machine during
product realization.

(3) ∑𝐿𝐼
𝑖=1
∑
𝐿𝑅

𝑟=1
𝑑1
𝑖,𝑚,𝑟

𝑋
𝑖,𝑚,𝑟,𝑡

≤ 1 ∀𝑚 = 1, . . . , 𝐿𝑀, 𝑡 =
1, . . . , 𝐿𝑇.
The allocation of at most one product to the machine
in a given period of time.

(4) ∑𝐿𝐼
𝑖=1
∑
𝐿𝑀

𝑚=1
𝑑
𝑖,𝑚,𝑟

⋅ 𝑋
𝑖,𝑚,𝑟,𝑡

≤ ko
𝑟
∀𝑟 = 1, . . . , 𝐿𝑅, 𝑡 =

1, . . . , 𝐿𝑇.
The limited availability of resources (capacity con-
straints).

(5) 𝑋
𝑖,𝑚,𝑟,𝑡−1

− 𝑋
𝑖,𝑚,𝑟,𝑡

≤ 𝑌
𝑖,𝑚,𝑟,𝑡−1

∀𝑖 = 1, . . . , 𝐿𝐼, 𝑚 =

1, . . . , 𝐿𝑀, 𝑟 = 1, . . . , 𝐿𝑀, 𝑡 = 2, . . . , 𝐿𝑇.
∑
𝐿𝑇

𝑡=1
𝑌
𝑖,𝑚,𝑟,𝑡

≤ 1 ∀𝑖 = 1, . . . , 𝐿𝐼, 𝑚 = 1, . . . , 𝐿𝑀, 𝑟 =
1, . . . , 𝐿𝑀.
Operations cannot be interrupted.
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%F machine(#M).

F machine (M1). F machine(M2). F machine(M3). F machine(M4). F machine(M5).

F machine(M6). F machine(M7). F machine(M8). F machine(M9). F machine(M10).

F machine(M11). F machine(M12).

%F product(#I).

F product(A). F product(B). F product(C). F product(D). F product(E).

F product(F). F product(G). F product(H). F product(I). F product(J).

F product(K). F product(L). F product(M). F product(N). F product(O).

%technology(#I,#M,tr).

F technology(A,M1,1). F technology(A,M2,2). F technology(A,M3,2).

F technology(A,M10,1). F technology(B,M1,1). F technology(B,M5,2).

F technology(B,M8,1). F technology(C,M4,2). F technology(C,M9,4).

F technology(D,M5,2). F technology(D,M6,2). F technology(D,M7,5).

F technology(D,M8,2). F technology(E,M1,2). F technology(E,M2,1).

F technology(E,M3,2). F technology(E,M4,2). F technology(F,M5,2).

F technology(F,M6,2). F technology(G,M3,1). F technology(G,M5,2).

F technology(G,M8,2). F technology(H,M8,1). F technology(H,M9,1).

F technology(H,M10,1). F technology(I,M6,1). F technology(I,M7,1).

F technology(I,M8,1). F technology(J,M4,1). F technology(J,M5,1).

F technology(J,M6,1). F technology(K,M10,1). F technology(K,M11,1).

F technology(K,M12,1). F technology(L,M1,2). F technology(L,M11,2).

F technology(L,M12,2). F technology(M,M9,1). F technology(M,M10,1).

F technology(M,M11,2). F technology(N,M1,2). F technology(N,M12,2).

F technology(O,M2,2). F technology(O,M11,2).

%resources (#R,ko).

F resources(R1,8). F resources(R2,8).

F resources(R3,8).F resources (R4,8).

%allocation(#R,#M,#I,d)

F allocation(R1,A,M1,1). F allocation(R2,A,M2,1). F allocation(R2,A,M3,2).

F allocation(R3,A,M10,1). F allocation(R1,B,M1,2). F allocation(R3,B,M5,2).

F allocation(R1,B,M8,1). F allocation(R2,C,M4,2). F allocation(R2,C,M9,2).

F allocation(R3,D,M5,2). F allocation(R1,D,M6,1). F allocation(R3,D,M7,1).

F allocation(R4,D,M8,2). F allocation(R1,E,M1,1). F allocation(R1,E,M2,1).

F allocation(R3,E,M3,2). F allocation(R3,E,M3,1). F allocation(R3,F,M5,1).

F allocation(R1,F,M6,2). F allocation(R4,G,M3,1). F allocation(R3,G,M5,2).

F allocation(R1,G,M8,2). F allocation(R2,H,M8,1). F allocation(R1,H,M9,2).

F allocation(R3,H,M10,2). F allocation(R3,I,M6,1). F allocation(R1,I,M7,1).

F allocation(R2,I,M8,1). F allocation(R4,J,M4,1). F allocation(R3,J,M5,1).

F allocation(R3,J,M6,1). F allocation(R4,K,M10,1). F allocation(R3,K,M11,1).

F allocation(R1,K,M12,2). F allocation(R2,L,M1,1). F allocation(R1,L,M11,2).

F allocation(R3,L,M12,2). F allocation(R1,M,M9,1). F allocation(R1,M,M10,1).

F allocation(R2,M,M11,2). F allocation(R3,N,M1,1). F allocation(R2,N,M12,2).

F allocation(R3,O,M2,2). F allocation(R3,O,M11,2).

%precedence(#I,#M,#M).

F precedence(A,M1,M2). F precedence(A,M2,M3). F precedence(A,M3,M10).

F precedence(B,M1,M5). F precedence(B,M5,M8). F precedence(C,M4,M9).

F precedence(D,M5,M6). F precedence(D,M6,M7). F precedence(D,M7,M8).

F precedence(E,M1,M2). F precedence(E,M2,M3). F precedence(E,M3,M4).

F precedence(F,M5,M6). F precedence(G,M3,M5). F precedence(G,M5,M8).

F precedence(H,M8,M9). F precedence(H,M9,M10). F precedence(I,M6,M7).

F precedence(I,M7,M8). F precedence(J,M4,M5). F precedence(J,M5,M6).

F precedence(K,M10,M11). F precedence(K,M11,M12). F precedence(L,M1,M11).

F precedence(L,M11,M12). F precedence(M,M9,M10). F precedence(m,M10,M11).

F precedence(N,M1,M12). F precedence(O,M2,M11).

orders(#I,or).

F order(A,1). F order(B,1). F order(C,2). F order(D,2). F order(E,2).

F order(F,1). F order(G,1). F order(F,1). F order(G,1). F order(F,1).

Algorithm 2: Instances of facts for illustrative example.
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L index z=[[A,M1,1], [A,M2,2], [A,M3,3], [A,M10,4], [B,M1,5], [B,M5,6],

[B,M8,7], [C,M4,8], [C,M9,9], [D,M5,10], [D,M6,11], [D,M7,12],

[D,M8,13], [E,M1,14], [E,M2,15], [E,M3,16], [E,M4,17], [F,M5,18],

[F,M6,19], [G,M3,20], [G,M5,21], [G,M8,22], [H,M8,23], [H,M9,24],

[H,M10,25], [I,M6,26], [I,M7,27], [I,M8,28], [J,M4,29], [J,M5,30],

[J,M6,31]

]

Algorithm 3: The list of new indices after transformation.

(6) Kp
𝑖,𝑚
= ∑
𝐿𝑇

𝑡=1
(op
𝑡
⋅ 𝑌
𝑖,𝑚,𝑟,𝑡

) ∀𝑖 = 1, . . . , 𝐿𝑀,𝑚 = 1, . . . ,

𝐿𝑀, 𝑟 = 1, . . . , 𝐿𝑅 : tr
𝑖,𝑚
> 0, 𝑑1

𝑖,𝑚,𝑟
= 1.

Determination of the time of the end product realiza-
tion on the machine.

(7) Kp
𝑖,𝑚2

− or
𝑖
⋅ tr
𝑖,𝑚2

≥ Kp
𝑖,𝑚1

∀𝑖 = 1, . . . , 𝐿𝐼, 𝑚1,𝑚2 =
1, . . . , 𝐿𝑀 : 𝑑𝑜

𝑖,𝑚1,𝑚2
= 1.

The sequence of operations (precedence constraints).
(8) 𝑋

𝑖,𝑚,𝑟,𝑡
∈ {0, 1} ∀𝑖 = 1, . . . , 𝐿𝐼, 𝑚 = 1, . . . , 𝐿𝑀, 𝑟 =

1, . . . , 𝐿𝑅, 𝑡 = 1, . . . , 𝐿𝑇.
𝑌
𝑖,𝑚,𝑟,𝑡

∈ {0, 1} ∀𝑖 = 1, . . . , 𝐿𝐼, 𝑚 = 1, . . . , 𝐿𝑀, 𝑟 =
1, . . . , 𝐿𝑅, 𝑡 = 1, . . . , 𝐿𝑇.
Kp
𝑖,𝑚
∈ 𝐶 ∀𝑖 = 1, . . . , 𝐿𝐼,𝑚 = 1, . . . , 𝐿𝑀.

Binary values and integer values.

D.2. Formal/Mathematical Model for Illustrative Example
after Transformation

Indices

𝑚: machine/processor/workstation𝑚 = 1, . . . , 𝐿𝑀,
𝑟: additional resource 𝑟 = 1, . . . , 𝐿𝑅,
𝑡: period 𝑡 = 1, . . . , 𝐿𝑇,
𝑧: implementation 𝑧 = 1, . . . , 𝑍 and index after
transformation (combined indices 𝑖, 𝑚).

Parameters

tr
𝑧
: the time required to make implementation 𝑧,

ko
𝑟
: the number of additional resources 𝑟,

𝑑
𝑧,𝑟
: if the additional resource 𝑟 is used to make

implementation 𝑧, then 𝑑
𝑧,𝑟

determines the number
of additional resources 𝑟 necessary for this implemen-
tation; otherwise, 𝑑

𝑧,𝑟
= 0,

𝑑1
𝑧,𝑟
: if the additional resource 𝑟 is used to make

implementation 𝑧, then 𝑑1
𝑧,𝑟
= 1; otherwise, 𝑑1

𝑧,𝑟
=

0,
𝑑𝑜
𝑧1,𝑧2

: if the implementation 𝑧1 to be executed before
the implementation 𝑧2, then 𝑑𝑜

𝑧1,𝑧2
= 1; otherwise,

𝑑𝑜
𝑧1,𝑧2

= 0,
wyk
𝑧,𝑚

: if the implementation 𝑧 is made using a
machine𝑚, then wyk

𝑧,𝑚
= 1; otherwise, wyk

𝑧,𝑚
= 0.

Inputs

or
𝑧
: demand/order for implementation 𝑧.

Auxiliary Parameters

op
𝑡
: coefficients for conversion numbers of periods 𝑡

for the variables op
𝑡
= 𝑡.

Decision Variables

𝑋
𝑧,𝑟,𝑡

: if the additional resource 𝑟 in period 𝑡 is used in
implementation 𝑧, then 𝑋

𝑧,𝑟,𝑡
= 1; otherwise, 𝑋

𝑧,𝑟,𝑡
=

0,
Kp
𝑧
: the number of last periods in which the imple-

mentation 𝑧 is made,
𝑌
𝑧,𝑟,𝑡

: if the period 𝑡 is the latest inwhich the additional
resource 𝑟 is used in implementation 𝑧, then𝑌

𝑧,𝑟,𝑡
= 1;

otherwise, 𝑌
𝑧,𝑟,𝑡

= 0,
𝐶max: Makespan.

Constraints

(1) Kp
𝑧
≤ 𝐶max ∀𝑧 = 1, . . . , 𝐿𝑍.

Determination of the makespan.
(2) ∑𝐿𝑇
𝑡=1
𝑑1
𝑧,𝑟
⋅ 𝑋
𝑧,𝑟,𝑡

= tr
𝑧
⋅ or
𝑧
∀𝑧 = 1, . . . , 𝐿𝑍, 𝑟 =

1, . . . , 𝐿𝑅, : tr
𝑧
> 0, 𝑑1

𝑧,𝑟
= 1.

The allocation of resources 𝑟 to the machine during
product realization.

(3) ∑𝐿𝑍
𝑧=1
∑
𝐿𝑅

𝑟=1
wyk
𝑧,𝑚
𝑋
𝑧,𝑟,𝑡

≤ 1 ∀𝑚 = 1, . . . , 𝐿𝑀, 𝑡 =
1, . . . , 𝐿𝑇.
The allocation of at most one product to the machine
in a given period of time.

(4) ∑𝐿𝑍
𝑧=1
𝑑
𝑧,𝑟
⋅ 𝑋
𝑧,𝑟,𝑡

≤ ko
𝑟
∀𝑟 = 1, . . . , 𝐿𝑅, 𝑡 = 1, . . . , 𝐿𝑇.

The limited availability of resources (capacity con-
straints).

(5) 𝑋
𝑧,𝑟,𝑡−1

− 𝑋
𝑧,𝑟,𝑡

≤ 𝑌
𝑧,𝑟,𝑡−1

∀𝑧 = 1, . . . , 𝐿𝑍, 𝑟 = 1, . . . ,
𝐿𝑀, 𝑡 = 2, . . . , 𝐿𝑇.
∑
𝐿𝑇

𝑡=1
𝑌
𝑧,𝑟,𝑡

≤ 1 ∀𝑧 = 1, . . . , 𝐿𝑍, 𝑟 = 1, . . . , 𝐿𝑀.
Operations cannot be interrupted.

(6) Kp
𝑧
= ∑
𝐿𝑇

𝑡=1
(op
𝑡
⋅𝑌
𝑧,𝑟,𝑡
) ∀𝑧 = 1, . . . , 𝐿𝑍, 𝑟 = 1, . . . , 𝐿𝑅 :

tr
𝑧
> 0, 𝑑1

𝑧,𝑟
= 1.

Determination of the time of the end product realiza-
tion on the machine.

(7) Kp
𝑧2
− or
𝑧2
⋅ tr
𝑧2

≥ Kp
𝑧1
∀𝑧1, 𝑧2 = 1, . . . , 𝐿𝑍 :

𝑑𝑜
𝑧1,𝑧2

= 1.
The sequence of operations (precedence constraints).
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Model:

Sets:

machines /1..@file(t 02 sizes.ldt)/;

resources /1..@file(t 02 sizes.ldt)/:ko;

periods /1..@file(t 02 sizes.ldt)/:op;

transformed /1..@file(t 02 sizes.ldt)/:KP,or,tr;

technology (transformed,resources,periods):X,Y;

auxiliary 1 (transformed,resources):d,d1;

auxiliary 2 (transformed,machines):wyk;

auxiliary 3 (transformed,transformed):do;

EndSets

Data:

or =@file(t 03 data.ldt); tr =@file(t 03 data.ldt);

wyk =@file(t 03 data.ldt); ko =@file(t 03 data.ldt);

d =@file(t 03 data1.ldt); d1 =@file(t 03 data1.ldt);

do =@file(t 03 data1.ldt);

EndData

SUBMODEL F objective1:

Min=Cmax;

ENDSUBMODEL

SUBMODEL Constraints:

@for(transformed(z): KP(z)<=Cmax);

@for(transformed(z):@for(resources(r)|d1(z,r)#EQ#1#AND#ti(z)#NE#0:

@sum(periods(t):d1(z,r)*X(z,r,t))=tr(z)*or(z))

);

@for(periods(t): @for(machines(j):

@sum(transformed(z):@sum(resources(r):wyk(z,r)*X(z,r,t)))<=1

));

@for(periods(t): @for(resources(r):

@sum(transformed(z):d(z,r)*X(z,r,t))<=ko(r)

));

@for(technology(z,r,t)|t#GT#1: X(z,r,t-1)-X(z,r,t)<=Y(z,r,t-1));

@for(transformed(z): @for(resources(r):

@sum(periods(t):Y(z,r,t))<=1

));

@for(transformed(z): @for(resources(r)|d1(z,r)#EQ#1#AND#ti(z)#NE#0:

KP(z)=@sum(periods(t):op(t)*Y(z,r,t));

));

@for(transformed(z1): @for(transformed(z2)|do(z1,z2)#EQ#1:

KP(z2)-or(z2)*ti(z2)>=KP(z1)

));

@for(technology(z,r,t): @bin(X(z,r,t)); @bin(Y(z,r,t)));

@for(transformed(z): @gin(KP(z)));

ENDSUBMODEL

CALC:

@SET('TERSEO',2);
@for(periods(t): op(t)=t;

MAXT=t

);

@SOLVE(Constraints, F objective1);

ENDCALC

End

Algorithm 4: The code in “LINGO” format for the model illustrative after transformation.
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(8) 𝑋
𝑧,𝑟,𝑡

∈ {0, 1} ∀𝑧 = 1, . . . , 𝐿𝑍, 𝑟 = 1, . . . , 𝐿𝑅, 𝑡 =
1, . . . , 𝐿𝑇.

𝑌
𝑧,𝑟,𝑡

∈ {0, 1} ∀𝑧 = 1, . . . , 𝐿𝑍, 𝑟 = 1, . . . , 𝐿𝑅, 𝑡 =
1, . . . , 𝐿𝑇.

Kp
𝑧
∈ 𝐶 ∀𝑧 = 1, . . . , 𝐿𝑍.

Binary values and integer values.

Description of the Group Predicates

P1: general predicates (universal),
independent of the modeled problem (e.g.,
to create lists based on facts)

P2: predicates that implement the constraints
of the problem, objectives, conditions, and
so forth, depending on the modeled
problem (ID pro)

P3: predicates that implement different types
of questions, depending on the modeled
problem (ID pro)

P4: predicates that implement transformation
of the modeled problem, independent of
the modeled problem

P5: predicates that implemented the automatic
generation of the MILP model.
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