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In order to realize the rapid hard-rock tunneling in a safe, highly effective, and economic manner, the hydraulic drilling impact
hard-rock tunneling (HDIHT) technology and method were introduced based on the theories of rock mechanics and hydraulic
impact. The key parameters, including drilling radius and impact distance, were researched to reveal the stress behavior during
HDIHT process. The Von Mises equivalent stress and its principal stress components were analyzed, and the breaking mechanism
of HDIHT was also discussed. The simulation results show that, to ensure the effectiveness of “secondary breaking” caused by
drilling hole free surfaces, the impact distance should not exceed 200mm, and the optimal drilling radius was about 35mm.

1. Introduction

Hard-rock rapid tunneling, especially for the rock whose
hardness exceeds f10 (rock Platts ruggedness coefficient), is a
worldwide technical issue, whether for underground tunnel-
ing or construction. So far, drill and blast tunneling (DBT)
and heavy-duty roadheader are still the main methods for
hard-rock tunneling in coal mine. However, lots of auxiliary
equipment and persons needed at working face, great damage
to the surrounding rocks, and overtunneling and insufficient
tunneling of final sections are the major problems of DBT
method. Heavy-duty roadheader also has its disadvantages
which are as follows: lower economic cutting hardness (≤f8),
nethermore tunneling efficiency, higher cutter consumption
rate, and so forth. Although the hard-rock tunnels (≥f10)
are not more than 5 percent of the general amount of
annual tunneling, it is still a crucial restriction factor for the
highly efficient production and management of coal mine.
Therefore, it is urgent to seek a novel, safe, and highly effective
approach (including theories, technology, and equipment) for
the hard-rock rapid tunneling, with no explosion.

Hydraulic drilling impact hard-rock tunneling (HDIHT)
may be just the potential method we are looking for. Based

on the theories of rock mechanics, when hammer impacts
hard rock directly, its impact energy will be converted into
the compressive wave in the depths of rock at the impact
moment, and a broken pit is formed instantly. If some holes
existed in working face, the compressive impact wave will be
transformed into the tensile stress after the reflection at free
surfaces. Owing to the fact that the tensile strength of rock
is only three to five percent of its compressive strength, the
rock near the holes may be broken again under the secondary
breaking effect of “compression-tension” transformation [1,
2].Thus, in the proposedHDIHT process, many holes should
be drilled in advance to increase free surface area, and then
a hydraulic breaker with large impact energy was used to
impact and crush hard rock directly.

Many numerical simulationmethods, includingmechan-
ics of continuous medium (MCM), mechanics of noncon-
tinuous medium (MNCM), and coupling analysis of con-
tinuous discrete (CACD), have been conducted to reveal
the breaking and failure behavior of brittle rock. In 1995,
Munjiza et al. [3, 4] introduced the damage mechanics and
fracture mechanics into the finite element method (FEM)
and proposed the combined finite-discrete element method
(CF/DEM) to simulate the brittle fracture and failure. Based
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Figure 1: Sketch of the rock intrusion process of wedge shaped blade.
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Figure 2: 𝛼-𝐴 curve during impact breaking process.

on the MCM approach and deep understanding of rock’s
heterogeneity, Tang and his team [5–7] proposed a realistic
failure process analysis model (RFPA2D,RFPA3D), which had
been widely used around the world. Jing et al. [8] presented
a numerical model for coupled hydromechanical processes
in fractured hard rocks using the discontinuous deformation
analysis (DDA) method, but their emphasis was placed on
the physical behaviour of the coupled stress/deformation
and fluid flow interaction in rock fractures. Zhang et al.
[9] used a modified discontinuous deformation algorithm to
simulate the failure behavior of jointed rock. Using particle
simulationmethod, Xia and Zhou [10] investigated the failure
process of brittle rock under triaxial compression through
both experimental and numerical approaches. Based on the
statistical continuumdamagemechanics theory and the finite
element method (FEM), Li et al. [11] developed a statistical
meso-damage mechanical method (SMDMM) to model the
transscale progressive failure process of rock. Furthermore,
many simulations were also carried out by Min and other
researchers to study the failure process of brittle rock [12–
18]. However, the researches about the hard-rock breaking

mechanism of HDIHT method and technology have never
been reported yet.

In this work, based on the relevant rock mechanics
theories and “element birth and death” technique, the key
parameters, including drilling radius (dr) and impact dis-
tance (di), were researched to explore the hard-rock stress
behavior during HDIHT process through APDL program-
ming. The Von Mises equivalent stress and its principal
stress components were analyzed in detail, and the breaking
mechanism of HDIHT was also discussed.

2. Theoretical Analysis and Calculation

On the basis of the relevant theories of rock static intrusion
[1, 2], Paul simplified the rock intrusion of wedge shaped
blade into the sketch shown in Figure 1. Suppose 𝑅 was the
stress component of load 𝑃 along the vertical edge-surface
direction; it could be decomposed into the shear force (𝑇)

and normal force (𝑁) on the shear fracture surface. Based on
Mohr-Coulomb failure theory, when shear stress 𝜏 exceeded
cohesion 𝐶 and internal friction 𝜇𝜎, shear-breaking would
occur. The failure condition was given by

𝜏 − 𝜇𝜎 = 𝐶. (1)

Assuming the load of the 𝑖th impact was 𝑃∗
𝑖
, the pene-

tration depth of the 𝑖th impact was 𝐻∗
𝑖
, and the edge angle

was 2𝜃 (see Figure 1), there must be a relationship between
the (𝑖 + 1)th load and its stress:

𝑅 =
𝑃
∗

𝑖+1

2 sin 𝜃
,

𝐿 =
ℎ
∗

𝑖+1

sin𝜓
,

(2)
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Figure 3: Sketch of FE model used in the simulations.

where 𝐿 was the length of shear plane and 𝜓 was the shear
plane angle. Using edge length as the unit, 𝜏 and 𝜎 could be
given by

𝜏 =
𝑇

𝐿
=
𝑅

𝐿
cos (𝜓 + 𝜃) , (3)

𝜎 =
𝑁

𝐿
=
𝑅

𝐿
sin (𝜓 + 𝜃) . (4)

Substituting (3) and (4) into (1), then (1) could be
rewritten as

𝜏 − 𝜇𝜎 =
𝑃
∗

𝑖+1

ℎ
∗

𝑖+1
2 sin 𝜃

[sin𝜓 cos (𝜓 + 𝜃)

− 𝜇 sin𝜓 sin (𝜓 + 𝜃)] .

(5)

The internal friction angle 𝜙 was used to represent the
internal friction coefficient; that is,

𝜇 = 𝑡𝑔𝜙 =
sin𝜙
cos𝜙

. (6)

Equation (5) could be further written as

𝜏 − 𝜇𝜎 =
𝑃
∗

𝑖+1

ℎ
∗

𝑖+1

⋅
1

2 sin 𝜃 cos𝜙
[sin𝜓 cos (𝜓 + 𝜃) cos𝜙

− sin𝜓 sin (𝜓 + 𝜃) sin𝜙] =
𝑃
∗

𝑖+1

2ℎ
∗

𝑖+1

⋅
sin𝜓 cos (𝜓 + 𝜃 + 𝜙)

sin 𝜃 cos𝜙
,

(7)

where 𝜏 − 𝜇𝜎 was a function of 𝜓. Setting the first derivative
of (7) equals zero, it was easy to be found that when

𝜓 =
𝜋

4
−
𝜃 + 𝜙

2
. (8)

The value of 𝜏 − 𝜇𝜎 reached its maximum. Therefore, the
shear-breaking surface would first appear in the plane of the
slope of 𝜓. When 𝜃 + Φ < 90

∘, shear-breaking might occur;
while 𝜃 + Φ > 90

∘, the rock was in a fully compressed state;
the leap-forward invasion would not happen. Substituting (8)
into (7), (7) could be finally written as

𝜏 − 𝜇𝜎

=
𝑃
∗

𝑖+1

ℎ
∗

𝑖+1

sin (𝜋/4 − (𝜃 + 𝜙) /2) cos (𝜋/4 + (𝜃 + 𝜙) /2)

2 sin 𝜃 cos𝜙

= 𝐶.

(9)
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Figure 4: Comparison of different FE models.

Solving the above formula, the ratio of 𝑃∗
𝑖+1

to ℎ
∗

𝑖+1
could

be given by

𝑃
∗

𝑖+1

ℎ
∗

𝑖+1

=
4𝐶 ⋅ sin 𝜃 ⋅ (1 − sin𝜙)

1 − sin (𝜃 + 𝜙)
= 𝐾. (10)

That is, the ratio of each impact’s load to its invasion
depthwas a constant. In addition, according to the correlation
between impact energy and chiseling specific work (CSW, 𝛼),
the 𝛼-𝐴 curve of impact breaking process could be divided
into three zones, that is, scaring zone (SZ), transient zone
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Figure 5: Sketch of node distribution in FE model.
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Figure 6: Velocity-time loading curve of impact rod in the simulations.

(TZ), and crushed zone (CZ).When impact energy was quite
small, the 𝛼-𝐴 curve would fall into its left side, which was
SZ. In this region, the impact power was too small to form
a broken pit, and the dropped rock powder was very fine, for
the CSWwas quite large.The shaded region in 𝛼-𝐴 curve was
TZ. In this domain, the impact breaking data and behavior
were unpredictable. As impact energy was larger than𝐴

𝑐
, the

𝛼-𝐴 curve would eventually enter a relatively stable region,
CZ.

With regard to the relationship between broken rock vol-
ume (𝑉break) and impact energy (𝐴), the following empirical
formula was widely used and expressed as follows [1]:

𝑉break = 𝐶
1
(𝐴 − 𝐴

0
)
𝑎

, (11)

where 𝐴
0
= 0, 𝑎 = 1, 𝐶

1
= 1/𝛼, in units of kg−1⋅m−1⋅cm3.

Supposing the impact energy of hydraulic impact ham-
mer is 7500 J, rod diameter, 150mm, and the CSW of granite,

26 kg⋅m⋅cm−3, the crushed granite volume of each impact
could be calculated as follows:

𝑉break =
𝐴

𝛼
=

7500 (N ⋅m)

26 (kg ⋅m/cm3)
=

7500

26 × 10/10
−6
m3

= 2.885 × 10
−5m3.

(12)

Based on the crushed granite volume of each impact, if
hammer impacted a fixed point repeatedly, the final radius of
broken pit (𝑟pit) should meet the following:

𝜋𝑟pit
2
⋅
ℎ

3
= 2.885 × 10

−5
× 𝑛imp,

𝑟pit

ℎpit
= 0.375,

(13)

where 𝑛imp was the impact times at a fixed point, ℎpit was the
depth of broken pit, and 0.375 was a constant, decided and
given by the end-shape of impact rod. Therefore, in theory,
hydraulic impact tunneling was feasible.
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Figure 7: The Von Mises equivalent stress contours of model A at different time.

3. Finite Element Modeling and Configuration

Taking the granite, whose Platts ruggedness coefficient varied
from f10 to f15, as the research object, the mechanical and
physical properties parameters were listed as follows: elastic
modulus, 3.58 × 104MPa; Poisson’s ratio, 0.28; ratio of tensile
strength to compressive strength, 0.03. For almost all crushed
granite was powdery detritus in actual impact breaking
process, and the objective of this work wasmainly focused on
the stress variation behavior of broken pit, drilling holes, and
their surrounding area, the crack generation and propagation
of granite during HDIHT process would not be considered.
Thus, the following assumptions could be made:

(1) Based on the continuous homogeneous medium the-
ory and the characteristics of granite, the isotropic
bilinear kinematics hardening model was used. But
the joint development and tectonic changes of granite
was not taken into account in the simulations.

(2) In virtue ofANSYS/LS-DYNAmodule, the “surface to
surface” contact type of ESTS algorithm was chosen,

and the “element birth and death” technique was
realized through APDL programming.

(3) The compressive and shear strength were used as
the failure criterion of granite elements. Program
could automatically calculates the stress status of
each cell after one load step or substep. For the
cells, whose VonMises equivalent stress exceeded the
compressive or shear strength of granite, they would
be deemed invalid and would be removed from the
model immediately. In the meantime, system would
also automatically redefine the contact relationship
between rod-end and broken pit.

(4) To consider the effect of surrounding rocks in actual
impact breaking process, the side and bottom surfaces
of FE model were all set as the unlimited boundaries.

The main parameters of hydraulic hammer were listed in
Table 1. In order to reduce the computational workload, as
depicted in Figure 3, FEmodelwith the rock size of 400mm×

400mm × 500mm (length × width × thickness) was only
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Figure 8: The Von Mises equivalent stress top-view contours of different models at the 0.002th s.
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Figure 9: Stress variation curves of bottom node in models A, B, and C.
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Figure 10: Stress variation curves of bottom node in models A, D, and E.

Table 1: Main parameters of hydraulic hammer with large impact
energy.

Parameter name Value
Impact energy 7500 J
Piston weight of hammer 200 kg
Rod diameter 150mm
Piston energy transfer efficiency 98%
Elastic modulus of rod material 1.02𝐸11Pa
Density of rod material 7800 kg⋅m−3

Impact frequency 10Hz
Rod weight 200 kg
Rod length 1200mm
Rod tip diameter 20mm
Rod tip length 200mm
Poisson’s ratio of rod material 0.3

a quarter of the actual one and the symmetry boundary
conditions were applied on its symmetry planes.

There were five different models developed to explore
the stress variation behavior during HDIHT process (see

Figure 4), including model A (dr = 20mm, di = 200mm),
model B (dr = 20mm, di = 250mm),model C (dr = 20mm, di
= 150mm), model D (dr = 35mm, di = 200mm), and model
E (dr = 50mm, di = 200mm). As shown in Figure 5, there
were 28 typical nodes researched in each model, including
bottom node (node 1), nodes along the diagonal (nodes 20
to 28), nodes around drilling hole (nodes 14 to 19), and nodes
along sideline (nodes 8 to 13).

The impact frequency of rod was 10Hz, and its loading
curvewas demonstrated in Figure 6, which lasted one second.
In accordance with the impact energy and energy transfer
efficiency 𝜂

𝑆
(between the piston of hammer and rod) listed

in Table 1, the velocity of rod (Vrod) shouldmeet 7500×98% =

200 × Vrod
2
/2; namely, Vrod = 8.57m⋅s−1. Furthermore, to

ensure the efficiency of HDIHT method, a pressing force
would be applied on the rod to offset its rebound after each
impact and keep it in contact with broken pit all the time.The
value of pressing force could be calculated by [1]

𝐹 = 2𝑓𝑀𝑉
𝑃
= 0.015𝑁

𝑓
√𝐺𝐴, (14)

where 𝑁
𝑓
was the impact frequency of hammer (BPM), 𝐺

was the weight of hammer’s piston (kg), and𝐴was the impact
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Figure 11: Continued.
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Figure 11: The Von Mises equivalent stress peak-curves of nodes along the diagonal in models A, B, and C.

energy (kg⋅m).Thus, the final pressing force should not be less
than

𝐹 = 0.015 × 600 × √200 × 750 × 10 = 34850𝑁. (15)

4. Simulation Results and Discussion

4.1. Von Mises Equivalent Stress Contours. Figure 7 showed
the Von Mises equivalent stress contours of model A at
different time. Obviously, the rod could be penetrated deep
into the granite gradually. In the meantime, the elements in
broken pit were “killed” and removed, for their stresses had
exceeded the compressive or shear strength of granite. It was
consistent with the conclusion of theoretical calculation.

Figure 8 depicted the VonMises stress top-view contours
of different models at the 0.002th s. As demonstrated in the
figure, when dr was fixed (20mm), there was a significant
stress concentration phenomenon around the hole in model
A, and the maximum Von Mises stress of hole-nodes (14
to 19; see Figure 5) in model A was 2.69MPa. Instead, as
di was larger or less than 200mm, the stress concentration
phenomena around the holes both were weakened and
became no longer obvious. In this case, the maximum Von
Mises stresses of hole-nodes inmodels B andCwere 1.72MPa
and 2.29MPa, respectively. Likewise, for models A, D, and
E, when di was constant (200mm), there were significant
stress concentration phenomena around the hole for all three
models. The maximum Von Mises stress of hole-nodes in
model D was 3.14MPa and that of hole-nodes in model E
was 3.24MPa. Once the stress reached or exceeded the tensile
strength of granite, which was only three to five percent of
its compressive strength, it might result in the secondary
crushing of the rock near the hole.

Therefore, the following results could be gained: (1) in this
work, the impact distance of 200mm might be the critical

point of HDIHT process; (2) when di kept constant, with the
increase of drilling radius, the VonMises stress of hole-nodes
would ascend simultaneously. That is, the bigger the drilling
radius was, the larger the maximumVonMises stress of hole-
nodes was.

4.2. Stress Behavior of Bottom Node (Node 1). In terms of
the three principal components of the Von Mises equivalent
stress, because of the symmetry of FE model, only the 1st
principal stress and the 3rd principal stress were discussed in
the simulations. The location of bottom node (see Figure 5)
was just below the drill rod and could directly reflect the stress
behavior of the rock under impact rod. Figure 9 revealed
the stress variation curves of bottom node in models A,
B, and C, including the Von Mises equivalent stress, the
1st principal stress, and the 3rd principal stress. Obviously,
when dr was fixed (20mm), among those three models, the
stress of bottom node in model C was the largest, while that
in model B was the smallest, whether for the Von Mises
equivalent, the 1st principal stress, or the 3rd principal stress.
Likewise, Figure 10 demonstrated the stress variation curves
of bottom node in models A, D, and E. It was evident that
when di kept constant (200mm), among those three models,
the Von Mises equivalent stress of bottom node in model E
was the smallest, while that in model D was the largest. The
1st principal stress of bottom node in model E was relatively
large, but its 3rd principal stress was quite small.

Comparing Figure 9 with Figure 10, the following was
evident. (1) For the 1st principal stress and the 3rd principal
stress of bottom node, there were obvious “compress-tensile
stress” transformation phenomena, which could be attributed
to the existence of drilling hole free surface. (2) When dr
remained unchanged, the stresses of bottom node inmodel C
were distinctly larger than those inmodelsA andB, regardless
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Figure 12: The 1st principal stress peak-curves of nodes along the diagonal in models A, B, and C.

of the Von Mises equivalent stress, the 1st principal stress, or
the 3rd principal stress. That is, the smaller the di was, the
larger the stress of bottom node was. For a certain working
face, if the hole spacing was too small, it meant that there
were more holes which had to be drilled per unit area and
we must spend more time in drilling, which was sometimes
impossible to accept. (3)When di kept constant, the stresses
of bottom node in model D were slightly larger than those in
models A and E, indicating that there was a critical drilling
radius. In this work, the drilling radius of 35mm might be a
good choice.

4.3. Stress Behavior of Nodes along the Diagonal (Nodes 20 to
28). Note that, to better reveal the stress variation regularities
during HDIHT process, the curves in the following figures
were all peak stress curves. Figures 11–13 displayed the stress
variation curves of nodes along the diagonal (see Figure 5)
in models A, B, and C, including the Von Mises equivalent
stress, the 1st principal stress, and the 3rd principal stress.
From Figures 11–13, it was easy to find that node 20 was
killed at the 0.7th s, and its stress kept zero from the 0.7th s
to the end. In addition, the stresses of node 20 were much
larger than other nodes, whether for theVonMises equivalent
stress, the 1st principal stress, or the 3rd principal stress. This
was because node 20 was the closest node to impact rod.
Specifically, the maximum Von Mises equivalent stress of
node 20 in model B was quite larger than that in models A
and C, about 35.89MPa. Its 1st principal stress in model C
was larger than that in models A and B, which was equal to
10.16MPa and expressed as the tensile stress, while its 3rd
principal stress in model B was larger than that in models
A and C, about 39.43MPa, and shown as compressive stress.
In terms of node 21, it was evident that the effect of impact
distance on the stresses of those nodes along the diagonal

in model B was the smallest, whether for the Von Mises
equivalent stress, the 1st principal stress, or the 3rd principal
stress. Therefore, larger impact distance could significantly
weaken the effect of drilling hole free surface.

Moreover, in the case of node 24, although it located
on the edge of drilling hole, no distinct “compress-tensile
stress transformation” occurred, regardless of the 1st principal
stress or the 3rd principal stress. As for those nodes far away
from impact place, their stresses were quite smaller than the
stresses of nodes 21 and 20 and had less influence on the
final breaking performance ofHDIHT technology.Thus, they
would not be discussed in the following work.

Figures 14–16 depicted the stress variation curves of nodes
along diagonal in models A, D, and E. As demonstrated in
the figures, when di kept constant, regardless of the Von
Mises equivalent stress, the 1st principal stress, or the 3rd
principal stress, the stresses of node 20 in model D were
undoubtedly the largest among models A, D, and E wherein
the maximum 1st principal stress of node 20 in model D was
8.83MPa, while the maximum 3rd principal stress of node
20 in model D equaled 38.99MPa. In terms of node 24, no
obvious “compress-tensile stress transformation” occurred
too.

By comparing Figures 11–16, the following conclusions
could be drawn. (1) For node 24, no obvious “compress-
tensile stress transformation” occurred in all models. (2)The
1st principal stress of nodes along diagonal in all models is
expressed as the tensile stresses, whichwas very important for
the hard-rock breaking process. (3) When dr kept constant,
themaximumVonMises equivalent stress and themaximum
1st principal stress of those nodes in model B were quite
smaller than those in models A and C. The difference of
the stress variations between models A and C was not clear.
However, smaller impact distance meant to spend more time
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Figure 13: Continued.
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Figure 13: The 3rd principal stress peak-curves of nodes along the diagonal in models A, B, and C.

in drilling. Taking into account the practicability, the impact
distance between 150mm and 200mm was the best choice.
(4)When di kept constant, it was obvious that the stresses of
those nodes in model D were undoubtedly the largest among
models A, D, and E, whether for the Von Mises equivalent
stress, the 1st principal stress, or the 3rd principal stress. In
other words, the drilling radius of 35mm was the optimal
choice in this work.

4.4. Stress Behavior of Nodes around Drilling Hole (Nodes 14 to
19). Figures 17–19 showed the stress variation curves of nodes
around drilling hole (see Figure 5) in models A, B, and C,
including the Von Mises equivalent stress, the 1st principal
stress, and the 3rd principal stress. By comparing the curves
of different nodes, for the symmetry of model, it was obvious
that the stress behavior of nodes 14, 15, and 16 was similar
to that of nodes 19, 18, and 17, respectively, whether for the
VonMises equivalent stress, the 1st principal stress, or the 3rd
principal stress.

Specifically, as presented in Figure 17, when dr was con-
stant, the Von Mises equivalent stress of node 14 in different
models was sorted as A > C > B, which was similar to that of
node 19. Likewise, the Von Mises equivalent stress of node
15 in different models was sorted as C > B ≥ A and was
similar to that of node 18. The Von Mises equivalent stress of
node 16 in different models was sorted as C > A ≥ B, which
was similar to that of node 17. In addition, all the 1st principal
stresses were expressed as the tensile stresses, while all the 3rd
principal stresses were shown as the compressive stresses.

Figures 20–22 displayed the stress variation curves of
nodes around drilling hole (see Figure 5) in models A, D,
and E. As depicted in the figures, when di was fixed, the Von
Mises equivalent stress of node 14 in different models was
sorted as E > D > A, which was similar to that of node 19.

TheVonMises equivalent stress of node 15 in differentmodels
was sorted as E > D > A and was similar to that of node
18. Likewise, the Von Mises equivalent stress of node 16 in
different models was sorted as E > D ≥ A, which was similar
to that of node 17.

Obviously, as shown in Figures 18 and 19, all the 1st
principal stress was expressed as the tensile stress, while
all the 3rd principal stress was shown as the compressive
stress. There were “compress-tensile stress transformation”
phenomena in all models, especially for nodes 14 and 19, but
the degree of transformation was quite weak.

By comparing Figures 17–22, the following results could
be obtained. (1) For models A, B, and C, there were two
evident stress peaks at the 0.25th s and 0.55th s, respectively,
whether for the Von Mises equivalent stress or the 3rd
principal stress. The peak time of the 1st principal stress was
hard to distinguish. (2)Themaximum Von Mises equivalent
stress of node 19 in model A was the largest and equaled
2.69MPa, while that of node 14 in model B was the smallest
and equaled 1.72MPa. The maximum 1st principal stresses
of nodes around drilling hole in models A, B, and C were
1.91MPa (node 19), 1.85MPa (node 14), and 1.55MPa (node
16), respectively. The maximum 3rd principal stresses of
nodes around drilling hole in models A, B, and C were
2.87MPa (node 19), 0.97MPa (node 18), and 2.43MPa (node
16), respectively. Thus, the impact distance of 200mm might
be a critical point in this work. (3) In terms of models A, D,
and E, there was only one evident stress peak for both the 1st
principal stress and the 3rd principal stress. But the peak time
of the 1st principal stress was the 0.55th s, while the peak time
of the 3rd principal stress was the 0.25th s. (4)Themaximum
Von Mises equivalent stresses of nodes in models A, D, and
E were 2.69MPa (node 19), 3.14MPa (node 14), and 3.24MPa
(node 14), respectively; the maximum 1st principal stresses of
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Figure 14: Continued.
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Figure 14: The Von Mises equivalent stress peak-curves of nodes along the diagonal in models A, D, and E.

nodes were 1.91MPa, 2.48MPa, and 2.49MPa, respectively;
the maximum 3rd principal stresses of nodes were 2.87MPa,
3.38MPa, and 3.52MPa, respectively. Therefore, the drilling
radius of 50mmmight be the optimal choice in this work.

4.5. Stress Behavior of Nodes along Sideline (Nodes 8 to 13).
Figures 23–25 exhibited the stress variation curves of nodes
along sideline (see Figure 5) in models A, B, and C, including
the Von Mises equivalent stress, the 1st principal stress, and
the 3rd principal stress. As shown in the figures, when dr kept
constant, it was easy to find that, for those nodes near the
impact rod (nodes 8 to 10), their stresses haddistinct variation
regularities, regardless of the VonMises equivalent stress, the
1st principal stress, or the 3rd principal stress. In terms of
those nodes far away from impact rod (nodes 11 to 13), their
stresses variations were in a state of disorder, and there were
no obvious regularities, especially for nodes 12 and 13.

Figures 26–28 displayed the stress behavior of nodes
along sideline (see Figure 5) in models A, D, and E. As
exhibited in the figures, when di was constant, all nodes had
distinct variation regularities, regardless of the Von Mises
equivalent stress or the 1st principal stress. The 3rd principal
stresses were also in the state of disorder, having no clear
regularities, regardless of the nodes near the impact rod, like
nodes 8 to 10, or those nodes far away from impact rod, like
nodes 11 to 13. In addition, for a certain node, its 3rd principal
stress was evidently smaller than its 1st principal stress.

From Figures 24 to 25 and Figures 27 to 28, it could
be found that all the 1st principal stress was expressed
as the tensile stress, while all the 3rd principal stress was
shown as the compressive stress. For a certain node, its 3rd
principal stress was evidently smaller than its 1st principal
stress. Therefore, in the case of those nodes along sideline,

the 1st principal stresses were the main reasons of potential
secondary breaking.

By comparing Figures 23–28, the following conclusions
could be made. (1) Obvious “compress-tensile stress trans-
formation” occurred at node 8, especially for the 1st principal
stress curves. (2) As for models A, B, and C, the Von Mises
equivalent stress of those nodes near the impact rod, there
were two evident stress peaks at the 0.05th s and the 0.55th s,
respectively. The peak time of the 1st principal stress and the
3rd principal stress was hard to determine. (3) In terms of
models A, D, and E, there was only one evident stress peak
for both the VonMises equivalent stress and the 1st principal
stress at the 0.55th s. The peak time of the 3rd principal stress
was uncertain. (4) Generally, the stresses of those nodes far
away from the impact rod (nodes 11 to 13) were quite small
and in the state of disorder, while the stresses of those nodes
near the impact rod (nodes 8 to 10) were relatively bigger and
had clear variation regularities, regardless of the Von Mises
equivalent stress, the 1st principal stress, or the 3rd principal
stress.

5. Experiment Results

To verify the feasibility of HDIHT method and explore its
impact breaking mechanism, a hydraulic hammer (GT130,
Giant hydraulic Tech., China) with 7500 J impact energy was
used in the field experiments at Baitaizi township granite
stone pit, Jinzhou, Liaoning Province, China, and all the items
were conducted at the environmental temperature of −15∘C.

Due to the restriction of experimental equipment,
the effect of different drilling radius on hydraulic impact
breaking process was not researched, which could be done in
the future. As depicted in Figure 29, there were many holes
drilled prior to the hydraulic impact breaking process.
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Figure 15: Continued.
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Figure 15: The 1st principal stress peak-curves of nodes along the diagonal in models A, D, and E.

The distribution of drilling holes was expressed in
Figure 29(a), whilst the parameters of drilling were listed as
follows: drilling radius, 21mm, and drilling depth, 1000mm.

Figure 30 demonstrated the actual impact breaking con-
ditions, and the following results could be obtained. (1)When
impact distance equaled 240mm or 282mm, the existence of
drilling holes had less effect on the actual breaking process
and the breaking efficiency was very low. In this case, all
dropped rocks were detritus or powder, without chunks.
(2) As impact distance was 174mm, the breaking effect was
evidently improved. Besides the dropped powder, there were
also some chunks; the maximum length of chunks was about
100mm. (3) When hammer impacted the granite around
a hole at a circle of 300mm (see Figure 30(b)), that is, di
was 150mm, the breaking efficiency could be significantly
enhanced, which was in agreement with the critical value of
impact distance in the simulations.

6. Discussion of the Hard-Rock
Breaking Mechanism

Based on the rock mechanics theories and actual experiment
results, the hard-rock breaking mechanism of HDIHT tech-
nology could be summarized and demonstrated in Figure 31.
As shown in the figure, when hammer impacted hard rock
directly, its impact energy would be converted into the
compressivewave in the depths of rock at the impactmoment,
and a broken pit was formed in an instant when impact
energy was larger than 𝐴

𝑐
(see Figure 2). If there were some

holes in working face, the compressive impact wave might
be transformed into the tensile stress after the reflection
at free surfaces. Thus, the nodes around drilling hole were
under the joint action of those two kinds of stresses at

the same time, that is, compressive stress and tensile stress,
which would cause the rock shear fracture if the tensile
stress was big enough. For the tensile strength of rock was
only three to five percent of its compressive strength, the
“compression-tension” transformation would finally lead to
the secondary breaking of the rock near the holes. In the
HDIHT experiments, there was another phenomenon at the
impact moment, that is, the discharging of the dust in holes,
which was caused by the action of compressive stress wave
during the impact process.

When rod chiseled into a certain depth, the contact area
between impact rod and broken pit increased sharply, which
directly led to the significant increasing of work resistance.
It would not only lower the contact static pressure of rod-
end caused by pressing force but also remarkably reduce the
dynamic impact pressure of impact moment. As a result,
the impact energy, which is mainly used for overcoming
the specific chiseling work of hard rock, could not be fully
delivered to the rod-end, and it would finally weaken the
efficiency of the subsequent impacting. Furthermore, in the
impact breaking process, the crushed rock powder and debris
were hard to be rapidly discharged from the gap between
impact rod and broken pit (see Figure 30(a)). The rock
powder remaining in the broken pit would act as a cushion
between rod-end and rock and inevitably absorb partial
energy. In the end, when the rest of impact energy was not
enough to overcome the compression strength of granite,
the subsequent impacts would become meaningless, which
meant the impact position should be changed.

As the crucial factors of HDIHT technology, drilling
radius and impact distance had great influence on the final
breaking efficiency, but they should be combined with the
tunneling process beat. If impact distance was too small,
as revealed in the simulations, it was undoubtedly helpful
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Figure 16: Continued.
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Figure 16: The 3rd principal stress peak-curves of nodes along the diagonal in models A, D, and E.

to improve the impact breaking efficiency. However, it also
meant we had to spend more time in drilling for there were
more holes which had to be drilled. Therefore, we must
choose an acceptable drilling spacing, from the viewpoints
of economy and process. Likewise, as for drilling radius, it
was evident that the bigger the drilling radius was, the higher
the impact breaking efficiency was. But bigger drilling radius
commonly meant more time we had to spend in drilling.

Therefore, there must be a critical point, whether for
drilling radius or impact distance. In this work, for granite,
the drilling radius of 35mm and the impact distance of
150mm were the optimal combination of parameters for
HDIHT technology.

7. Conclusions

HDIHT is a novel technology and method proposed to solve
the rapid tunneling problem in hard rock. Based on “element
birth and death” technique, through APDL programming,
the key parameters, including drilling radius and impact
distance, were researched to explore the stress behavior
during HDIHT process. The breaking mechanism was also
discussed, and the following conclusions could be drawn:

(1) There was obvious stress concentration phenomenon
around the hole when impact distance equaled
200mm. It was not only the signal of “compress-
tensile stress transformation” of drilling hole free
surface but also the direct reason of the high efficiency
of HDIHT method, for it would finally lead to the
“secondary breaking effect” of the rock near the hole.

(2) Impact distance was not the smaller the better. For
granite, the impact effect distance of hammer was
a constant and was decided by impact energy of

hammer, CSW of rock, diameter of rod, rod material,
and so forth. In this work, 200mm might be an
optimal choice. If impact distance was too large, it
would decrease the effect of drilling hole free surfaces
on the HDIHT efficiency.

(3) As for drilling radius, the bigger the drilling radius
was, the larger the stress was. However, for the stress
difference between models D and E was not distinct;
taking the drilling difficulty and price into account,
35mm was an optimal choice.

The simulation results and the discussion about the
breaking mechanism of hard rock could provide a basis for
the further research and application of HDIHT technology.

Nomenclature

dr: Drilling radius (mm)
di: Distance of impact (mm)
𝐴: Impact power/energy (J)
𝑁: Direction stress on shear fracture

surface (N)
𝑁
𝑓
: Impact frequency of rod (BPM)

𝑛imp: Impact times at single point
𝐿: Length of shear plane (m)
𝐶: Material cohesion
𝐾: Intrusive coefficient
𝑅: Stress component of load 𝑃 along the

vertical edge-surface direction (N)
𝑇: Shear stress (N)
𝑃
∗

𝑖
: Load of the 𝑖th leap (N)

𝐻
∗

𝑖
: Penetration depth of the 𝑖th leap (m)

𝑅pressure: Ultimate compressive strength (Pa)
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Figure 17: The Von Mises equivalent stress peak-curves of nodes around drilling hole in models A, B, and C.
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Figure 18: The 1st principal stress peak-curves of nodes around drilling hole in models A, B, and C.
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Figure 19: The 3rd principal stress peak-curves of nodes around drilling hole in models A, B, and C.
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Figure 20: The Von Mises equivalent stress peak-curves of nodes around drilling hole in models A, D, and E.
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Figure 21: The 1st principal stress peak-curves of nodes around drilling hole in models A, D, and E.
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Figure 22: The 3rd principal stress peak-curves of nodes around drilling hole in models A, D, and E.
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Figure 23: The Von Mises equivalent stress peak-curves of nodes along sideline in models A, B, and C.
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Figure 24: The 1st principal stress peak-curves of nodes along sideline in models A, B, and C.
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Figure 25: The 3rd principal stress peak-curves of nodes along sideline in models A, B, and C.
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Figure 26: The Von Mises equivalent stress peak-curves of nodes along sideline in models A, D, and E.
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Figure 27: The 1st principal stress peak-curves of nodes along sideline in models A, D, and E.
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Figure 28: The 3rd principal stress peak-curves of nodes along sideline in models A, D, and E.
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Impact rod

di = 282mm
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(a) Distribution of drilling holes (b) Final working face after drilling

Figure 29: Distribution of drilling holes and the final experimental working face.

(a) Working face after impact breaking

(b) Impact around a circle of 𝜙300mm

Figure 30: Actual breaking conditions in HDIHT field experiments.

𝑉break: Broken rock volume of each impact
(m3)

Vrod: Velocity of rod (m⋅s−1)
ℎpit: Depth of broken pit (m)
𝑟pit: Radius of broken pit (m)
𝐺: Weight of hammer piston (kg)
𝐹: Pressing force of hammer (N).

Greek Letters
𝜏: Shear stress per unit length (Pa⋅m−1)
𝜃: Half edge angle (rad)
𝜓: Shear plane angle (rad).

Subscripts
CSW: Chiseling specific work (kg⋅m⋅cm−3).
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Figure 31: Sketch of hard-rock breaking mechanism of HDIHT
technology.
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