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In wireless communication systems, correct knowledge of the correlation of a fading channel is essential for channel estimation.
Both the reliability of the estimated channel impulse response (CIR) and the adjustment of an adaptive communication system
need the accurate correlation information, which is difficult to identify especially when changing. By modeling the fading channel
as a hybrid dynamic system, a channel estimation algorithm based on Interacting Multiple Model (IMM) is presented with the
consideration of time-variant channel correlation. Applying the IMM algorithm, the proposed channel estimator can identify the
channel correlation.With the accurate information of channel correlation, the proposed algorithm is capable of performing accurate
estimation on the fading wireless channel with time-variant or time-invariant correlation. Our simulations demonstrate that the
IMMbased channel estimation algorithm has good performance in estimating CIR as well as in identifying the channel correlation.

1. Introduction

Information transmission with high data rates and reliable
performance is required in wireless communication systems.
However, the performance of the communication systems
suffers from the signal distortion caused by wireless channel.
As a fundamental technology to ensure communication
performance, a channel estimation algorithm is required to
measure the channel parameters and reduce the influence on
the communication system.

In the application of wireless control and wireless sensor
systems, high performance communication between maneu-
vering objects is required. Obviously, the impulse response
of the channel is time-variant because of the Doppler effect.
Furthermore, the channel correlation which governs the way
that the channel varies is also time-variant because of the
frequent change in the speed of the moving object. This
scenario can be treated as a channel that varies in different
modes. In this case, the performance of channel estimation is
affected not only by the variance of channel impulse response
but also by the changing of channel modes.

In the adaptive communication systems, system parame-
ters, signal modes, and transmission modes can be adjusted
according to the channel quality. Therefore, the statistical
information of the channel, such as channel correlation,
reflecting how the channel changes, is required at each
moment to adjust communication parameters. Without the
channel statistical information directly provided by the chan-
nel estimator, the system parameters can only be adjusted
according to the channel information calculated indirectly,
for example, bit error rate (BER). Therefore, tracking the
channel correlation is important for the channel estimation
algorithm to achieve good performance. Channel estimation
algorithms that provide CIR as well as the statistical informa-
tion should be developed. This has not been systematically
studied.

Among channel estimation algorithms, Linear Minimum
Mean Square error (LMMSE) is widely used, since it is
optimum in minimizing the Mean Square Error (MSE) of
the estimated channel parameters in the presence of Additive
White Gaussian Noise (AWGN). It is shown that LMMSE is
very attractive for the channel estimation in [1–3]. However,
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the computational complexity of LMMSE is very high due to
the large amount of information operated comprehensively
in the estimation algorithm.

The Kalman filter (KF), as an approximation of the
Optimal Bayesian filter, is used in a wide range of engineering
and econometric applications because of its high accuracy
and efficiency on parameter estimating in dynamic systems
[4]. In wireless channel estimation, the Kalman filter has been
applied with the wireless channel described by autoregressive
(AR) model [5–7]. These methods are functional with low
computational complexity and the ability of fast tracking the
varying channel in the situation that the speed of the channel
fading is constant.

In the case of a maneuvering receiver, channel corre-
lation varies into different modes because of the changing
Doppler shift corresponding to the relative speed between the
transmitter and the receiver.Without information on channel
correlation, traditional channel estimation algorithms are
limited in performance in such situations, because they
cannot effectively respond to the changes in channel mode
[8, 9].

The Multiple Model (MM) filter was developed to solve
the problem of system mode changes [4]. The Interacting
Multiple Model (IMM) algorithm is one of the most efficient
approaches among MM algorithms and is widely used in
object tracking [10] and other hybrid dynamic systems [11, 12].
In communication systems the IMM algorithm can provide
accurate channel parameters by applying two Kalman filters
to the static and moving states of the receiver [13].

The contribution of this paper is to propose a new channel
estimation algorithm based on the IMM algorithm. This
algorithm characterizes the fading channel using state-space
models and describes the dynamic channel correlation with
multiple models. The proposed method is capable of track-
ing the CIR and identifying the channel correlation which
changes according to the maneuverability of the receiver.

This paper is organized as follows. The signal transmis-
sion of a communication system as well as the Rayleigh
fadingmultipath wireless channel is modeledmathematically
in Section 2. In Section 3, the processes of channel correlation
identification and channel estimation based on IMM theory
are presented with theoretical proof after the introduction of
the KF. The importance of channel correlation identification
and the applicability of the proposed algorithm are also
discussed in Section 3. After presenting and analyzing a
number of simulation results in Section 4, the conclusions are
summarized in Section 5.

2. Problem Formulation

2.1. Transmission System Model. The transform and trans-
mission of data symbols are illustrated in Figure 1. In the
transmitter, a sequence composed of binary data 𝑏[𝑗] is
modulated in baseband and transforms into a sequence
of complex signals 𝑑[𝑘]. After being modulated by carrier
with frequency 𝑓

𝑐
, 𝑑[𝑘] transforms into waveform 𝑠(𝑡) and

transmitted over a Rayleigh fading channel ℎ(𝑡, 𝜏), where 𝜏
is the delay and 𝑡 denotes current time. In the receiver, after

carrier demodulation and sampling,𝑦[𝑘] is obtained from the
receiving signal and can be expressed as follows:

𝑦 [𝑘] = 𝑑 [𝑙] ∗ ℎ [𝑘, 𝑙]|
𝑙=𝑘
+ 𝑛 [𝑘] , (1)

where ℎ[𝑘, 𝑙] is the discrete time CIR with 𝑘 and 𝑙 denoting
current time and the delay tab; 𝑠[𝑙] is the discrete time
receiving signal with 𝑠(𝑡) being sampled; 𝑛[𝑘] is the sampled
noise signal. With the help of channel estimation algorithms,
the CIR can be estimated, and the output of the channel
estimation algorithm is denoted by ℎ̂[𝑘, 𝑙]. Using the infor-
mation of ℎ̂[𝑘, 𝑙], received signal can be recovered from 𝑦[𝑘],
and the recovered signal is denoted as 𝑑[𝑖]. After baseband
demodulation, the received data 𝑏̂[𝑗] is obtained from 𝑑[𝑖].

2.2. Fading Channel. In wireless channels, with the effect
of atmospheric reflection, refraction, and reflections from
object such as buildings, the signal may travel in more than
one path from the transmitter to the receiver. In mobile
communication systems, the attenuation and the delay of the
CIR are time-variant. After being sampled with the symbol
period 𝑇

𝑠
, the CIR of the multipath time-variant channel at

time 𝑘 can be written in discrete time victor form:

h [𝑘] = {ℎ [𝑘, 1] , . . . , ℎ [𝑘, 𝑙] , . . . , ℎ [𝑘, 𝐿]}T , (2)

where 𝑙 is the number of the paths and 𝐿 channel paths have
the significant multipath energy. The time delay of each path
is 𝑙𝑇
𝑠
. ℎ[𝑘, 𝑙] is the complex gain of the 𝑙th path in time 𝑘𝑇

𝑠
.

And the superscript “T” in (2) denotes transpose.
In mobile communication systems, the time-variance of

the CIR taps is caused by themotion of the transmitter and/or
receiver and is quantified by the maximum Doppler shift.
When the number of multiple reflective paths is large and
there is no line-of-sight signal component, the envelop of
every tap of CIR can be statistically described by a Rayleigh
probability density function, and the phases of each tap are
uniformly distributed in [0, 2𝜋]. According to the property
of the Rayleigh distribution, the real and imaginary compo-
nents of each tap of CIR are independently and identically
distributed (i.i.d.) zero mean Gaussian. As a result, the CIR at
time 𝑘 − 1 and time 𝑘 can be represented as a first-order AR
model [5] in the following form:

h [𝑘] = 𝑎h [𝑘 − 1] + k [𝑘] , (3)

where k[𝑘] is the complex noise vector. Making 𝑎 = 1, (3) can
be written as

h [𝑘] = h [𝑘 − 1] + k [𝑘] . (4)

The real and imaginary components of each element of k[𝑘]
are zero mean i.i.d. Gaussian. The covariance matrix of k[𝑘]
is determined by the autocorrelation of h[𝑘]. For the wide
sense stationary uncorrelated scattering model [14, 15], the
autocorrelation function of the multipath Rayleigh fading
channel is [15]

E {ℎ [𝑘
1
, 𝑙
1
] ℎ
∗

[𝑘
2
, 𝑙
2
]} = 𝑐 ⋅ 𝐽

0
(2𝜋𝑓d (𝑘1 − 𝑘2) 𝑇𝑐)

⋅ 𝑒
−𝑙
1
/𝐿

𝛿 (𝑙
1
− 𝑙
2
) ,

(5)
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ĥ[k, l]

s(t)

y[k]

n(t)

y(t)

h(t, 𝜏)
Baseband

modulation
Carrier

modulation

Carrier
demodulation

Baseband
modulation

Signal
detection

Channel
estimation

Sample

Figure 1: Diagram of a communication system.

where the superscript “∗” denotes the conjugate transposition
operation; 𝑐 = 1/(∑

𝑙
𝑒
−𝑙/𝐿

) is a normalization constant. 𝐽
0
(𝑥)

is the zeroth-order Bessel function of the first kind. The
maximum Doppler frequency shift in hertz 𝑓d is shown as
follows:

𝑓d =
V ⋅ 𝑓
0

𝐶
, (6)

where V is the relative speed between the transmitter and the
receiver, 𝑓

0
is the emitted frequency, and𝐶 denotes the speed

of wave.

3. Interacting Multiple Model (IMM) Based
Channel Estimation

Assuming that the coherence time of the channel is 𝑇coh, to
estimate the CIR, the same training sequences with the length
of𝑁
𝑡
are sent every𝑇

𝑡
, where𝑇

𝑡
≤ 𝑇coh.The received signal of

the 𝑘th training sequence can bewritten in the form ofmatrix
as follows:

y [𝑘] = D ⋅ h [𝑘] + w [𝑘] , (7)

where 𝑁
𝑡
× 1 vector, y[𝑘] denotes the 𝑘th received training

signal after being sampled and can be defined as

y [𝑘] = {𝑦 [𝑘(
𝑇
𝑡

𝑇
𝑠

)] , . . . , 𝑦 [𝑘 (
𝑇
𝑡

𝑇
𝑠

) + 𝑚] , . . . ,

𝑦 [𝑘 (
𝑇
𝑡

𝑇
𝑠

) + 𝑁
𝑡
− 1]}

T
, 1 ≤ 𝑚 ≤ 𝑁

𝑡
.

(8)

w[𝑘] in (7) is the complex noise which distributes indepen-
dently with zero means in both real and imaginary parts and
covariance matrix R[𝑘]. D in (7) is the transmitted training
signal matrix. Assuming that the transmitter sends the same

training sequence every time, D is a constant matrix which
can be written as

D =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑑 [0] 0 ⋅ ⋅ ⋅ 0

𝑑 [1] 𝑑 [0] ⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

𝑑 [𝐿 − 1] 𝑑 [𝐿 − 2] ⋅ ⋅ ⋅ 𝑑 [0]

.

.

.
.
.
. d

.

.

.

𝑑 [𝑁
𝑡
− 1] 𝑑 [𝑁

𝑡
− 2] ⋅ ⋅ ⋅ 𝑑 [𝑁

𝑡
− 𝐿]

]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (9)

where the element 𝑑[𝑚] denotes the training sequence.
Observing (4) and (7), it can be found that they are in

the typical form of state-space model of a dynamic system.
Equation (4) is the stochastic difference equation. h[𝑘] is the
vector to be estimated of the dynamic system. Vector k[𝑘] is
the process noise with zero mean and covarianceQ[𝑘] which
is denoted as

Q [𝑘] = E [k [𝑘] ⋅ k∗ [𝑘]] . (10)

Equation (7) is the measurement equation, where y[𝑘] is the
measurement of h[𝑘], measured by matrixD and polluted by
the measurement noise vector w[𝑘] with covariance R[𝑘].

3.1. Kalman Filter (KF)Theory. Separating the real and image
parts h[𝑘] and y[𝑘], they can be written as

hex [𝑘] = {Re {h [𝑘]} , Im {h [𝑘]}}
T
,

yex [𝑘] = {Re {y [𝑘]} , Im {y [𝑘]}}
T
,

(11)

where Re{⋅} and Im{⋅} are the real part and the image part of
the complex value. Then (4) and (7) can be written as

hex [𝑘] = hex [𝑘 − 1] + kex [𝑘] ,

yex [𝑘] = Dex ⋅ hex [𝑘] + wex [𝑘] ,
(12)

whereDex is denoted as

Dex = [
Re {D} − Im {D}
Im {D} Re {D}

] . (13)
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The recursion of KF is given by the following equations.

(1) The predicted mean and covariance matrix:

ĥex [𝑘
−

] = ĥex [𝑘 − 1] ,

P [𝑘−] = P [𝑘 − 1] +Q [𝑘] .
(14)

(2) The predicted measurement, innovation covariance
matrix, and Kalman gain:

ŷex [𝑘
−

] = Dexĥex [𝑘
−

] ,

D
𝐾
[𝑘] = DexP [𝑘

−

]DT
ex + R [𝑘] ,

K [𝑘] = P [𝑘−]DT
exD
−1

𝐾
[𝑘] .

(15)

(3) The posterior mean (estimated value) and covariance
matrix:

u [𝑘] ≜ yex [𝑘] − ŷex [𝑘
−

] ,

ĥex [𝑘] = ĥex [𝑘
−

] + K [𝑘]u [𝑘] ,

P [𝑘] = P [𝑘−] − K [𝑘]DexP [𝑘
−

] ,

(16)

where “̂” denotes the estimated value; the superscript “−”
of the time 𝑘 denotes the predicted value obtained from the
estimated value in time 𝑘−1; P[𝑘] is the covariance matrix of
hex[𝑘 + 1] assuming that the mean of hex[𝑘 + 1] is ĥex[𝑘].

From the equations of KF, it can be noticed that, to ensure
the usability of KF, the covariance matrixes of process noise
and measurement noise should be known. However, in real
cases, they can only be calculated statistically rather than
measured. In that case, noise covariance, say process noise,
can be denoted as

Q̂ [𝑘] = (𝑘 − 1) Q̂ [𝑘 − 1] + k [𝑘] k
∗

[𝑘]

𝑘
. (17)

With (17), KF can provide an accurate noise covariance when
the noise covariance is constant.

3.2. IMM Based Channel Estimation. In hybrid systems, the
dynamic parameter to be estimated varies in different modes.
In this case, the IMM estimator is one of the best com-
promises available between complexity and performance,
because of its low computational requirements and the
accuracy which is almost the same as that of many other
algorithms with much higher complexity [10]. As a powerful
approach to adaptive estimation in dynamic hybrid systems,
IMMestimator is functional of solving problems of structural
and parametric changes [4, 11, 16].

In wireless communications, CIR varies randomly. In
addition, the channel features, such as channel correlation,
change from time to time. As a result, channel estimation can
be achieved by applying IMM estimation method.

(1) Channel Correlation Identification. Inmobile communica-
tions, the CIR varies with the speed reflected by the channel

correlation, which is described in (5). On the one hand, the
information of channel correlation is needed by the channel
estimator to estimate the CIR accurately. On the other hand,
channel correlation is important information for the upper
layer of the adaptive communication networks to adapt the
signal transmission scheme according to the channel feature.
From the channel stochastic difference equation denoted by
(4), the process noise vector k[𝑘] reflects the change of the
CIR. And Q[𝑘], the covariance matrix of k[𝑘], reflects the
channel correlation, which can be derived as

Q [𝑘] = (E
ℎ
[𝑘] + E∗

ℎ
[𝑘]) − (R

ℎ
[𝑘, 𝑇
𝑡
] + R∗
ℎ
[𝑘, 𝑇
𝑡
]) , (18)

where R
ℎ
[𝑘, 𝑇
𝑡
] and E

ℎ
[𝑘] are the correlation matrix and the

covariance matrix of CIR and are defined as follows:

R
ℎ
[𝑘, 𝑇
𝑡
] = E [h [𝑘] ⋅ h∗ [𝑘 − 1]] , (19)

E
ℎ
[𝑘] = E [h [𝑘] ⋅ h∗ [𝑘]] . (20)

The derivation of (18) is shown in Appendix A. Seen from (5),
the gains of each tap are independent. In (18), E

ℎ
[𝑘] is in the

following form:

E
ℎ
[𝑘] = diag {𝑐 ⋅ 𝑒0/𝐿, . . . , 𝑐 ⋅ 𝑒−𝑙/𝐿, . . . , 𝑐 ⋅ 𝑒−(𝐿−1)/𝐿} . (21)

In practice,E
ℎ
[𝑘] can be obtained by using the estimatedCIR.

The elements of R
ℎ
[𝑘, 𝑇
𝑡
] can be calculated by (5) and be

written as

R
ℎ
[𝑘, 𝑇
𝑡
] = diag {𝑐 ⋅ 𝐽

0
(2𝜋𝑓d [𝑘] 𝑇𝑡) ⋅ 𝑒

0/𝐿

, . . . ,

𝑐 ⋅ 𝐽
0
(2𝜋𝑓d [𝑘] 𝑇𝑡) ⋅ 𝑒

−𝑙/𝐿

, . . . ,

𝑐 ⋅ 𝐽
0
(2𝜋𝑓d [𝑘] 𝑇𝑡) ⋅ 𝑒

−(𝐿−1)/𝐿

} ,

(22)

where 𝑓d[𝑘] is the maximumDoppler frequency shift at time
𝑘. As E

ℎ
[𝑘] and R

ℎ
[𝑘, 𝑇
𝑡
] are both diagonal matrixes, Q[𝑘] is

also diagonal and can be denoted as

Q [𝑘] = 2E
ℎ
[𝑘] − 2R

ℎ
[𝑘, 𝑇
𝑡
] . (23)

Seen from (23), (22), and (6), 𝑓d is caused by the relative
speed between the transmitter and the receiver and governs
the channel correlation, which reflects the varying speed of
the CIR.

As a result, both Q[𝑘] and R
ℎ
[𝑘, 𝑇
𝑡
] can be identified by

establishing multiple models on Doppler shift 𝑓d and con-
ducting IMM estimation based on these models. Models are
established by dividing 𝑓d into a series of values which are
indexed by 𝑓(𝑖)d . When mode 𝑓(𝑖)d is in effect at time 𝑘, the
system mode is denoted as

𝑓
(𝑖)

d [𝑘] ≜ {𝑓d [𝑘] = 𝑓
(𝑖)

d } ,

𝑖 ∈ {1, 2, . . . , 𝑁
𝑓
} , ∀𝑓

(𝑖)

d ∈ M,
(24)

where M is the set of all modal states. 𝑁
𝑓
is the amount of

models inM. Making Y𝑘 the set of all the measurements y[𝑘]
in (7) from the initial time to time 𝑘, Y𝑘 is denoted as

Y𝑘 = {y [0] , y [1] , . . . , y [𝑘]} . (25)



Mathematical Problems in Engineering 5

The optimal estimation of R
ℎ
[𝑘, 𝑇
𝑡
] in the MMSE sense

is the expectation based on the posterior distribution. The
estimated value of R

ℎ
[𝑘, 𝑇
𝑡
] is given by

R̂
ℎ
[𝑘, 𝑇
𝑡
] ≜ E [R

ℎ
[𝑘, 𝑇
𝑡
] | Y𝑘]

= ∑

𝑖

E [R
ℎ
[𝑘, 𝑇
𝑡
] | Y𝑘, 𝑓(𝑖)d [𝑘]] ⋅ Pr {𝑓(𝑖)d [𝑘] | Y𝑘}

= ∑

𝑖

R̂(𝑖)
ℎ
[𝑘, 𝑇
𝑡
] ⋅ 𝜇
(𝑖)

[𝑘] ,

(26)

where R̂(𝑖)
ℎ
[𝑘, 𝑇
𝑡
] is the estimated value of R

ℎ
[𝑘, 𝑇
𝑡
] based on

model 𝑖 and is defined as

R̂(𝑖)
ℎ
[𝑘, 𝑇
𝑡
] ≜ E [R

ℎ
[𝑘, 𝑇
𝑡
] | Y𝑘, 𝑓(𝑖)d [𝑘]] ; (27)

𝜇
(𝑖)

[𝑘] is the posterior probability that model 𝑖 is affected at
time 𝑘 and is given by

𝜇
(𝑖)

[𝑘] ≜ Pr {𝑓(𝑖)d [𝑘] | Y𝑘} . (28)

In (26), R̂(𝑖)
ℎ
[𝑘, 𝑇
𝑡
] can be calculated by (22) using the value

of 𝑓d in each model. Consequently, the problem of R
ℎ
[𝑘, 𝑇
𝑡
]

identification is reduced to the problem of calculating 𝜇(𝑖)[𝑘],
which is solved in the following sections.

(2) Channel Estimation. Seen from the discussion above,
multiple models are established on Doppler shift 𝑓d. The
mode changes are governed by a Markov chain with the
transition probabilitymatrix Γ, whose element Γ(𝑗𝑖) is denoted
as

Γ
(𝑗𝑖)

= Pr (𝑓(𝑖)d [𝑘] | 𝑓
(𝑗)

d [𝑘 − 1]) . (29)

Seen from (29), Γ(𝑗𝑖) is the transition probability from mode
𝑗 in time 𝑘 − 1 to mode 𝑖 in time 𝑘 and can be obtained
statistically. The optimal estimation of CIR can be denoted
as

ĥ [𝑘] ≜ E [h [𝑘] | Y𝑘]

= ∑

𝑖

E [h [𝑘] | Y𝑘, 𝑓(𝑖)d [𝑘]] ⋅ Pr {𝑓(𝑖)d [𝑘] | Y𝑘}

= ∑

𝑖

ĥ(𝑖) [𝑘] ⋅ 𝜇(𝑖) [𝑘] ,

(30)

where ĥ(𝑖)[𝑘] is the estimated value of h[𝑘] based on model 𝑖
and is defined as

ĥ(𝑖) [𝑘] ≜ E [h [𝑘] | Y𝑘, 𝑓(𝑖)d [𝑘]] ; (31)

Y𝑘 and 𝜇(𝑖)[𝑘] are defined by (25) and (28). In optimal Bayes’
theorem,

𝜇
(𝑖)

[𝑘] = Pr {𝑓(𝑖)d [𝑘] | Y𝑘}

= Pr {𝑓(𝑖)d [𝑘] | y [𝑘] ,Y𝑘−1}

=
Pr {y [𝑘] | 𝑓(𝑖)d [𝑘] ,Y𝑘−1} ⋅ 𝜇(𝑖) [𝑘−]

Pr {y [𝑘] | Y𝑘−1}
,

(32)

where Pr{y[𝑘] | 𝑓(𝑖)d [𝑘],Y
𝑘−1

} is the likelihood function,
Pr{y[𝑘] | Y𝑘−1} is the normalization factor, and 𝜇(𝑖)[𝑘−] ≜
Pr{𝑓(𝑖)d [𝑘] | Y

𝑘−1

} is the prediction model probability, which
can be obtained by

𝜇
(𝑖)

[𝑘
−

] = ∑

𝑗

Γ
(𝑗𝑖)

⋅ 𝜇
(𝑗)

[𝑘 − 1] . (33)

As a result, 𝜇(𝑖)[𝑘] can be described in the following form:

𝜇
(𝑖)

[𝑘] =
Pr {y [𝑘] | 𝑓(𝑖)d [𝑘] ,Y𝑘−1} ⋅ ∑

𝑗
Γ
(𝑗𝑖)

⋅ 𝜇
(𝑗)

[𝑘 − 1]

Pr {y [𝑘] | Y𝑘−1}
.

(34)

Seen from (30) and (34), in optimal Bayes filters, every
time CIR is estimated, the history of measurements Y𝑘 is
needed. The longer time that the estimator works for, the
larger the amount of calculation is required. In view of this,
by suboptimally approximating Bayes filter, fixed memory
algorithms have been proposed [4, 17]. The generalized
pseudo-Bayesian filter of order 𝑟 (GPB𝑟) approaches the
optimal algorithm taking a memory history of 𝑟−1 steps into
account. Hence, in channel estimation𝑁𝑟

𝑚
filters are needed

in each time 𝑘. IMM estimator performs as well as GPB2,
with the lower computational requirements than GPB1. Thus
the IMM algorithm has enjoyed remarkable success as one of
the most cost-effective schemes for the estimation in hybrid
systems.

The IMM channel estimator is recursive. 𝑁
𝑓
Kalman

filters, corresponding to each mode, run in parallel in
each cycle, which consist of four steps: interacting/mixing,
filtering, and combination. The structure of IMM channel
estimator is also shown in Figure 2, where ĥ(𝑖)[𝑘], P(𝑖)[𝑘],
and R(𝑖)

ℎ
[𝑘, 𝑇
𝑡
] are the estimated CIR by KF 𝑖 at time 𝑘, its

covariance, and its correlation; ĥ(0𝑖)[𝑘] and P(0𝑖)[𝑘] are the
mixed condition for KF 𝑖 at time 𝑘 and its covariance; ĥ[𝑘],
P[𝑘], and R

ℎ
[𝑘, 𝑇
𝑡
] are the combined estimated CIR at time

𝑘, its covariance, and its correlation; 𝜇(𝑖)[𝑘−] and 𝜇(𝑖)[𝑘] are
the predicted and posterior probabilities for KF 𝑖; 𝜆(𝑖)[𝑘] is the
likelihood function of KF 𝑖. In each cycle, the estimated CIR
and model probability 𝜇(𝑖)[𝑘] are firstly interacted with each
other and mixed for each mode under the assumption that
this mode is in effect at the current time.Therefore the initial
condition for each filter based on certain model is obtained.
Secondly, the interacted/mixed initial conditions are sent to
their particular model-based filters. In channel estimation,
KFs based on different models are applied in the filtering
step.The estimated CIRs and the updatedmodel probabilities
based on each model are obtained. After the filtering step,
the outputs of each filter are combined as the final result
at the current time. Seen from the upper description and
Figure 2, as a weighting factor, themodel probability 𝜇(𝑖)[𝑘] is
important to the interacting/mixing and combination steps.
In IMM algorithm, the model probabilities are given by

𝜇
(𝑖)

[𝑘] =
1

𝑐 [𝑘]
∑

𝑗

Γ
(𝑗𝑖)

⋅ 𝜇
(𝑗)

[𝑘 − 1] ⋅N [u(𝑗) [𝑘] ; 0, S(𝑗)
𝐾
[𝑘]] ,

(35)
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ĥ(i)[k − 1]P(i)[k − 1]𝜇(i)[k − 1]

𝜇(i)[k−]

ĥ(01)[k − 1] ĥ(0N𝑓)
[k − 1]

P(01)[k − 1] P(0N𝑓)[k − 1] y[k]

KF KF
1 Nf

𝜆(i)[k]
ĥ(1)[k] ĥ(N𝑓)

[k]
P(1)[k] P(N𝑓)[k]

R̂(1)
h [k, Tt] R̂(N𝑓)

h
[k, Tt]

𝜇(i)[k]

· · ·

· · ·

· · ·

Interaction/mixing

Model
probability

update
Combination

𝜆(N𝑓)[k]

ĥ[k]R̂h[k, Tt]P[k]

Figure 2: Structure of IMM channel estimation.

where 𝑐[𝑘] is the normalization constant and N[u(𝑗)[𝑘];
0, S(𝑗)
𝐾
[𝑘]] denotes the probability of u(𝑗)[𝑘] in the normal

distribution with zero mean and the covariance of S(𝑖)
𝐾
[𝑘].

u(𝑗)[𝑘] and S(𝑗)
𝐾
[𝑘] are the residual and its covariance at time

𝑘 for the model 𝑗 based KF and illustrated in the summary of
IMM based channel estimator in Appendix B.

3.3. Discussions. The data format suitable for IMM based
channel estimation algorithm on the basis of single carrier
communication system is shown in Figure 3(a). Training
sequences are sent frequently. The time interval between the
two training sequences is 𝑇

𝑡
, with the assumption that the

channel correlation R
ℎ
[𝑘, 𝑇
𝑡
] is big enough and the influence

of CIR variance during 𝑇
𝑡
can be omitted. In an adaptive

communication system, R
ℎ
[𝑘, 𝑇
𝑡
], which reflects the speed of

channel variance, can be used to adapt the transmitter. And
𝑇
𝑡
can be adjusted according to the channel correlation to

achieve better reliability. Moreover, with the help of software
radio, adaptive communication can also change its method
of communication, such as modulation and coding, with
respect to the channel correlation.

From the previous analysis, although presented on the
basis of single carrier communication systems, the IMM
based channel estimation algorithm can also be applied in
multiple carrier communication systems, such as OFDM
systems in two ways, training mode and pilot mode, whose
training symbols are arranged as in Figures 3(b) and 3(c). In
training mode, training symbols are sent in all subcarriers at
the same time; the IMM channel estimation is functional by
setting the elements of matrix S in (9) as the sampled signal at

TtTt

(a) Single carrier communication

Time

TtTt

Training Data
symbols symbols

Fr
eq

ue
nc

y

(b) Training mode of multiple carrier communication

Time

TtTt

Fr
eq

ue
nc

y

Training symbol
Data symbol

(c) Pilot mode of multiple carrier communication

Figure 3: Typical arrangement of training symbols.

the receiver. In pilot mode training symbols are sent in some
of the subcarriers with data symbols sent in other subcarriers
at the same time. A multiple carrier communication is
equivalent to the signal transmitted in parallel. Therefore,
IMM based channel estimation can be applied separately in
subcarriers with training symbols. In each subcarrier, the
wireless channel can be seen as a Rayleigh flat fading channel.
The CIR at each subcarrier can be estimated by IMM based
channel estimation algorithm, and then these estimates are
interpolated via different methods to obtain the general CIR.

4. Simulation Results and
Performance Analysis

In this section, the performance of both KF and IMM based
channel estimation algorithms is compared and analyzed
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Figure 4:MSEs of CIR amplitude with constant maximumDoppler
frequency.

based on simulation experiments in different conditions.
The channel estimation algorithms are applied to a wireless
system whose signal is modulated by 16-QAM with the
carrier frequency 2.4GHz and the symbol period 𝑇

𝑠
= 3 𝜇s.

The signals travel through a Rayleigh frequency flat fading
channel, which is estimated every 𝑇

𝑡
= 500𝑇

𝑠
.

In the first case, the maximumDoppler frequency shift of
the fading channel is a constant value𝑓d = 100Hz.TheMSEs
of the results from different algorithms are analyzed first.The
MSE of an estimated parameter is calculated as

MSE [𝑎 [𝑘]] =
∑
𝐾
(𝑎[𝑘] − 𝑎[𝑘])

2

𝐾
, 𝑘 = 1, . . . , 𝐾, (36)

where 𝑎[𝑘] is the estimated value of 𝑎[𝑘] at time 𝑘. The
MSEs of estimated channel amplitude and phase in different
measurement noise levels are shown in Figures 4 and 5. Seen
from the figures, it can be found that channel estimation
based on IMM performs better than the KF estimator in
MSE. The reason is that IMM estimator operates in one
model with the model probability of 1, when 𝑓d is constant.
The estimated value is more accurate than KF when the
model is set precisely. A similar result can be found in BER
which is shown in Figure 6. Figure 6 is the relation between
BER and 𝐸

𝑏
/𝑁
0
with different channel estimation algorithms

applied in the receiver. It can be concluded that the channel
estimation algorithm with better MSE performance can lead
to a better BER performance.

In the second case, the maximum Doppler shift 𝑓d
switches between 100Hz and 200Hz every 150ms. The IMM
channel estimator is carried using twomodels (𝑓(1)d = 100Hz,
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Figure 5: MSEs of CIR phase with constant maximum Doppler
frequency.
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Figure 6: Bit error rates with constant maximum Doppler fre-
quency.

𝑓
(2)

d = 200Hz) governed by the Markov chain transition
matrix between models:

Γ = [
0.993 0.007

0.01 0.99
] . (37)

The channel correlation R
ℎ
[𝑘, 𝑇
𝑡
] is analyzed first.

Figure 7 shows the change of the real and estimated R
ℎ
[𝑘, 𝑇
𝑡
]
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by different channel estimation algorithms without mea-
surement noise w[𝑘] presenting. Seen from the figure, KF
cannot provide accurate R

ℎ
[𝑘, 𝑇
𝑡
]. Equation (17) shows that

the estimated processing noise covariance used in KF is an
average of historical observed values. Since channel corre-
lation is related to processing noise covariance, KF cannot
track time-variant R

ℎ
[𝑘, 𝑇
𝑡
] precisely. In contrast, based on

IMM algorithm, the channel correlation can be estimated
successfully as shown in Figure 7. The MSEs of real and
estimated R

ℎ
[𝑘, 𝑇
𝑡
] with different measurement noise levels

are shown in Figure 8. Seen from Figures 7 and 8, IMM
channel estimation algorithm can provide accurate channel
correlation R

ℎ
[𝑘, 𝑇
𝑡
], which not only affects the performance

of the channel estimation algorithm but is also important
information for the adaptive communication system to adjust
the system parameters. In contrast the KF based estimator
fails to estimate the time-variant channel correlation.

TheMSE of CIR is also analyzed in this case.TheMSEs of
amplitude and phase are shown in Figures 9 and 10. Similarly,
as the previous case, with accurate estimated R

ℎ
[𝑘, 𝑇
𝑡
], IMM

channel estimation performs better than KF based channel
estimators. Contrasting with Figures 4 and 5 in the first case,
the KF performs much worse when R

ℎ
[𝑘, 𝑇
𝑡
] is time-variant,

because a reliable time-variant R
ℎ
[𝑘, 𝑇
𝑡
] cannot be obtained

byKF.Consequently, the BERperformances of the algorithms
are affected by the accuracy of the estimated CIRs. Figure 11
shows the BERs in different measurement noise levels. It
is the same as the pervious analysis that the IMM channel
estimation algorithm performs better than the KF method in
BER when R

ℎ
[𝑘, 𝑇
𝑡
] changes in time.
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Figure 8: MSEs of channel correlation with time-variant maximum
Doppler frequency.
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Figure 9: MSEs of CIR amplitude with time-variant maximum
Doppler frequency.

5. Summary and Conclusion

Correlation of a fading channel is important information for
channel estimation. The performance of traditional channel
estimation with the consideration of time-variance channel
correlation is limited. In this paper, by modeling wireless
fading channel as a hybrid dynamic system, the channel esti-
mation algorithm based on IMM is presented. The proposed
algorithm can identify the channel correlation with the help
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Figure 11: Bit error rates with time-variant maximum Doppler
frequency.

of the IMM algorithm.With accurate information of channel
correlation, the proposed algorithm is capable of performing
accurate estimation on the fading wireless channel with time-
variant or time-invariant correlation.The results of a number
of simulation experiments show that the proposed algorithm
is efficient with good performance in estimating CIR as well
as the channel correlation.

Appendices

A. Derivation of the Process Noise Covariance

From (4), the following equation can be obtained:

h [𝑘] ⋅ h∗ [𝑘] = h [𝑘 − 1] ⋅ h∗ [𝑘 − 1] + h [𝑘 − 1]

⋅ k∗ [𝑘] + k [𝑘] ⋅ h∗ [𝑘 − 1] + k [𝑘] ⋅ k∗ [𝑘] .
(A.1)

Calculating the expectation and taking (10) and (20) into the
upper equation,

E
ℎ
[𝑘] = E [h [𝑘] ⋅ h∗ [𝑘]]

= E [h [𝑘 − 1] ⋅ h∗ [𝑘 − 1]] + E [h [𝑘 − 1] ⋅ k∗ [𝑘]]

+ E [k [𝑘] ⋅ h∗ [𝑘 − 1]] + E [k [𝑘] ⋅ k∗ [𝑘]]

= E
ℎ
[𝑘] + E [h [𝑘 − 1] ⋅ k∗ [𝑘]]

+ E [k [𝑘] ⋅ h∗ [𝑘 − 1]] +Q [𝑘] .
(A.2)

The following equation can be obtained from (A.2):

E [h [𝑘 − 1] ⋅ k∗ [𝑘]] + E [k [𝑘] ⋅ h∗ [𝑘 − 1]] +Q [𝑘] = 0.
(A.3)

Taking (19) into (A.3), R
ℎ
[𝑘, 𝑇
𝑡
] can be written as

R
ℎ
[𝑘, 𝑇
𝑡
] = E [h [𝑘] ⋅ h∗ [𝑘 − 1]]

= E [(h [𝑘 − 1] + k [𝑘]) ⋅ h∗ [𝑘 − 1]]

= E
ℎ
[𝑘] + E [k [𝑘] ⋅ h∗ [𝑘 − 1]] .

(A.4)

Taking (A.3) into (A.4), the covariance of the process noise
k[𝑘] can be written in the form

Q [𝑘] = (E
ℎ
[𝑘] + E∗

ℎ
[𝑘]) − (R

ℎ
[𝑘, 𝑇
𝑡
] + R∗
ℎ
[𝑘, 𝑇
𝑡
]) .

(A.5)

B. Summary of the IMM Based
Channel Estimator

(1) Interaction/Mixing. For eachmodel 𝑖, we get the following.
Predicted model probability:

𝜇
(𝑖)

[𝑘
−

] ≜ Pr {𝑓(𝑖)d [𝑘] | Y𝑘} = ∑
𝑗

Γ
(𝑗𝑖)

𝜇
(𝑗)

[𝑘 − 1] . (B.1)

Mixing probability:

𝜇
(𝑗|𝑖)

[𝑘
−

] ≜ Pr {𝑓(𝑗)d [𝑘 − 1] | 𝑓
(𝑖)

d [𝑘] ,Y𝑘−1}

=
Γ
(𝑗𝑖)

𝜇
(𝑗)

[𝑘 − 1]

𝜇(𝑖) [𝑘−]
.

(B.2)

Mixing estimate:

ĥ(0𝑖) [𝑘 − 1] ≜ ∑
𝑗

ĥ(𝑗) [𝑘 − 1] 𝜇(𝑗|𝑖) [𝑘−] . (B.3)
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Mixing covariance:

P(0𝑖) [𝑘 − 1] = ∑
𝑗

P(𝑗) [𝑘 − 1] 𝜇(𝑗|𝑖) [𝑘−] + X(𝑖), (B.4)

where

X(𝑖) ≜ ∑
𝑗

(h(𝑗) [𝑘 − 1] − ĥ(0𝑖) [𝑘 − 1])

⋅ (h(𝑗)[𝑘 − 1] − ĥ(0𝑖)[𝑘 − 1])
T
𝜇
(𝑗|𝑖)

[𝑘
−

] .

(B.5)

(2) Kalman Filtering. For each model 𝑖, we get the following.
Separating the real and image parts, we can write ĥ(0𝑖)[𝑘−

1] as

ĥ(0𝑖)ex [𝑘 − 1] = {Re {ĥ
(0𝑖)

[𝑘 − 1]} , Im {ĥ(0𝑖) [𝑘 − 1]}}
T
.

(B.6)

Predicted mean and covariance:

ĥ(𝑖)ex [𝑘
−

] = ĥ(0𝑖)ex [𝑘 − 1]

P(𝑖) [𝑘−] = P(0𝑖) [𝑘 − 1] +Q(𝑖)ex [𝑘 − 1] ,
(B.7)

where

Q(𝑖) [𝑘] = 2E
ℎ
[𝑘] − 2R(𝑖)

ℎ
[𝑘, 𝑇
𝑡
] . (B.8)

Residual and Kalman gain:

u(𝑖) [𝑘] ≜ yex [𝑘] −Dexĥ
(𝑖)

[𝑘
−

] ,

S(𝑖)
𝐾
[𝑘] = DexP

(𝑖)

[𝑘
−

]DT
ex + R [𝑘] ,

K(𝑖) [𝑘] = P(𝑖) [𝑘−]DT
ex (S
(𝑖)

𝐾
[𝑘])
−1

,

(B.9)

where Dex is the Jacobian matrix of the measurement equa-
tion described by (13).

Update state and covariance matrix:

ĥ(𝑖)ex [𝑘] = ĥ(𝑖)ex [𝑘
−

] + K(𝑖) [𝑘] u(𝑖) [𝑘] ,

ĥ(𝑖) [𝑘] = Mĥ(𝑖)ex [𝑘] ,

P(𝑖) [𝑘] = P(𝑖) [𝑘−] − K(𝑖) [𝑘]DexP
(𝑖)

[𝑘
−

] ,

(B.10)

whereM is defined as

M ≜ [I
𝐿
, 𝑖I
𝐿
] , (B.11)

where I
𝐿
is 𝐿 × 𝐿 identity matrix. Likelihood function:

𝜆
(𝑖)

[𝑘] =N [u(𝑖) [𝑘] ; 0, S(𝑖)
𝐾
[𝑘]] . (B.12)

Model probability:

𝜇
(𝑖)

[𝑘] =
𝜇
(𝑖)

[𝑘
−

] 𝜆
(𝑖)

[𝑘]

∑
𝑗
𝜇(𝑗) [𝑘−] 𝜆(𝑗) [𝑘]

. (B.13)

(3) Combination. Estimated state and covariance matrix:

ĥ [𝑘] = ∑
𝑖

ĥ(𝑖) [𝑘] ⋅ 𝜇(𝑖) [𝑘] ,

P [𝑘] = ∑
𝑖

P(𝑖) [𝑘] 𝜇(𝑖) [𝑘] + X,
(B.14)

where

X ≜ ∑
𝑖

(ĥ(𝑖)ex [𝑘] − ĥex [𝑘]) (ĥ
(𝑖)

ex [𝑘] − ĥex[𝑘])
T
𝜇
(𝑖)

[𝑘] .

(B.15)

Estimated correlation matrix:

R̂
ℎ
[𝑘, 𝑇
𝑡
] = ∑

𝑖

R̂(𝑖)
ℎ
[𝑘, 𝑇
𝑡
] 𝜇
(𝑖)

[𝑘] . (B.16)
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