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The optimal solution of fuzzy bilevel linear programming withmultiple followers (MFFBLP)model is shown to be equivalent to the
optimal solution of the bilevel linear programming with multiple followers by using fuzzy structured element theory. The optimal
solution to this model is found out by adopting the Kuhn-Tucker approach. Finally, an illustrative numerical example for this model
is also provided to demonstrate the feasibility and efficiency of the proposed method.

1. Introduction

Bilevel programming introduced by Stackelberg in 1952 [1]
has been developed to solve the decentralized planning
problem inwhich decisionmakers are often arrangedwithin a
hierarchical administrative structure. A bilevel programming
problem occurs when two decision makers are located at
different hierarchical levels. In general, a decision maker at
the upper level is termed as the leader and the lower level
is termed as the follower [2, 3]. In the context of bilevel
programming, the leader first specifies a strategy; the follower
then specifies a strategy so as to optimize the objective with
full knowledge of the action of the leader.

Many researches on bilevel programming so far have
centered on the linear version of the problem [2–7]. Also
two fundamental issues in theory and practice of both bilevel
programming problems are mostly concerned: one is how
to model a real world bilevel programming and the other is
how to find properties and an optimal solution to the bilevel
programming problem. There are many such hierarchical
optimization problems in the fields of industry, agriculture,
finance transportation, and so on [8–11]. But in many prac-
tical hierarchical decision making systems, the coefficients
of objective functions and constraints sometimes cannot be
described by precise values. Hence, it is necessary for us to
formulate the decentralized decision making problem with
uncertainty as fuzzy models.

At present, the linear bilevel programming in which the
coefficients are characterized by fuzzy numbers is called fuzzy
linear bilevel programming [12, 13]. Sakawa et al. [4, 5, 14–17]
formulated cooperative fuzzy bilevel programming problems
and proposed an interactive fuzzy programming approach
to solve the problems. From this approach, the concept of a
bilevel programming was introduced based on fuzzy number
𝜆-level sets. At the same time, some researches applied fuzzy
set technique to deal with bilevel programming problems.
Shih and Stanely Lee [18] applied fuzzy set theory to overcome
the computational difficulties in solving bilevel problems.
Sinha [19] started from the fuzzy mathematical program-
ming approach to obtain the solution of multilevel linear
programming problems. Recently, Zhang et al. [13, 20–22]
studied fuzzy bilevel programming problem, which focuses
on the situation where the leader or the follower has multiple
objectives with fuzzy parameters and all followers share their
decision variables, and provided related algorithms based on
the y function in fuzzy set theory. Moreover, they have first
solved the fuzzy linear bilevel programming problems with a
specialized form of membership functions, triangular form,
in the fuzzy parameters [6, 12]. Nevertheless so far the fuzzy
linear bilevel programming problem remains the focus of
fuzzy multilevel programming problem.

This paper discusses the fuzzy bilevel linear programming
with multiple followers (MFFBLP) model. Based on the
homeomorphism properties between the bounded real fuzzy
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number and the monotone functions on [−1, 1], the compar-
ison of a fuzzy number is changed into a new comparison
of monotone function by the definition of fuzzy numbers
structured element weighted order. Then the optimal solu-
tions of new derived model is proved equivalent to the
optimal solution of the MFFBLP model. The feasibility of the
proposed approach is proved by giving a numerical example.

The following of this paper is arranged as follows. In
Section 2, some concepts and properties of the fuzzy num-
bers structured element weighted order are introduced. In
Section 3, we study the optimal solution of the MFFBLP
model. In Section 4, one numerical example is shown for
illustrating the proposed models and approach. Finally, we
give some conclusions in Section 5.

2. Preliminaries

In this section, some necessary backgrounds and notions of
fuzzy structured element theory are presented.

Definition 1 (see [23]). Let 𝐸 be a fuzzy set on 𝑅 and 𝐸(𝑥)

the membership function of 𝐸. Then, 𝐸 is called a fuzzy
structured element, if (i) 𝐸(0) = 1; (ii) 𝐸(𝑥) is a function
of monotonous increasing and right continuous on [−1, 0]

and monotone decreasing and left continuous on (0,1]; (iii)
𝐸(𝑥) = 0 (−∞ < 𝑥 < −1 or 1 < 𝑥 < +∞).

Definition 2 (see [23]). 𝐸 is called a canonical fuzzy struc-
tured element, if (i) ∀𝑥 ∈ (−1, 1), 𝐸(𝑥) > 0; (ii) 𝐸(𝑥) is
continuous and strictly monotone increasing on [−1, 0] and
strictly monotone decreasing and continuous on (0, 1].

Definition 3 (see [23]). 𝐸 is called a symmetrical fuzzy
structured element, if 𝐸(−𝑥) = 𝐸(𝑥).

Lemma 4 (see [23]). Let 𝐸 be a fuzzy structured element
and 𝐸(𝑥) is its membership function; the function 𝑓(𝑥) is
continuous and monotone on [−1, 1]; then 𝑓(𝐸) is a fuzzy
number, and the membership function of 𝑓(𝐸) is 𝐸(𝑓−1(𝑥)),
where 𝑓

−1

(𝑥) is rotational symmetry function for variables 𝑥
and 𝑦, if 𝑓 is a strictly monotone function, then 𝑓

−1

(𝑥) is the
inverse function of 𝑓(𝑥).

Lemma 5 (see [24]). For a given canonical fuzzy structured
element 𝐸 and any finite fuzzy number 𝐴, there always exists
a monotone bounded function 𝑓 on [−1, 1], having the form
𝐴 = 𝑓(𝐸).

Lemma 6 (see [25]). Let the triangular fuzzy number 𝐴 =

(𝑎, 𝑏, 𝑐), 𝐸 is a fuzzy structured element, and its membership
function is

𝐸 (𝑥) =

{{

{{

{

1 + 𝑥, −1 ≤ 𝑥 ≤ 0,

1 − 𝑥, 0 ≤ 𝑥 ≤ 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑠.

(1)

Then arbitrary bounded triangular fuzzy number can be
generated by 𝐸 and the monotone bounded function is

𝑓 (𝑥) =

{{

{{

{

(𝑏 − 𝑎) 𝑥 + 𝑏, −1 ≤ 𝑥 ≤ 0,

(𝑐 − 𝑏) 𝑥 + 𝑏, 0 ≤ 𝑥 ≤ 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑠.

(2)

Therefore, we easily get the conclusion 𝐴 = 𝑓(𝐸).

Remark 7. The class of all bounded fuzzy numbers is denoted
by 𝑁̃
𝐶

(𝑅), and let 𝐸 be a canonical fuzzy structured element.

Definition 8 (see [23]). Suppose 𝐴
1

, 𝐴
2

∈ 𝑁̃
𝐶

(𝑅). Its
structured element representation is 𝐴

𝑖

= 𝑓
𝑖

(𝐸), 𝑖 = 1, 2,
respectively, where 𝐸 is given a canonical fuzzy structured
element and its membership function is 𝐸(𝑥), 𝑓

1

(𝑥) and
𝑓
2

(𝑥) are the same sequence monotonic functions on [−1, 1],
respectively. By the following formula

𝐴
1

≤ 𝐴
2

⇐⇒ 𝐹(𝐴
1

, 𝐴
2

)

= ∫

1

−1

𝐸 (𝑥) (𝑓
1

(𝑥) − 𝑓
2

(𝑥)) 𝑑𝑥

= ∫

1

−1

𝐸 (𝑥) 𝑓
1

(𝑥) 𝑑𝑥 − ∫

1

−1

𝐸 (𝑥) 𝑓
2

(𝑥) 𝑑𝑥 ≤ 0

(3)

to determine the binary relation “≤” is a total order on 𝑁̃
𝐶

(𝑅)

and then called fuzzy numbers structured element weighted
order.

Lemma 9 (see [23]). Let 𝐸 be a symmetrical fuzzy structured
element, 𝑓

1

(𝑥) and 𝑓
2

(𝑥) are the same sequence monotonic
functions on [−1, 1], the fuzzy number 𝐴

1

= 𝑓
1

(𝐸), and 𝐴
2

=

𝑓
2

(𝐸), then

𝐴
1

+ 𝐴
2

= 𝑓
1

(𝐸) + 𝑓
2

(𝐸) ,

𝐴
1

− 𝐴
2

= 𝑓
1

(𝐸) + 𝑓
𝜏

2

(𝐸) ,

𝑘𝐴
1

= |𝑘| 𝑓
𝜏

1

(𝐸) ,

𝑘𝐴
2

= |𝑘| 𝑓
𝜏

2

(𝐸) ,

(4)

when 𝑘 ≥ 0, 𝑓𝜏
1

(𝐸) = 𝑓
1

(𝐸), and 𝑓
𝜏

2

(𝐸) = 𝑓
2

(𝐸); when 𝑘 < 0,
𝑓
𝜏

1

(𝐸) = −𝑓
1

(−𝐸), and 𝑓
𝜏

2

(𝐸) = −𝑓
2

(−𝐸).
The proof of above Lemmas can be found in reference [23–

25].
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Figure 1: Fuzzy bilevel linear programming withmultiple followers.

3. Fuzzy Bilevel Linear Programming with
Multiple Followers

Figure 1 shows the fuzzy bilevel linear programming with
multiple followers model (MFFBLP), and this mathematical
model is defined as follows:

min
𝑥𝑖

𝑍
1

1

=

𝑁

∑

𝑖=1

𝑐
1

𝑖

𝑥
𝑖

+

𝑆

∑

𝑠=1

𝑀

∑

𝑗=1

𝑑
1

𝑠𝑗

𝑦
𝑠𝑗

;

s.t. where𝑦
𝑠𝑗

(𝑠 = 1, 2, . . . , 𝑆; 𝑗 = 1, 2, . . . ,𝑀)

is the solution of the lower level problem:

min
𝑦𝑠𝑗

𝑍
2

𝑠

=

𝑁

∑

𝑖=1

𝑐
2

𝑠𝑖

𝑥
𝑖

+

𝑀

∑

𝑗=1

𝑑
2

𝑠𝑗

𝑦
𝑠𝑗

s.t
𝑁

∑

𝑖=1

𝑎
𝑠

𝑡𝑖

𝑥
𝑖

+

𝑀

∑

𝑗=1

𝑏̃
𝑠

𝑡𝑗

𝑦
𝑠𝑗

≤ 𝑒
𝑠

𝑡

;

𝑥
𝑖

≥ 0; 𝑦
𝑠𝑗

≥ 0;

𝑖 = 1, 2, . . . , 𝑁; 𝑗 = 1, 2, . . . ,𝑀; 𝑠 = 1, 2, . . . , 𝑆;

𝑡 = 1, 2, . . . , 𝑇,

(5)

where 𝑍
1

1

is the leader’s objective function and 𝑍
2

𝑠

is the 𝑠th follower’s objective function; 𝑥
𝑖

, 𝑦
𝑠𝑗

∈

𝑅; 𝑐1
𝑖

, 𝑐2
𝑠𝑖

, 𝑑1
𝑠𝑗

, 𝑑2
𝑠𝑗

, 𝑎𝑠
𝑡𝑖

, 𝑏̃𝑠
𝑡𝑗

, 𝑒𝑠
𝑡

∈ 𝑁̃
𝐶

(𝑅).

Theorem 10. Suppose that 𝑍1
1

= 𝐺
1

1

(𝐸), 𝑍2
𝑠

= 𝐺
2

𝑠

(𝐸), 𝑐1
𝑖

=

𝑓
1

𝑖

(𝐸), 𝑐2
𝑠𝑖

= 𝑓
2

𝑠𝑖

(𝐸), 𝑑1
𝑠𝑗

= 𝐹
1

𝑠𝑗

(𝐸), 𝑑2
𝑠𝑗

= 𝐹
2

𝑠𝑗

(𝐸), 𝑎𝑠
𝑡𝑖

= 𝜑
𝑠

𝑡𝑖

(𝐸),
𝑏̃
𝑠

𝑡𝑗

= 𝑔
𝑠

𝑡𝑗

(𝐸), 𝑒𝑠
𝑡

= 𝜓
𝑠

𝑡

(𝐸), and 𝑀
1

1

= ∫
1

−1

𝐸(𝑡)𝐺
1

1

(𝑡)𝑑𝑡, if 𝐸
is a canonical fuzzy structured element, 𝐺1

1

(𝑡), 𝐺2
𝑠

(𝑡), 𝑓1
𝑖

(𝑡),
𝑓
2

𝑠𝑖

(𝑡), 𝐹1
𝑠𝑗

(𝑡), 𝐹2
𝑠𝑗

(𝑡), 𝜑𝑠
𝑡𝑖

(𝑡), 𝑔𝑠
𝑡𝑗

(𝑡), and 𝜓
𝑠

𝑡

(𝑡) are monotonous

increasing functions, then the model (5) is equivalent to the
following model:

min
𝑥𝑖

𝑀
1

=

𝑁

∑

𝑖=1

𝑥
𝑖

∫

1

−1

𝐸 (𝑡) 𝑓
1

𝑖

(𝑡) 𝑑𝑡+

𝑆

∑

𝑠=1

𝑀

∑

𝑗=1

𝑦
𝑠𝑗

∫

1

−1

𝐸 (𝑡) 𝐹
1

𝑠𝑗

(𝑡) 𝑑𝑡;

𝑠.𝑡. 𝑤ℎ𝑒𝑟𝑒 𝑦
𝑠𝑗

(𝑠 = 1, 2, . . . , 𝑆; 𝑗 = 1, 2, . . . ,𝑀) 𝑖𝑠 𝑡ℎ𝑒

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑟 𝑙𝑒V𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚:

min
𝑦𝑠𝑗

𝑀
2

𝑠

=

𝑁

∑

𝑖=1

𝑥
𝑖

∫

1

−1

𝐸 (𝑡) 𝑓
2

𝑠𝑖

(𝑡) 𝑑𝑡 +

𝑀

∑

𝑗=1

𝑦
𝑠𝑗

∫

1

−1

𝐸 (𝑡) 𝐹
2

𝑠𝑗

(𝑡) 𝑑𝑡

𝑠.𝑡

𝑁

∑

𝑖=1

𝑥
𝑖

∫

1

−1

𝐸 (𝑡) 𝜑
𝑠

𝑡𝑖

(𝑡) 𝑑𝑡 +

𝑀

∑

𝑗=1

𝑦
𝑠𝑗

∫

1

−1

𝐸 (𝑡) 𝑔
𝑠

𝑡𝑗

(𝑡) 𝑑𝑡

≤ ∫

1

−1

𝐸 (𝑡) 𝜓
𝑠

𝑡

(𝑡) 𝑑𝑡;

𝑥
𝑖

≥ 0; 𝑦
𝑠𝑗

≥ 0;

𝑖 = 1, 2, . . . , 𝑁; 𝑗 = 1, 2, . . . ,𝑀; 𝑠 = 1, 2, . . . , 𝑆;

𝑡 = 1, 2, . . . , 𝑇.

(6)
Proof. By Definition 8, we know that comparing the size of
fuzzy number𝑍1

1

by𝑀1
1

= ∫
−1

−1

𝐸(𝑡)𝐺
1

1

(𝑡) 𝑑𝑡 inmodel (5), then

𝑍
1

1

= 𝐺
1

1

(𝐸) =

𝑁

∑

𝑖=1

𝑐
1

𝑖

𝑥
𝑖

+

𝑆

∑

𝑠=1

𝑀

∑

𝑗=1

𝑑
1

𝑠𝑗

𝑦
𝑠𝑗

=

𝑁

∑

𝑖=1

𝑓
1

𝑖

(𝐸) 𝑥
𝑖

+

𝑆

∑

𝑠=1

𝑀

∑

𝑗=1

𝐹
1

𝑠𝑗

(𝐸) 𝑦
𝑠𝑗

;

(7)

because 𝑓
1

𝑖

(𝑡) and 𝐹
1

𝑠𝑗

(𝑡) are monotonous increasing func-
tions; then

𝑀
1

1

= ∫

1

−1

𝐸 (𝑡) 𝐺
1

1

(𝑡) 𝑑𝑡

= ∫

1

−1

𝐸 (𝑡) [

[

𝑁

∑

𝑖=1

𝑓
1

𝑖

(𝑡) 𝑥
𝑖

+

𝑆

∑

𝑠=1

𝑀

∑

𝑗=1

𝐹
1

𝑠𝑗

(𝑡) 𝑦
𝑠𝑗

]

]

𝑑𝑡

= ∫

1

−1

𝐸 (𝑡)

𝑁

∑

𝑖=1

𝑓
1

𝑖

(𝑡) 𝑥
𝑖

𝑑𝑡 + ∫

1

−1

𝐸 (𝑡)

𝑆

∑

𝑠=1

𝑀

∑

𝑗=1

𝐹
1

𝑠𝑗

(𝑡) 𝑦
𝑠𝑗

𝑑𝑡

=

𝑁

∑

𝑖=1

𝑥
𝑖

∫

1

−1

𝐸 (𝑡) 𝑓
1

𝑖

(𝑡) 𝑑𝑡 +

𝑆

∑

𝑠=1

𝑀

∑

𝑗=1

𝑦
𝑠𝑗

∫

1

−1

𝐸 (𝑡) 𝐹
1

𝑠𝑗

(𝑡) 𝑑𝑡.

(8)
In the same way, we get

𝑀
2

𝑠

= ∫

1

−1

𝐸 (𝑡) 𝐺
2

𝑠

(𝑡) 𝑑𝑡

=

𝑁

∑

𝑖=1

𝑥
𝑖

∫

1

−1

𝐸 (𝑡) 𝑓
2

𝑠𝑖

(𝑡) 𝑑𝑡 +

𝑀

∑

𝑗=1

𝑦
𝑠𝑗

∫

1

−1

𝐸 (𝑡) 𝐹
2

𝑠𝑗

(𝑡) 𝑑𝑡.

(9)
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By Lemmas 6 and 9, we obtain that

𝑁

∑

𝑖=1

𝑥
𝑖

∫

1

−1

𝐸 (𝑡) 𝜑
𝑠

𝑡𝑖

(𝑡) 𝑑𝑡 +

𝑀

∑

𝑗=1

𝑦
𝑠𝑗

∫

1

−1

𝐸 (𝑡) 𝑔
𝑠

𝑡𝑗

(𝑡) 𝑑𝑡

≤ ∫

1

−1

𝐸 (𝑡) 𝜓
𝑠

𝑡

(𝑡) 𝑑𝑡.

(10)

The proof is completed.

4. Algorithm and Numerical Example

4.1. Algorithm. By using Theorem 10, we give all steps of the
approach for the proposed MFFBLP model.

Step 1. If the fuzzy number is triangular fuzzy number,
according to Lemma 6 and 𝐸 expression, we have 𝜇

̃

𝐴

(𝑡) =

𝐸(𝑓
−1

(𝑡)) and then get 𝑓1
𝑖

(𝑡), 𝑓2
𝑠𝑖

(𝑡), 𝐹1
𝑠𝑗

(𝑡), 𝐹2
𝑠𝑗

(𝑡), 𝜑𝑠
𝑡𝑖

(𝑡), 𝑔𝑠
𝑡𝑗

(𝑡),
and 𝜓

𝑠

𝑡

(𝑡).

Step 2. Computation formula is as follows: ∫1
−1

𝐸(𝑡)𝑓
1

𝑖

(𝑡)𝑑𝑡,
∫
1

−1

𝐸(𝑡)𝑓
2

𝑠𝑖

(𝑡)𝑑𝑡, ∫
1

−1

𝐸(𝑡)𝐹
1

𝑠𝑗

(𝑡)𝑑𝑡, ∫
1

−1

𝐸(𝑡)𝐹
2

𝑠𝑗

(𝑡)𝑑𝑡, ∫
1

−1

𝐸(𝑡)

𝜑
𝑠

𝑡𝑖

(𝑡)𝑑𝑡, ∫
1

−1

𝐸(𝑡)𝑔
𝑠

𝑡𝑗

(𝑡)𝑑𝑡, and ∫
1

−1

𝐸(𝑡)𝜓
𝑠

𝑡

(𝑡)𝑑𝑡, and plug in
model (5).

Step 3. According to Theorem 10, the MFFBLP model is
transformed into the classical bilevel linear programming
with multiple followers model whose optimal solution of
model (6) can be derived from Kuhn-Tucker’s approach [7].

Step 4. After the optimal solution ofmodel (6) is plugged into
model (5), we get the optimal solution of theMFFBLPmodel.

4.2. Numerical Example. Consider the following MFFBLP
problem with 𝑥

1

∈ 𝑅
1

, 𝑥
2

∈ 𝑅
1

, 𝑦
11

∈ 𝑅
1, and 𝑦

21

∈ 𝑅
1.

Consider

min
𝑥1 ,𝑥2

𝑍
1

1

(𝑥
1

, 𝑥
2

, 𝑦
11

, 𝑦
21

) = 3̃.1𝑥
1

+ 8̃𝑥
2

+ 6̃.9𝑦
11

+ 1̃1𝑦
21

;

s.t. where given 𝑥
1

, 𝑥
2

, and 𝑦
11

, 𝑦
21

solve

the following problem.

min
𝑦11

𝑍
2

1

(𝑥
1

, 𝑥
2

, 𝑦
11

) = 2̃𝑥
1

+ 1̃𝑥
2

− 1̃𝑦
11

;

s.t. 6̃𝑥
1

− 1̃𝑥
2

+ 1̃3𝑦
11

≤ 1̃5,

5̃𝑥
1

+ 6̃.9𝑦
11

≤ 1̃5,

− 4̃𝑥
2

+ 2̃5𝑦
11

≤ 3̃.1;

min
𝑦21

𝑍
2

2

(𝑥
1

, 𝑥
2

, 𝑦
21

) = 1̃5𝑥
1

− 1̃𝑥
2

+ 8̃0𝑦
21

;

s.t. 1̃𝑥
1

+ 1̃𝑥
2

− 6̃.9𝑦
21

≤ 1̃0,

4̃0𝑥
1

+ 1̃𝑦
21

≤ 5̃;

𝑥
1

≥ 0, 𝑥
2

≥ 0, 𝑦
11

≥ 0, 𝑦
21

≥ 0,

(11)

where the triangular fuzzy numbers 1̃ = (0, 1, 2), 2̃ =

(1.5, 2, 2.5), 3̃.1 = (2, 3.1, 3.6), 4̃ = (2, 4, 6), 5̃ = (4.7, 5, 5.3),
6̃ = (5, 6, 7), 6̃.9 = (6.5, 6.9, 7.9), 8̃ = (7.5, 8, 8.5), 1̃0 =

(8, 10, 12), 1̃1 = (10.7, 11, 11.3), 1̃3 = (12, 13, 14), 1̃5 =

(14.5, 15, 15.5), 2̃5 = (23, 25, 27), 4̃0 = (39, 40, 41), and 8̃0 =

(77, 80, 83).

Step 1. By Lemma 6, we have

𝑓
1

1

(𝑡) = 𝜓
1

3

(𝑡) =

{{

{{

{

1.1𝑡 + 3.1, −1 ≤ 𝑡 ≤ 0

0.5𝑡 + 3.1, 0 ≤ 𝑡 ≤ 1

0, others,

𝑓
1

2

(𝑡) =

{{

{{

{

0.5𝑡 + 8, −1 ≤ 𝑡 ≤ 0

0.5𝑡 + 8, 0 ≤ 𝑡 ≤ 1

0, others,

𝐹
1

11

(𝑡) = 𝑔
1

21

(𝑡) =

{{

{{

{

0.4𝑡 + 6.9, −1 ≤ 𝑡 ≤ 0

𝑡 + 6.9, 0 ≤ 𝑡 ≤ 1

0, others,

𝐹
1

21

(𝑡) =

{{

{{

{

0.3𝑡 + 11, −1 ≤ 𝑡 ≤ 0

0.3𝑡 + 11, 0 ≤ 𝑡 ≤ 1

0, others,

𝑓
2

11

(𝑡) =

{{

{{

{

0.5𝑡 + 2, −1 ≤ 𝑡 ≤ 0

0.5𝑡 + 2, 0 ≤ 𝑡 ≤ 1

0, others,

𝑓
2

12

(𝑡) = 𝜑
2

11

(𝑡) = 𝜑
2

12

(𝑡) = 𝑔
2

21

(𝑡) =

{{

{{

{

𝑡 + 1, −1 ≤ 𝑡 ≤ 0

𝑡 + 1, 0 ≤ 𝑡 ≤ 1

0, others,

𝐹
2

11

(𝑡) = 𝜑
1

12

(𝑡) = 𝑓
2

22

(𝑡) =

{{

{{

{

𝑡 − 1, −1 ≤ 𝑡 ≤ 0

𝑡 − 1, 0 ≤ 𝑡 ≤ 1

0, others,

𝜑
1

11

(𝑡) =

{{

{{

{

𝑡 + 6, −1 ≤ 𝑡 ≤ 0

𝑡 + 6, 0 ≤ 𝑡 ≤ 1

0, others,

𝑔
1

11

(𝑡) =

{{

{{

{

𝑡 + 13, −1 ≤ 𝑡 ≤ 0

𝑡 + 13, 0 ≤ 𝑡 ≤ 1

0, others,



Mathematical Problems in Engineering 5

𝜓
1

1

(𝑡) = 𝜓
1

2

(𝑡) = 𝑓
2

21

(𝑡) =

{{

{{

{

0.5𝑡 + 15, −1 ≤ 𝑡 ≤ 0

0.5𝑡 + 15, 0 ≤ 𝑡 ≤ 1

0, others,

𝜑
1

21

(𝑡) = 𝜓
2

1

(𝑡) =

{{

{{

{

0.3𝑡 + 5, −1 ≤ 𝑡 ≤ 0

0.3𝑡 + 5, 0 ≤ 𝑡 ≤ 1

0, others,

𝜑
1

32

(𝑡) =

{{

{{

{

2𝑡 − 4, −1 ≤ 𝑡 ≤ 0

2𝑡 − 4, 0 ≤ 𝑡 ≤ 1

0, others,

𝑔
1

31

(𝑡) =

{{

{{

{

2𝑡 + 25, −1 ≤ 𝑡 ≤ 0

2𝑡 + 25, 0 ≤ 𝑡 ≤ 1

0, others,

𝐹
2

21

(𝑡) =

{{

{{

{

3𝑡 + 80, −1 ≤ 𝑡 ≤ 0

3𝑡 + 80, 0 ≤ 𝑡 ≤ 1

0, others,

𝑔
2

11

(𝑡) =

{{

{{

{

𝑡 − 6.9, −1 ≤ 𝑡 ≤ 0

0.4𝑡 − 6.9, 0 ≤ 𝑡 ≤ 1

0, others,

𝜓
2

1

(𝑡) =

{{

{{

{

2𝑡 + 10, −1 ≤ 𝑡 ≤ 0

2𝑡 + 10, 0 ≤ 𝑡 ≤ 1

0, others,

𝜑
2

11

(𝑡) =

{{

{{

{

𝑡 + 40, −1 ≤ 𝑡 ≤ 0

𝑡 + 40, 0 ≤ 𝑡 ≤ 1

0, others.
(12)

Step 2. Compute ∫
1

−1

𝑓
1

1

(𝑡)𝐸(𝑡)𝑑𝑡 = 3, ∫1
−1

𝑓
1

2

(𝑡)𝐸(𝑡)𝑑𝑡 = 8,
∫
1

−1

𝐹
1

11

(𝑡)𝐸(𝑡)𝑑𝑡 = 7, ∫1
−1

𝐹
1

21

(𝑡)𝐸(𝑡)𝑑𝑡 = 11, ∫1
−1

𝑓
2

11

(𝑡)𝐸(𝑡)𝑑𝑡 =

2, ∫
1

−1

𝑓
1

12

(𝑡)𝐸(𝑡)𝑑𝑡 = 1, ∫
1

−1

𝐹
2

11

(𝑡)𝐸(𝑡)𝑑𝑡 = −1, ∫
1

−1

𝜑
1

11

(𝑡)𝐸(𝑡)𝑑𝑡 = 6, ∫1
−1

𝑔
1

11

(𝑡)𝐸(𝑡)𝑑𝑡 = 13, ∫1
−1

𝜓
1

1

(𝑡)𝐸(𝑡)𝑑𝑡 =

15, ∫1
−1

𝜑
1

21

(𝑡)𝐸(𝑡)𝑑𝑡 = 5, ∫1
−1

𝜑
1

32

(𝑡)𝐸(𝑡)𝑑𝑡 = −4, ∫1
−1

𝑔
1

31

(𝑡)

𝐸(𝑡)𝑑𝑡 = 25, ∫1
−1

𝐹
2

21

(𝑡)𝐸(𝑡)𝑑𝑡 = 80, ∫1
−1

𝑔
2

11

(𝑡)𝐸(𝑡)𝑑𝑡 = −7,
∫
1

−1

𝜓
2

1

(𝑡)𝐸(𝑡)𝑑𝑡 = 10, and ∫
1

−1

𝜑
2

11

(𝑡)𝐸(𝑡)𝑑𝑡 = 40.

Step 3. By Theorem 10, the original problem is equivalent
to the following bilevel linear programming with multiple
followers’ problem:

min
𝑥1 ,𝑥2

𝑀
1

1

(𝑥
1

, 𝑥
2

, 𝑦
11

, 𝑦
21

) = 3𝑥
1

+ 8𝑥
2

+ 7𝑦
11

+ 11𝑦
21

;

s.t. where given𝑥
1

, 𝑥
2

, and𝑦
11

, 𝑦
21

solve

the following problem.

min
𝑦11

𝑀
2

1

(𝑥
1

, 𝑥
2

, 𝑦
11

) = 2𝑥
1

+ 𝑥
2

− 𝑦
11

;

s.t. 6𝑥
1

− 𝑥
2

+ 13𝑦
11

≤ 15,

5𝑥
1

+ 7𝑦
11

≤ 15,

− 4𝑥
2

+ 25𝑦
11

≤ 3;

min
𝑦21

𝑀
2

2

(𝑥
1

, 𝑥
2

, 𝑦
21

) = 15𝑥
1

− 𝑥
2

+ 80𝑦
21

;

s.t. 𝑥
1

+ 𝑥
2

− 7𝑦
21

≤ 10,

40𝑥
1

+ 𝑦
21

≤ 5;

𝑥
1

≥ 0, 𝑥
2

≥ 0, 𝑦
11

≥ 0, 𝑦
21

≥ 0.

(13)

Step 4. We use the Kuhn-Tucker approach to get an optimal
solution; the solution of the problem is as follows:

(𝑥
1

, 𝑥
2

, 𝑦
11

, 𝑦
21

) = (0.1182, 11.7878, 2.0061, 0.2723) ,

𝑀
1

1

= 111.6946, 𝑀
2

1

= 10.0181, 𝑀
2

2

= 11.7692

𝑍
1

1

= (𝑍
1

1

, 𝑍
1

1

, 𝑍
1

1

) = (104.5982, 111.5062, 119.5470) ,

𝑍
2

1

= (𝑍
2

1

, 𝑍
2

1

, 𝑍
2

1

) = (−3.8349, 10.0181, 23.8711) ,

𝑍
2

2

= (𝑍
2

2

, 𝑍
2

2

, 𝑍
2

2

) = (−0.8946, 11.7692, 24.4330) .

(14)

The example illustrates how to solve a MFFBLP problem
and obtains an optimal solution by using the proposed
approach.

5. Conclusions

A real world bilevel decision problem may be modeled to
have fuzzy coefficients. In this paper, we investigated the
MFFBLP model and solved this complex problem by using
the fuzzy structured element method. Further study includes
the development of models and methods for fuzzy multilevel
programming. We will also explore effective applications of
the proposed techniques.
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