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Traffic safety evaluation for traffic analysis zones (TAZs) plays an important role in transportation safety planning and long-range
transportation plan development. This paper aims to present a comprehensive analysis of zonal safety evaluation. First, several
criteria are proposed to measure the crash risk at zonal level. Then these criteria are integrated into one measure-average hazard
index (AHI), which is used to identify unsafe zones. In addition, the study develops a negative binomial regression model to
statistically estimate significant factors for the unsafe zones. The model results indicate that the zonal crash frequency can be
associated with several social-economic, demographic, and transportation system factors. The impact of these significant factors
on zonal crash is also discussed. The finding of this study suggests that safety evaluation and estimation might benefit engineers
and decision makers in identifying high crash locations for potential safety improvements.

1. Introduction

Traffic crashes have caused tremendous losses in terms of
death, injury, lost productivity, and property damage in our
society. In order to investigate factors which have an impact
on crashes, extensive researches have been conducted and
recognized in the literature [1–4]. According to different
research purposes, crashes can be analyzed individually
or aggregately for road segments, intersections, or TAZs.
Recent studies suggested that the TAZ level crash estimate
is important for safety planning purposes and also useful in
identifying and diagnosing zonal safety issues in an earlier
planning stage [5–7]. In summary, zonal crash analysis is
crucial in risk evaluation as well as crash predication for
TAZs. Since crash frequency is the simplest measure to assess
the degree of safety, modeling crash frequency attracts more
attention from researchers; most of the recent studies use it
as the major target. However, modeling crash frequency is
inadequate to make a comprehensive evaluation on traffic
safety, especially for the safety analysis of TAZs in which
safety risk may be also affected by many other factors, for

example, area, population, total roadway length, vehiclemiles
travelled (VMT), and so forth. Further, the safety status
for each TAZ also depends on the severity of crashes. For
example, crashes which involve fatality or injury should
receive more attention comparing to the propriety-damage-
only (PDO) crashes. By the motivation of comprehensive
evaluations, it is worth formulating safety risk measurements
in the consideration of crash frequency, crash severity, and
zonal characteristics. Toward this end, one of the objects
of this paper is to provide a more comprehensive safety
evaluation analysis based on several criteria, including total
number of crashes, total number of fatal and injury crashes,
total crash exposure rate, injury/fatality crash exposure rate,
weight hazard index (WHI), and average hazard index (AHI).
These criteria are capable of capturing the degree of safety risk
for each zone in different aspects; the detailed definition of
these criteria will be presented in the session of methodology.

In order to develop independent and dependent variables
for each TAZ, data from different sources such as socioeco-
nomic and transportation network will be aggregated into
each TAZ. First, all datasets are geocoded into the GIS
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platform. With the topology relationship among accidents,
roads, and TAZs, each crash will be assigned to a specified
TAZ. During this process, one practical issue is to determine
a TAZ for the crashes which occurred on boundaries shared
by two or more adjacent TAZs. What should be pointed
out is that such issue is not encountered in crash analysis
for road segments or intersections. In addition, the method
for allocating crashes on zonal boundaries was not clearly
discussed in current literature. So this study also seeks to
propose amethod for assigning crashes on boundaries as well
as presenting the process of multisource data integration.

2. Literature Review

In literature, traffic safety studies are typically conducted
on road segments and intersections. Most of these studies
consider crash frequency as their primary subjects. Empirical
results clearly indicated the possible association between
crash frequency and road characteristics. Tarko et al. [8]
indicated that attributes such as traffic lane width, location
of roads (rural/urban), and shoulder width are associated
with crash frequency. Ye et al. [9] found that the terrain and
the geometry of the roadway as well as visibility provided
by lighting also significantly affect the crash frequency. For
zonal crash frequency estimation, which recently received
researchers’ attention, can also be evaluated by the overall
road characteristics within a zone as expected. Guevara et al.
[5] stated that the safety predication model at planning level
is feasible and the model is helpful in developing incentive
programs for safety improvements. This type of research
connects the crash count in a TAZ not only to the transporta-
tion characteristics but also to several social-economic and
demographic characteristics, for example, average household
size and zonal population.

One of the earliest models regarding the zonal level
crash prediction was developed by Levine et al. [10]. They
tried to relate the motor vehicle accidents to zonal popula-
tion, employment, and road characteristics for the City and
County of Honolulu. It established an analysis framework for
zonal level accident analysis as well as safety planning. How-
ever, themodel in this study is linear and hence inappropriate
for crash count data analysis [6]. Exponential-type nonlinear
models are preferred for handling crash count data.

Since crash counts are usually assumed to be nonnegative
distributed integer numbers, Poisson or negative binomial
distribution would be a nature way to modeling the data.
Poisson regression models can be accepted in condition
where the traffic accidents are considered as a standard
Poisson process and have been applied in a number of
safety researches [11, 12]. However, crash frequency is usually
observed to be overdispersed [13]. In order to accommodate
such situations, negative binomial regression models can
be used [6]. In the study of Hadayeghi et al. [6], negative
binomial regression models were developed to estimate the
zonal traffic crash using variables of zonal attributes of socioe-
conomic and demographic, network, and traffic demand.
Two categories of crash counts, total crash and severe
crash, are examined in this analysis for the city of Toronto,
Ontario, Canada. It is a pilot research for macrolevel accident

prediction analysis, suggesting that the model is preferred
to function as a forecasting tool for zonal crash frequency
rather than to infer the causes of crashes [6]. Along with the
development of zonal crash prediction models, it is also nec-
essary to investigate the statistical relationship between crash
frequency and descriptive variables. Lovegrove and Sayed [7]
developed zonal level models to enhance traditional reactive
road safety improvement programs. In this research, they
developed negative binomial regression models and applied
themodels for black-spot identification as a case study. Other
than these parametric statistical models, a tree based model
is recently developed by Siddiqui et al. [14] and it intends
to make prediction on the aggregated zonal crash frequency.
The tree based model provides a nonparametric approach in
this area; yet it is more designed to make crash forecasting
rather than inferences. Specifically, at the zonal level, negative
binomial regression models were deployed and have been
deducted byAbdel-Aty et al. [15, 16]. Although there aremany
other regressionmodels adopted in zonal level safety analysis,
for example, Bayesian based models and tree based models,
negative binomialmodels are typically used to capture the key
and basic points in transportation safety analysis [17].

Even literature on zonal crashes is emphasized recently,
there still lacks analysis for zonal safety evaluations. Toward
this end, this study seeks to conduct a comprehensive analysis
for zonal safety evaluations.

3. Data

This research uses data provided by Pikes Peak Area Council
of Governments, Colorado. The data includes three types of
datasets: the TAZ dataset, the traffic and roadway dataset,
and the accident datasets. Specifically, the TAZ dataset
contains geographic boundary information for each zone,
zonal attributes, for example, population, number of housing
units and number of employments in a zone, and so forth.
The traffic and roadway data include number of lanes, road
length, and traffic characteristics such as traffic volumes, free
flow speed, speed limit, functional classification, and capacity.
The accident dataset is obtained from the Department of
Revenue (DOR) and geocoded into GIS database by the Pikes
Peak Area Council of Government (PPACG), which include
location and type for each accident that occurred on the roads
of the study area.

For accident data analysis, GIS technique is a crucial tool
to visualize and process traffic accident data [18, 19]. It is
also able to integrate different datasets frommultiple sources
[20]. Hence, the current study will import all datasets into
GIS platform for purposes of data processing and the subse-
quent safety evaluations. The accident dataset consists of all
reported accidents from July 2006 toDecember 2010 and each
accident recorded in the dataset is categorized as fatal, injury,
or property-damage-only.The data also includes several road
environment factors such as accident location, lighting condi-
tion, road surface, and weather condition. All variables of the
multisource transportation data were aggregated at the TAZ
level using ArcMap 10. After data integration, the detailed
TAZ level variables are illustrated in Table 1. In the study
area, there are total 733 TAZs. Among them, the smallest
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Table 1: Descriptions of TAZ level variables.

Variable name Definition 𝑁 Mean Standard deviation Min Max
Variables related to
roadway characteristics

LENGTH Total roadway segment length within a TAZ 733 6.45 7.19 0.30 53.51

ADT Total roadway average daily traffic within a
TAZ 733 212.94 242.17 0.53 2330.21

FFS Average total roadway free flow speed
within a TAZ 733 42.41 9.65 20 76

VMT Total daily vehicle travelled in a TAZ 733 102 912686 59324.95 72833.07
LANE Average number of lanes in a TAZ 733 2.86 0.88 2 6

Independent variables
related to demographic and
economic characteristics

LOW
Number of low income households in
proportion to the total number of
households

733 0.16 0.15 0 1

LOWMID
Number of middle-low income households
in proportion to the total number of
households

733 0.22 0.13 0 0.55

MID
Number of middle income households in
proportion to the total number of
households

733 0.20 0.10 0 0.50

MIDHIGH
Number of middle-high income households
in proportion to the total number of
households

733 0.22 0.14 0 1

HIGH
Number of high income households in
proportion to the total number of
households

733 0.13 .13 0 1

BASIC
Number of workers in basic category in
proportion to total number of workers in all
categories

733 0.21 0.23 0 1

RETAIL
Number of workers in retail category in
proportion to total number of workers in all
categories

733 0.17 0.20 0 1

TOTALSERVI
Total number of workers in service category
in proportion to total number of workers in
all categories

733 0.60 0.27 0 1

EMENROLL Number of students in elementary school in
proportion to total number of population 733 0.12 0.33 0 4.34

HSENROLL Number of students in high school in
proportion to total number of population 733 0.05 0.26 0 2.26

COLLENROLL Number of college students in proportion to
total number of population 733 0.05 0.43 0 7.39

POP Total number of population in a TAZ (in
thousands) 733 0.88 0.93 0 8.63

AREA Area of a TAZ 733 0.01 123.04 3.66 10.65

TAZ is 0.01 square mile and the largest is 123.04 square mile,
which represents a large variation in area. Table 1 summarizes
definition and descriptive statistics of these variables.

4. Methodology

4.1. Evaluation Measures. Zonal level crash analysis and
safety evaluation should use the criteria which will not only

capture the safety condition of each zone, but also compare
the crash risk and severity among zones. In the light of
comprehensive evaluation, it is useful to identify the unsafe
zones at the stage of planning level. This study introduces
six measures for evaluation of zonal traffic safety risks. The
first five measurements are total number of crashes, total
number of injury and fatal crashes, total crash exposure rate,
injury/fatal exposure rate, andweighted hazard index (WHI).
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And the average hazard index (AHI) is the last one which
comprehensively combines the first five measurements by a
scoring system.

Before introducing the six criteria, it is necessary to assign
crashes to a zone which occurred at the zonal boundaries.
This study proposed a method to assign these crashes; the
concept is to allocate these crashes to the surrounding zones
in proportional to the number of crashes which occurred
insider these zones. Consider the following:

𝐶
𝑖
= 𝐶
𝛼

𝑖
+ ∑

𝑗∈𝐽𝑖

𝐶
𝛼

𝑖

𝐵
𝛼

𝑗

. (1)

Equation (1) illustrates the proposed split mechanism, and
𝑖 indexes the TAZs in the entire research area; 𝐽

𝑖
is the set

which contains all crashes that occurred at the boundary of
zone 𝑖.𝐶

𝑖
is the total number of crashes assigned to each zone,

which is the sum of crashes that occurred inside this zone,
represented by 𝐶𝛼

𝑖
and the scaled crashes at the boundaries.

𝐵
𝛼

𝑗
is the summation of the number of insider crashes of TAZs

that share the crash 𝑗. So 𝐶𝛼
𝑖
constitutes a part of 𝐵𝛼

𝑗
. To be

noted, (1) can be used to define the total number of crashes
for each zone, and it is also capable of defining the number
of injures crashes, number of fatal crashes, and so forth.Then
the six safety risk evaluationmeasurements are introduced as
follows.

4.1.1. Total Number of Crashes. It is the sum of all crashes
including fatal (𝐹), injury (𝐼), and property damage only
(𝑂). It can be mathematically expressed by (2), where𝑀

1𝑖
is

the total number of crashes in TAZ 𝑖 and 𝐹
𝑖
, 𝐼
𝑖
, and 𝑂

𝑖
are

the number of fatal crashes, injury crashes, and property-
damage-only crashes, respectively. Consider the following:

𝑀
1𝑖
= 𝐹
𝑖
+ 𝐼
𝑖
+ 𝑂
𝑖
. (2)

4.1.2. Total Number of Fatal and Injury Crashes. It is the sum
of only fatal (𝐹) and injury (𝐼) type of crashes. It provides an
indication of crash severity in each zone; it can be illustrated
in

𝑀
2𝑖
= 𝐹
𝑖
+ 𝐼
𝑖
. (3)

4.1.3. Total Crash Exposure Rate. This exposure rate reflects
relatively safety at a zone. It can be expected that the number
of crashes would naturally increase if vehicle miles travelled
increase in a particular TAZ. The exposure rate is calculated
by (4) and it is reported on the basis of one million vehicle
miles traveled due to the small chance of accidents. Here,
VMT
𝑖
is the total vehicle miles travelled during the study

period in TAZ 𝑖. Consider the following:

𝑀
3𝑖
=
𝐹
𝑖
+ 𝐼
𝑖
+ 𝑂
𝑖

VMT
𝑖

× 10
6
. (4)

4.1.4. Injury/Fatality Crash Exposure Rate. Similar to the total
crash exposure rate, it measures the exposure rate for injury
and fatal crashes in each TAZ. Since there are even fewer

injury and fatal crashes, this rate is calculated on the basis of
100 million vehicle miles traveled in

𝑀
4𝑖
=
𝐹
𝑖
+ 𝐼
𝑖

VMT
𝑖

× 10
8
. (5)

4.1.5.WeightedHazard Index (WHI). Thismeasure takes into
consideration the weighted severity of the crashes. It is also
a type of exposure rate. In (6), the weight for each type of
crashes is represented by 𝐴, 𝐵, and 𝐶, respectively, with 𝐴
for fatal crashes, 𝐵 for injury crashes, and 𝐶 for property-
damage-only crashes. In this study, 𝐴 = 12, 𝐵 = 5, and 𝐶 =
1 are adopted [21]. Consider the following:

𝑀
5𝑖
=
𝐹
𝑖
× 𝐴 + 𝐼

𝑖
× 𝐵 + 𝑂

𝑖
× 𝐶

VMT
𝑖

× 10
6
. (6)

4.1.6. Average Hazard Index (AHI). Since each of the five
criteria reflects the traffic safety condition from different
aspects, it is useful to integrate these five criteria into one
which can reflect a more comprehensive performance of
traffic safety for each TAZ. First, the five criteria are trans-
ferred to dimensionless scores for each TAZ. The scores are
integers ranging from 0 to 4 to represent five levels of safety
evaluation. For each criterion, 5%, 50%, and 95% percentile
values are calculated for all TAZs in the study area, and then
the scores are assigned to each TAZ under each criterion by
the following definition.

Score = 0 if zero crash was presented.
Score = 1 if 0 < safety criterion ≤ 5% percentile.
Score = 2 if 5% percentile < safety criterion ≤
50% percentile.
Score = 3 if 50% percentile < safety criterion ≤
95% percentile.
Score = 4 if 95% percentile < safety criterion.

To be noted, scores under the five safety measurements
are calculated for each TAZ, respectively. So the AHI is
calculated by averaging the five scores, and then it is rounded
to the closed integers. Equation (7) gives the formulation
of AHI, where 𝑆

1𝑖
, 𝑆
2𝑖
, 𝑆
3𝑖
, 𝑆
4𝑖
, and 𝑆

5𝑖
are the scores of

𝑀
1𝑖
, 𝑀
2𝑖
, 𝑀
3𝑖
, 𝑀
4𝑖
, and𝑀

5𝑖
, respectively. Consider the fol-

lowing:

𝐴
𝑖
= Round(

𝑆
1𝑖
+ 𝑆
2𝑖
+ 𝑆
3𝑖
+ 𝑆
4𝑖
+ 𝑆
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5
) . (7)

4.2. Crash Frequency Predication Model. As discussed in
Section 2, traffic crash frequency is overdispersed, so this
study would adopt negative binomial regression model to
analyze and estimate crash frequency. Traffic crashes are
assumed to be independently distributed in the form of
negative binomial with positive mean parameter 𝜇

𝑖
and

positive scale parameter 𝛼 for zone 𝑖 shown as below:

𝑌
𝑖
∼ Negative Binomial (𝜇

𝑖
, 𝛼) . (8)
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Figure 1: Score frequency of the six evaluation measurements.

Therefore, the probability mass function for crash frequency
of zone 𝑖 is presented by (9), where Γ(⋅) is gammer function.
Consider the following:
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𝑖
= 𝑦 | 𝜇

𝑖
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,

𝑦 ∈ {0, 1, 2 . . .} .

(9)

With the specification above, it can be found that the expected
value of 𝑌

𝑖
, 𝐸(𝑌
𝑖
) = 𝜇
𝑖
and its variance Var(𝑌

𝑖
) = 𝜇 + 𝜇

2
/𝛼 >

𝐸(𝑌
𝑖
).The scale parameter 𝛼 is assumed to be the same for all

TAZ samples while the mean parameter 𝜇
𝑖
is varying across

TAZs. In a form of generalized linear model, a logarithm link
function is used as follows:

log (𝜇
𝑖
) = XT

i 𝛽, (10)

where Xi is the vector of explanatory variables and 𝛽 is the
coefficients for the corresponding vectors.

5. Analysis and Results

5.1. Descriptive Analysis. The total number of crashes for the
733 TAZs is 46948, among which 0.32% are fatal crashes.
The distribution of the scores under the six safety evaluation
criteria is presented in Figure 1. According to the definition,
the proportion of TAZs with scores of 2, 3, and 4 should be
roughly 45%, 45%, and 5%, respectively, while the remaining
5% is consisted of zero-crash zones and the zones with score
one. There are also connections between the six measures.
For example, the number of TAZs with score zero is identical
for the measurements of total number of fatal and injury
crashes and injury/fatality crash exposure rate since those
TAZs have no injury or fatal crashes presented. A safe TAZ
should have relatively small score under all the six criteria.
There should not be too much variation between these scores

Table 2: Score differences between theAHI and the first five criteria.

Difference between AHI and
the first five measures

Frequency of the values
−2 −1 0 1 2

𝐴
𝑖
−𝑀
1𝑖

0 175 480 78 0
𝐴
𝑖
−𝑀
2𝑖

0 103 369 249 12
𝐴
𝑖
−𝑀
3𝑖

10 104 593 26 0
𝐴
𝑖
−𝑀
4𝑖

0 66 530 133 4
𝐴
𝑖
−𝑀
5𝑖

2 104 617 10 0

numbers as positive correlations exist. In order to understand
the discrepancy between the first five scores and the AHI,
Table 2 provides the distribution of the difference between
the first five scores and the AHI. For the 733 TAZ samples,
this difference is varying from −2 to 2, in which the negative
values indicate that the AHI leads to less TAZs than the corre-
sponding measurement under this score. From Table 2, there
are only mismatch of less one category between the AHI and
other scores. Therefore, AHI is reliable and capable of pre-
senting a comprehensive criterion to measure the safety risk.

5.2. Risk Evaluation Analysis. In this study, each TAZ is first
evaluated using the AHI score. Figure 2 shows the geographic
distribution of AHI scores for the 733 TAZs. TAZs with the
highest risk (𝐴

𝑖
= 4) should be paid more attentions,

especially at the planning stage. To be noted,most of the zones
belong to categories of score = 3 and score = 2, which account
for 90% of zones. One objective of this analysis is to identify
the zones with the highest risk. It can be seen that almost all
the high-risk (𝐴

𝑖
= 4) TAZs are located in high-density areas

and the right part of Figure 2 presents the enlarged image of
this area. It is also interesting that a great proportion of the
high-risk TAZs are connected, which may indicate the geo-
graphic correlation between adjacent zones in terms of risks.

Besides AHI, another method which also comprehen-
sively combines the six measures is undertaken to identify
high-risk TAZs. For each TAZ, the number of the six criteria
whose score reaches 4 is used to identify these unsafe TAZs.
This approach is designed to identify unsafe zones with more
high-risk features. So this number ranges from zero to six
for each TAZ. Zero represents that none of these six scores is
greater than 4whereas six represents that zonesmay be under
high safety risk. Figure 3 illustrates this approach as well as its
distribution for the 733 TAZs. Similarly to the distribution of
AHI, unsafe zones are also concentrated in the high-density
area.

5.3. The Crash Prediction Model. The negative binomial
regression structure is used to model the total number
of crashes. The 733 TAZ samples are assumed to be dis-
tributed as independent negative binomial with the same
scale parameter 𝛼. Asmentioned before, themean parameter
ismodeled as the logarithmof linear combination of explana-
tory variables. Table 3 illustrates the original model with total
20 variables including the variables of roadway characteris-
tics, for example, total roadway segment length within a TAZ
and average free flow speed within a TAZ, demographic and



6 Mathematical Problems in Engineering

The result of round average 

N
W

S
E7.

50 15

22
.5 30

3.
75

Miles

No crash TAZ
Low crash TAZ
Medium-low crash TAZ

Medium-high crash TAZ
Very high crash TAZ

(a)

The result of round average 

No crash TAZ
Low crash TAZ
Medium-low crash 

Medium-high crash TAZ
Very high crash TAZ

Miles
0 0.5 1 2 3 4

N
W

S
E

TAZ

(b)

Figure 2: Geographic distribution of AHI for 733 TAZs.

Table 3: Estimation results of the original regression model.

Parameter Estimate coefficient Std. error 95%Wald confidence interval Hypothesis test
Lower Upper Wald chi-square df 𝑃 value

(Intercept) 3.179 1.075 1.071 5.286 8.736 1 .003
LENGTH .033 .0087 .016 .050 14.248 1 <.0001
ADT .002 .0004 .002 .003 45.815 1 <.0001
FFS −.027 .0057 −.038 −.016 22.487 1 <.0001
VMT 3.291𝐸 − 06 1.2109𝐸 − 06 9.175𝐸 − 07 5.664𝐸 − 06 7.386 1 .007
LANE 2 −.271 1.0288 −2.287 1.745 .069 1 .792
LANE 3 .269 1.0269 −1.743 2.282 .069 1 .793
LANE 4 .429 1.0274 −1.585 2.443 .174 1 .676
LANE 5 .328 1.0374 −1.705 2.362 .100 1 .752
LANE 6 0∗

LOWMID 1.107 .4010 .321 1.893 7.621 1 .006
MID −.508 .4799 −1.448 .433 1.119 1 .290
MIDHIGH −.208 .3775 −.948 .532 .304 1 .581
HIGH −.145 .3994 −.928 .638 .132 1 .716
RETAIL .858 .2440 .380 1.337 12.373 1 .000
TOTALSERVI .154 .1809 −.201 .508 .721 1 .396
EMENROLL .118 .1370 −.150 .387 .743 1 .389
HSENROLL .243 .1486 −.048 .535 2.682 1 .101
COLLENROLL −.048 .0980 −.240 .144 .237 1 .627
POP .326 .0589 .210 .441 30.621 1 <.0001
AREA −.002 .0045 −.011 .007 .189 1 .664
1/𝛼 .964 .0514 .868 1.070
∗Reference category.

social-economic characteristics, for example, proportion of
low income households, total number of population within a
TAZ, and TAZ areas. However, the variables are still overesti-
mated as some of them are not significant enough.Themodel
in Table 3 is developed through a selection process based

on the backward elimination with a 0.05 significance level.
The final model with all significant variables is presented in
Table 4.

For the variables of roadway characteristics, the model
results indicate that the VMT (vehicle miles travelled) and
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Table 4: Estimation results of the final regression model.

Parameter Estimate coefficient Std. error 95%Wald confidence interval Hypothesis test
Lower Upper Wald chi-square df 𝑃 value

(Intercept) 2.952 .2543 2.454 3.450 134.805 1 <.0001
LENGTH .019 .0068 .006 .032 7.666 1 .006
ADT .004 .0002 .003 .004 236.843 1 <.0001
FFS −.019 .0052 −.029 −.009 14.087 1 <.0001
HIGH −1.009 .3018 −1.60 −.417 11.178 1 .001
RETAIL 1.226 .2351 .765 1.686 27.182 1 <.0001
TOTALSERVI .391 .1736 .051 .731 5.081 1 .024
HSENROLL .296 .1470 .008 .584 4.062 1 .044
POP .372 .0488 .276 .467 57.998 1 <.0001
1/𝛼 1.025 0.054 .925 1.136

Count of high crash for six factors
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Figure 3: Number of measurements with large scores.

LANE (average number of lanes in a TAZ) are insignificant,
whereas the LENGTH, ADT, and FFS are preserved after the
backward elimination process. VMT are highly correlated
with LENGTH and ADT since high VMT may indicate high
LENGTH or high ADT. So the VMT are not included in
the model because of collinearity. The average number of
lanes (LANE) is insignificant in this model. With controlling
all the other variables, LANE cannot contribute additional
information to enhance the model and it may not have an
influence on zonal crash.

The length of roadway within a TAZ has a positive coef-
ficient as expected. Therefore, the zones with more roadways
will likely have more crashes. The total average daily traffic
within a TAZ also has a positive coefficient. With ADT and
other variables being controlled, zones with more LENGTH
tend to have high VMT and hence the zone is more exposed
to accidents. On the other hand, with LENGTH and other
variables being controlled, zones with higher ADT will be
inclined to lead to high VMT.

The negative coefficient on FFS indicates that TAZs
with higher average free flow speed (FFS) are less likely to
experience crashes with the controlling of other variables.
This founding is consistent with past research [22], in which
the crash frequency is defined for road segments and intersec-
tions.One possible explanation is that FFS is highly correlated
with the conditions and functional classification of road facil-
ities; better road facilities will provide better safety conditions
for driving and hence reduce the crash frequency accordingly.

The economic characteristics of a TAZ also have an
impact on crash frequency. In this study, the proportion of
high income households within a TAZ (HIGH) is negatively
associated with the total number of crashes. Therefore, TAZs
with more high income households are statistically safer than
other TAZs. Several reasons can lead to such result. For
example, richer households may have safer driving behavior,
and the condition of road facility in richer TAZs may be
also better than other TAZs, which lead to a safer driving
environment. Other than the impact of income attributes, the
proportion of retail and service employment also affect the
crash frequency in a positive manner. Therefore, the increase
of RETAIL or TOTALSERVI with the other variables being
fixed may cause the increase of crash frequency.

The coefficient on HSENROLL (number of students in
high school in proportion to total number of population) is
positive, which suggests that increase of HSENROLL may
cause the increase of crash frequency with other variables
being controlled. It is probably that the age of high school
students is between 13 and 18, some of these students (age
greater than 16) are allowed to hold driver’s licenses in
Colorado, and these students will account for part of the
driving activities. These drivers are in fact less experienced
andownhigh crash risk than older ones [23]. So they aremore
likely to make more crashes for the TAZ with other variables
being fixed. POP (total number of population in a TAZ) is
positively correlated with the crash frequency in this analysis.
Consider the following:

𝜇 = exp (2.592 + 0.019LENGTH + 0.004ADT

− 0.019FFS − 1.009HIGH
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+ 1.226RETAIL + 0.391TOTALSERVI

+ 0.296HSENROLL + 0.372POP) .
(11)

Other than behavioral inferences between crash fre-
quency and these explanatory variables, another important
function of the model is to provide a tool for crash perdition.
According to the estimation of the negative binomial model,
the total number of crashes in a TAZ can be predicted by its
mean expression in (11).

6. Conclusions and Discussions

Zonal crash prediction and safety evaluation are critical in
the light of transportation safety planning and diagnosis
for safety issues. This paper contributes by presenting a
comprehensive safety evaluation analysis with combining
multiple criteria, as well as developing a crash prediction
model for the diagnostic purposes. A GIS based platform for
data integration and safety evaluation is introduced.

First, five criteria for measuring TAZ level safety risk are
introduced.Then based on the distribution of measurements
under the five criteria, a dimensionless score system is defined
and a more comprehensive criterion (AHI) is calculated by
the rounded average of the five scores for each TAZ. AHI
is then applied to identify unsafe TAZs, most of which are
located in the high-density area in this study.

For diagnosis purposes, this study developed a crash
prediction model through a negative binomial framework.
According to the estimation results, it is found that the crash
frequency is associated with roadway and traffic character-
istics, for example, average free flow speed, average daily
traffic within a zone and total roadway length within a zone,
and social-economic and demographic characteristics, for
example, total population, proportion of high income house-
holds, and so forth.

This paper introduces first step for comprehensive eval-
uation analysis of zonal safety under the GIS platform, and
there are still several avenues for further research. At least,
the statistical modeling of other evaluation criteria such as
WHI and AHI is helpful in understanding their sensitivity
to the zonal change of social-economic, demographic, and
transportation system characteristics.

There still exit some limitations of the paper. The safety
evaluation analysis will help to identify the high-risk TAZs
which may need more attention during the planning or
diagnostic process. Therefore, another interesting work is to
examine the connection between the safety situations and the
surrounding environment, for example, zonal social-econ-
omic and demographic characteristics and road and traffic
characteristics. In this analysis, the total number of crashes
is of primarily interest for the following reasons. First, the
analysis process andmodeling technique are readily to extent
for number of fatal or injury crashes. Second, the calculation
of all these evaluation criteria relies on this number. So this
study treats the total number of crashes as the response
variable. And the modeling analysis for other criteria leaves
as directions for future research.

Furthermore, in interpreting the increase of RETAIL or
TOTALSERVI with other variables being fixed, it is conjec-
tured that the pattern could include the driving behaviors and
person characteristics for workers in the categories of retail
and service. However, the currentmodel does not clearly state
the reasons. So it is necessary to include more explanatory
variables in the model and this part is identified as an import
direction for future research.

Finally, it would be more appropriate to introduce more
zonal level descriptors which may affect drivers’ behavior in
crash predictionmodels for example, the gender distribution,
age distribution, and so forth. With additional explanatory
variables, the model will be more enriched and explainable.
It is also interesting to study the safety correlation between
adjacent TAZs.
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