
Research Article
Biologically Motivated Novel Localization
Paradigm by High-Level Multiple Object Recognition in
Panoramic Images

Sungho Kim and Min-Sheob Shim

Advanced Visual Intelligence Laboratory, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 712-749, Republic of Korea

Correspondence should be addressed to Sungho Kim; sunghokim@ynu.ac.kr

Received 10 June 2015; Revised 3 August 2015; Accepted 3 September 2015

Academic Editor: Jinhui Tang

Copyright © 2015 S. Kim and M.-S. Shim. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents the novel paradigm of a global localization method motivated by human visual systems (HVSs). HVSs
actively use the information of the object recognition results for self-position localization and for viewing direction. The
proposed localization paradigm consisted of three parts: panoramic image acquisition, multiple object recognition, and grid-
based localization. Multiple object recognition information from panoramic images is utilized in the localization part. High-level
object information was useful not only for global localization, but also for robot-object interactions. The metric global localization
(position, viewing direction) was conducted based on the bearing information of recognized objects from just one panoramic
image. The feasibility of the novel localization paradigm was validated experimentally.

1. Introduction

In the near future, service robots, such as care robots,
education robots, and home robots, will be all around us.
Imagine a care robot in a home environment. A patient in
bed requires drinking a glass of milk from the refrigerator.
The patient will command the care robot by saying “Robot,
give me a cup of milk from the refrigerator.” The robot has
the ability to recognize its current location and go to the
refrigerator. The robot will open the door and bring a cup
of milk to the patient. Therefore, a service robot needs to
recognize its current position in a complex environment and
interact with the objects around it. To achieve successful
self-localization, the robot should satisfy the following three
requirements:

(i) Global metric localization for the kidnapping prob-
lem.

(ii) Fast localization from a single image.
(iii) Robot-object interaction for visual servoing.

A robot should have the ability to determine its global
location to successfully handle the self-initialization and
kidnapping problem. Several approaches have been proposed
to handle such problems. Park et al. proposed a hybridmap of
the object and spatial layouts using a stereo camera to localize
globally [1]. Angeli et al. suggested a topological visual SLAM
(simultaneous localization and mapping) to determine the
global localization [2]. Visual words were used to handle the
global location, and odometry information was combined
to provide metric information. Ramisa et al. also proposed
a topological localization method using affine invariant
features [3]. Although these approaches can provide global
location information, they used additional information, such
as stereo and odometry, for global metric localization. An
additional requirement is fast global localization capability
using just one image frame. Most approaches can achieve
topological localization by recognizing objects or scenes from
an image [4]. Metric localization is possible if there is a depth
cue (stereo camera) or motion cue (structure from motion)
[1, 4]. The last requirement is the capability of robot-object
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interactions for visual servoing. Robots should have object
label and position information.

Several paradigms have been proposed for mobile robot
localization. Initially, artificial landmark-based approaches
were proposed [5, 6]. After then, the SLAMparadigmbecame
a popular approach because it can build a map and localize
itself simultaneously using the extended Kalman filter and
an invariant feature, such as SIFT [7, 8]. A particle filter-
based statistical estimation was also useful in the SLAM
approach. These paradigms were partially successful because
they could estimate location information relatively accurately
by matching low level features, such as corner points or
invariant features, in multiframes. On the other hand, the
location estimation error can be large if they use only one
frame. In addition, those approaches cannot provide high-
level information for robot-object interactions. Recently,
Anati et al. used the object category detection method in
the particle filtering framework to solve localization at the
semantic level [9]. But it required dozens of iterations to find
the locations.

How can human visual systems (HVSs) localize them-
selves? HVSs can localize themselves and interact with envi-
ronment robustly.DoHVSs recognize their locations by point
matching, such as SLAM? Most people will say “No.” The
localization mechanisms of the HVS were surveyed to obtain
the answer or clue. Although accurate mechanisms have
not been disclosed, it is evident that object recognition and
localization are strongly related according to experimental
studies, such as a lesion of the visual cortex (ventral stream
and dorsal stream) [10, 11]. As shown in Figure 1, the ventral
stream running through the inferotemporal cortex is respon-
sible for visual perception, and the dorsal stream involving
the posterior parietal cortex processes the visual information
to determine the spatial position. An experiment involving
patients (lesion of ventral stream) revealed a long delay in
localizing and grasping a target. On the other hand, a second
experiment involving patients (lesion of the dorsal stream)
showed no perception of an object after movement. This
means that object recognition and localization are strongly
correlated and that they facilitate each other.

Motivated by such biological research results, this paper
proposes a novel localization paradigm using only high-level
object recognition information from a single image, as shown
in Figure 2. The previous feature point matching-based
metric localization paradigm can provide accurate location
information using multiple frames or stereo images. On the
other hand, it cannot provide semantic information, such as
the object names. The previous topological localization can
provide semantic information with topological location only
[12–14]. A novel paradigm is proposed to obtain both the
robot location and environmental high-level information to
interact with each other. In the proposed paradigm, object
recognition information can provide semantic environmen-
tal information, and the bearing information of each object
can solve the metric localization in a panoramic image.
Therefore, the object recognition-centered paradigm can
solve the aforementioned problems. The paradigm consists
of three parts: omnidirectional panoramic image acquisition,
multiple object recognition, and grid-based localization.
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Figure 1: Structure of HVS and the interaction between where path
(dorsal stream) and what path (ventral stream).
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Figure 2: Motivation of the proposed localization paradigm.

Multiple object recognition is performed from a panoramic
image, and mobile robot localization is conducted using the
bearing information of objects. This paradigm can estimate
both the spatial position and viewing direction using only one
image.

Section 2 overviews the proposed localization system,
and Section 3 introduces the omnidirectional panoramic
image acquisition camera. Section 4 explains the multiple
object recognition method and Section 5 represents the
mobile robot localization algorithmusing object information.
Section 6 validates the feasibility of the proposed paradigm
experimentally, and Section 7 concludes the paper.
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Figure 3: Proposed novel paradigm of localization using high-level
object information: given the object database and object-basedmap,
robot location is estimated through the object recognition module
and bearing measurement-based localization module.

2. High-Level Localization Paradigm

As shown in Figure 3, the proposed localization system
consists of image acquisition, object recognition, and global
metric localization. The proposed localization system con-
sists of an offline database constructionmodule and an online
localization module. The object database and object-based
map are constructed offline. The object DB module contains
learned local feature-based object models representing a 3D
object as a set of views. Because it is based on a robust
invariant feature, the learned models can handle geomet-
rically and photometrically distorted objects in a general
environment. The object-based map is built manually by
accurately measuring object locations. Online localization
was conducted through the panoramic image acquisition
module via an omnidirectional camera, multiple object
recognition module, and a bearing angle-based localization
module. A large field of view is required for object-based
localization from a single image. Although there can be
several methods for obtaining an omnidirectional image,
the parabolic mirror-based panoramic camera was adopted.
Details of the camera will be explained in Section 3. After
image acquisition, multiple object information (object label
and position in image) is extracted by applying the local
invariant feature-based method. Object databases (DBs) that
have been learned to handle large numbers of objects were
used. After such object recognition occurs, the bearing
(angle) information of each object can be obtained. The final
robot localization (spatial position and viewing direction) is
estimated by intersecting the bearing information.

3. Panoramic Image Acquisition

The proposed localization method uses the omnidirectional
camera developed by Jang et al. [15]. Figure 4(a) shows
the omnidirectional camera system. This is composed of
2 parabolic mirrors and an IEEE 1394 camera (1600 ×
1200 image resolution). Figure 4(b) shows a captured sample
image in a laboratory environment. Figure 4(c) shows the
rectified stereo images. Omnidirectional stereo images can

be acquired using the camera system. Currently, the upper
rectified images are used for the recognizing objects in these
images, which can provide higher image resolution than the
lower images.

4. Multiple Object Recognition

Inmultiple object recognitionmodule, learned objects stored
in the object database can be recognized. Each recognized
object can provide an object label and a bearing angle mea-
surement. Because the resolution of a rectified image is 1800×
161, the bearing measurement resolution of the top-line is
0.2 deg/pixel. A powerful and efficient 3D object representa-
tion, learning, and recognitionmethod is introduced. Any 3D
object can be represented by a set ofmultiple views. Each view
consists of local features. The sharing concept was applied to
the features and views of the scalable object representation.
According to recent works, dense and redundant low level
features can be reduced by the unsupervised clustering-based
feature selection [16]. He and Chen proposed an incremental
multiple object learning, recognition, and localization using
a multilayer perceptron [17]. Although it is an adaptive
object learning framework and works well for an input video
stream, it can only localize objects in 2D image space. Li
et al. proposed structured subspace learning to reduce the
gap between the low level features and semantics in data
representation [18]. The previous studies usually focused
on 2D objects. This study focused on a scalable 3D object
representation.

4.1. Scalable 3D Object Representation [19]. Simply storing all
possible views ofmany 3D objects requires hugememory and
recognition time. The main cause of this is the redundancy
in DB generation. If an object is represented well, the redun-
dancies can be reduced effectively. In advance, a local feature-
based object representation, especially common-frame con-
stellationmodel (CFCM), is adopted instead of holist appear-
ance representation [20]. The CFCM representation scheme
provides useful advantages in terms of the computational
and redundancy aspects. Because the visual features in a
CFCM are conditioned on the camera view, local features are
independent of one another. This reduces the computational
complexity from 𝑂(𝑁2) to 𝑂(𝑁), where 𝑁 is the number of
features. In a CFCM, the source of redundancies can also
be found explicitly. One is the object features and the other
is the object parameters of the object ID and view point,
respectively. Because the training images are composed of
manymultiple views and objects, there are redundant features
and views. These redundancies can be reduced by applying
the clustering concept to both features and views.

Based on these motivations, Figure 5 presents the pro-
posed scalable object representation scheme. The bottom
table shows the appearance feature library. Each feature rep-
resents an appearance vector obtained via vector clustering.
The appearance feature of an individual part is represented
by G-RIF (generalized robust invariant feature), which is a
generalized version of SIFT and shows better performance
than SIFT [21]. A 3D object is represented as a set of view
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Figure 4: Omnidirectional stereo camera system: (a) parabola mirrors, (b) captured image, and (c) rectified images.
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Figure 5: Shared feature-based common frame constellation models (CFCMs) which are view clustered.

clusteredCFCMs. EachCFCMcontains object parts that have
the part pose and the link indices to appearance libraries.
The part pose represents the part size, part orientation, and
position in a CFCM. Similarly, each element in the library
contains all the links to the parts in CFCMs. This fact can be
used to generate hypotheses during object recognition.

4.2. Leaning for 3D Object Database. First, an object is
decomposed into convex parts and corner parts using Harris
corner and DoG (difference of Gaussian) detectors. Second,

the part size is determined at the local maxima of convexity
where DoG is compared in scale space (see Figure 6). This
method can extract complementary object parts. The dom-
inant orientation is calculated using the weighted steerable
filter. Finally, the detected convex part is encoded using a
set of localized histograms (total 21) of an edge orientation
(4 bins), edge density (1 bin), and hue (4 bins). This is a
generalized form of contextual descriptor [8]. The feature
dimension is 189 (21 ∗ (4 + 1 + 4)). More details of imple-
mentation and performance can be found elsewhere [21].
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Figure 6: Procedure for the visual part detection: convex and corner parts are detected.
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Figure 7: Object learning by sequential view clustering.

This feature is called the generalized robust invariant feature
(G-RIF) for its properties.

As a 3D object is represented by a set of view-tuned
CFCMs, the visual parts in a CFCM are conditioned accord-
ing to the view-tuned parameters. The term view tuned
means view clustering in similarity transform space [22].
Figure 7 shows the overall object learning structure. Given
the labeled multiviews and multiobjects images, it is impor-
tant to find view-tuned CFCMs. In a CFCM, each part is

represented in terms of a pose and appearance index to the
shared feature libraries that were constructed by 𝑘-means
clustering.

Learning is conducted sequentially. The first image is set
as a reference CFCM. A CFCM contains an object, view
ID, and parts (pose, appearance per part). The pose of a
part is obtained directly from the feature detector, and the
part appearance is represented using the index of clustered
features.The local features are extracted from the next image.
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Figure 8: View clustering: (a) training sequence; (b) view-tuned
CFCM.

Matching pairs are searched between the input feature and
CFCM in DB using the Hough transform in pose space
(CFCM ID, scale, orientation space). Finally, new CFCMs are
constructed according to the following three cases.

Case 1. If there are few matching pairs (𝑇1 < 5), then
generate a newCFCMrepresented in terms of the new feature
libraries.

Case 2. If there are sufficient matching pairs, but the spatial
average matching error by similarity transformation is below
a predefined threshold (𝑇2: usually 4 pixels), then create a
new CFCM with a shared feature with new feature libraries.

Case 3. Finally, if the matching pairs are matched almost
correctly, then add new features to the existing CFCM.

Figure 8 gives an example of sequential CFCM con-
struction results from multiple object views (COIL-100 DB).
Many view-tunedCFCM images are obtained from4 training
images. The CFCM construction method can extract the
distinguishable multiple views for 3D objects in similarity
transform space (affine transformation is not suitable for
3D objects since the feature detector is invariant up to
similarity transform).More details about the learning process
are explained elsewhere.

4.3. Multiple Object Recognition Method. How can we fully
utilize the shared feature-based view clustering method in
object recognition? Basically, the well-known hypothesis and
verification framework is used. On the other hand, it is
modified to recognize multiple objects via the proposed
object representation scheme.

Figure 9 summarizes the object recognition procedures
graphically. All possible matching pairs can be obtained by
NN (nearest neighbor) search in the feature library. From
these, hypotheses are generated by the generalized Hough
transform on a CFCM ID, scale (11 bins), orientation (8 bins)
space [8], and grouped by object ID. A decision is made
to accept or reject the hypothesized object based on the
bin size with an optimal threshold [23]. Finally, the optimal
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Figure 9: Hypothesis and test (verification) based object recogni-
tion procedures.

hypotheses that can be bestmatched to the object features in a
scene are selected. Figure 10 shows the corresponding results.

5. Grid-Based Global Localization

In the localization module, the recognized object labels are
used to achieve data association of objects in a map, and the
intersection of bearing measurements is used to accomplish
robot localization. Through object recognition, the position
of the recognized objects in an image can be estimated.
In particular, the column position provides the bearing
measurement (𝜙𝑖

𝑍
) of an 𝑖th object in panoramic images, as

shown in Figure 11. In this study, the 1st column of an image
is considered as 0 radian. An object center is estimated by
the similarity transform of a corresponding CFCM. Given
a set of object labels and bearing measurements, the robot
localization is defined as the coordinate transformation from
reference coordinates to the robot coordinates in 2D space.

Let {𝐴}
𝑍
be a set of bearing measurements by a mobile

robot through multiple object recognition; let {𝐴}
𝑅
be a set

of model bearing measurements after coordinate transfor-
mation. The robot localization problem is to estimate 𝑇 =
(𝑥, 𝑦, 𝜙), which is the coordinate transformation function
from the reference coordinates to the robot coordinates, as
shown in Figure 12. Shimshoni proposed a direct estimation
method based on the linear constraints [24]. This method
was applied but the estimation results were very unstable
due to bearing measurement noise and a small number of
measurements (normally 3–6). Fox et al. proposed a Monte
Carlo localizationmethod that approximates the posterior by
a set of samples [25]. The latter method was also applied, but
it takes time to converge. Instead, the grid-based localization
method was used. If the coordinate transformation space
is divided into a moderate resolution (in current imple-
mentation, 𝛿

𝑥
= 𝛿
𝑦
= 10 cm, 𝛿

𝜙
= 𝜋/180 rad), then
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Figure 11: Bearing measurement information of recognized objects
in panoramic images.

the robot location is estimated using (1). 𝑁 denotes the
number of recognized objects. If the symbols are specified,
then the localization problem is the minimization problem

of three dimensions as (2). 𝜙𝑖
𝑅
denotes the angle of the model

object 𝑖 after a transformationwith𝑇 = (𝑥
𝑅
, 𝑦
𝑅
, 𝜃
𝑅
), as shown

in (3). The optimal robot location can be obtained using the
orientation information by minimizing (2):

̂
𝑇 = min

𝑇

[

𝑁

∑

𝑖=1

(𝐴
(𝑖)

𝑍
− 𝐴
(𝑖)

𝑅
(𝑇))] , (1)

(𝑥
𝑅
, 𝑦
𝑅
,
̂
𝜃
𝑅
) = min
(𝑥𝑅,𝑦𝑅,𝜃𝑅)

[
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𝜙
𝑖

𝑅
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𝑅
, 𝜃
𝑅
) = tan−1 (
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𝑀
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𝑅
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𝑖

𝑀
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𝑅

) + 𝜃
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Figure 12: Localization problem is regarded as a coordinate trans-
formation from reference coordinates to the robot coordinates.

Table 1: Data statistics for learning and test.

Type Number of scenes Number of images for 9 objects
Learning Every two views 128
Test 85 385

Table 2: Object learned results.

Type Before learning After learning Compression rate
Number of
object
images

128 77 39.8%

Number of
parts 14,074 7,885 44.2%

6. Experimental Results

The object recognition-based localization method was
applied to a complex laboratory environment. Figure 13
shows the flow of thee manual object segmentation and
labeling process from the rectified images. The images
include bookshelf, PC table, air cleaner, wash stand, and
printer. Note that the image quality of an individual object is
very low.

Table 1 summarizes the dataset for object learning and
testing. Every two views were used for object modeling. The
total number of objects was 9withmultiple views. Table 2 lists
the results of object learning. Part clustering reduces the size
by 44.2%, whereas view clustering reduces the size by 39.8%.

Figure 14 shows localization examples of a mobile robot,
KASIRI IV, which can move accurately according to the
planned path. In each result, the top image shows the
recognized objects with object centers that are equal to the
bearing measurements. In the bottom image, the red arrow
represents the location (positionwith direction) of themobile
robot, and the data association is linked by the dotted blue
line. Note that multiple objects are recognized and used for
robot localization.

Figure 15 summarizes the overall localization perfor-
mance. The red dotted line represents the true path of the
mobile robot and the blue square represents the estimated
robot location using the proposed algorithm. The average
location error is (𝑥, 𝑦) = (14.5 cm, 18.5 cm),which is relatively
large compared to those of the range sensor-based approaches
or interesting point-based approaches (normally within
5 cm) in a 10m × 10m environment. On the other hand,
the proposed system can provide high-level information of
an object that is useful for robot-environment interaction.
Note that human visual systems (HVSs) can recognize the
relative locations with very low metric accuracy but can
interact well in an environment with object information.
The average processing time of multiple object recognition
and metric localization was approximately 20 seconds with a
platform of MATLAB R2014b, Intel i7 x990, 16GB memory.
In addition, the proposed semantic recognition-based local-
ization method was compared with the well-known topo-
logical localization method [13]. As shown in Figure 16(a), a
topological map is generated manually based on the object
position information. In this test, the same panoramic images
were used and only the recognized object information was
checked. Figure 16(b) shows the topological location results
by indicating the landmark ID per frame. The ID with a
zero denotes the failed recognition. Although the topological
localization showed a high recognition rate (97.6%, 83/85), it
could not provide metric localization information.

7. Conclusions and Discussion

In this paper, a new robot localization method was proposed
using the object recognition method. Instead of fragile low
level features, the objects are regarded as natural landmarks
for localization. For this system, amultiple object recognition
method based on a learned object model and grid-based
localization using bearing measurements was introduced.
The feasibility of the proposed system was validated experi-
mentally.There are several research directions. Currently, the
tracking of objects is not used. If the temporal continuity can
be utilized, then a smoother localization can be obtained. In
addition, a map is generated manually. Therefore automatic
object-map generation should be investigated. The working
space can be increased if this can be combined with topolog-
ical localization.
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