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The main purpose of this paper is to study the split fixed point and equilibrium problems which includes fixed point problems,
equilibrium problems, and variational inequality problems as special cases. A damped algorithm is presented for solving this split
common problem. Strong convergence analysis is shown.

1. Introduction

Very recently, the split problems (e.g., the split feasibility
problem, the split common fixed points problem, and the
split variational inequality problem) have been studied exten-
sively, see, for instance, [1–19]. Now we recall the related
history. Let 𝐻

1
and 𝐻

2
be two Hilbert spaces and 𝐶 ⊂ 𝐻

1

and 𝑄 ⊂ 𝐻
2
two nonempty closed convex subsets. Let 𝐴 :

𝐻
1

→ 𝐻
2
be a bounded linear operator. The split feasibility

problem is to solve the inclusion:

𝑥 ∈ 𝐶 ∩ 𝐴
−1

(𝑄) (1)

which arise in the field of intensity-modulated radiation
therapy and was presented in [1]. The iteration 𝜌

𝑛+1
=

proj
𝐶
(𝜌
𝑛
− 𝜍𝐴
∗
(𝐼 − 𝑃

𝑄
)𝐴𝜌
𝑛
) is popular with 𝜍 ∈ (0, 2/‖𝐴‖

2
).

Further, Xu [3] suggested a single step regularized method.
Dang and Gao [4] developed a damped projection algorithm.
If 𝐶 and 𝑄 are the fixed point sets of mappings 𝑈 and
𝑇, respectively, then (1) becomes a special case of the split
common fixed point problem:

Find 𝑥 ∈ Fix (𝑈) ∩ 𝐴
−1

(Fix (𝑇)) . (2)

Censor and Segal [5] invented a scheme below to solve
(2):

𝜌
𝑛+1

= 𝑈 (𝜌
𝑛
− 𝜍𝐴
∗
(𝐼 − 𝑇)𝐴𝜌

𝑛
) , 𝑛 ∈ N. (3)

Cui et al., [6] extended the damped projection algorithm
to the split common fixed point problems. Let 𝜓 : 𝐶 × 𝐶 →

R be a bifunction. The equilibrium problem is to find 𝑥
†
∈ 𝐶

such that

𝜓 (𝑥
†
, 𝑥) ≥ 0, ∀𝑥 ∈ 𝐶. (4)

We will indicate with EP(𝜓) the set of solutions of (4).
In the present paper, our main purpose is to study the

following split fixed point and equilibrium problem.

Find a point 𝑢
§
∈ Fix (𝑊) ∩ EP (𝜓)

such that 𝐴𝑢
§
∈ Fix (𝑆) ∩ EP (𝜑) ,

(5)

where Fix(𝑆) and Fix(𝑊) are the sets of fixed points of
two nonlinear mappings 𝑆 and 𝑊, respectively; EP(𝜓) and
EP(𝜑) are the solution sets of two equilibrium problems with
bifunctions 𝜓 and 𝜑, respectively, and 𝐴 is a bounded linear
mapping. Denote the solution set of (5) by

Θ = {𝑥 ∈ Fix (𝑊) ∩ EP (𝜓) : 𝐴𝑥 ∈ Fix (𝑆) ∩ EP (𝜑)} . (6)

We develop a damped algorithm to solve this split fixed
point and equilibrium problem. Strong convergence of the
suggested damped algorithm is demonstrated.
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2. Concepts and Lemmas

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, respectively. Let 𝐶 be a nonempty closed convex
subset of 𝐻. A mapping 𝑊 : 𝐶 → 𝐶 is called nonexpansive
if

󵄩󵄩󵄩󵄩󵄩
𝑊𝑥
†
− 𝑊𝑥
‡󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
†
− 𝑥
‡󵄩󵄩󵄩󵄩󵄩

, (7)

for all 𝑥
†
, 𝑥
‡

∈ 𝐶. We call proj
𝐶

: 𝐻 → 𝐶 the metric
projection if for each 𝑥

♭
∈ 𝐻

󵄩󵄩󵄩󵄩󵄩
𝑥
♭
− proj

𝐶
(𝑥
♭
)
󵄩󵄩󵄩󵄩󵄩
= inf {󵄩󵄩󵄩󵄩󵄩𝑥

♭
− 𝑥
†󵄩󵄩󵄩󵄩󵄩

: 𝑥
†
∈ 𝐶} . (8)

It is well known that the metric projection proj
𝐶

: 𝐻 → 𝐶 is
firmly nonexpansive, that is,

󵄩󵄩󵄩󵄩󵄩
proj
𝐶
(𝑥
†
) − proj

𝐶
(𝑥
‡
)
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑥
†
− 𝑥
‡
, proj
𝐶
(𝑥
†
) − proj

𝐶
(𝑥
‡
)⟩

(9)

for all 𝑥†, 𝑥‡ ∈ 𝐻. Hence proj
𝐶
is also nonexpansive.

Lemma 1 (see [20]). Let𝐶 be a nonempty closed convex subset
of a real Hilbert space 𝐻. Let 𝜓 : 𝐶 × 𝐶 → R be a bifunction
which satisfies the following conditions:

(H1) 𝜓(𝑥
‡
, 𝑥
‡
) = 0 for all 𝑥‡ ∈ 𝐶;

(H2) 𝜓 is monotone, that is, 𝜓(𝑥
‡
, 𝑥
†
)+𝜓(𝑥

†
, 𝑥
‡
) ≤ 0 for all

𝑥
‡
, 𝑥
†
∈ 𝐶;

(H3) for each 𝑥
†
, 𝑥
‡
, 𝑥
♮
∈ 𝐶, lim

𝑡↓0
𝜓(𝑡𝑥
♮
+ (1 − 𝑡)𝑥

†
, 𝑥
‡
) ≤

𝜓(𝑥
†
, 𝑥
‡
);

(H4) for each 𝑥
†

∈ 𝐶, 𝑥‡ 󳨃→ 𝜓(𝑥
†
, 𝑥
‡
) is convex and lower

semicontinuous.

Let 𝜛 > 0 and 𝑥
†
∈ 𝐶. Then, there exists 𝑥♮ ∈ 𝐶 such that

𝜓 (𝑥
♮
, 𝑥
‡
) +

1

𝜛
⟨𝑥
‡
− 𝑥
♮
, 𝑥
♮
− 𝑥
†
⟩ ≥ 0, ∀𝑥

‡
∈ 𝐶. (10)

Further, if 𝑈𝜓
𝜛
(𝑥
†
) = {𝑥

♮
∈ 𝐶 : 𝜓(𝑥

♮
, 𝑥
‡
) + (1/𝜛)⟨𝑥

‡
−

𝑥
♮
, 𝑥
♮
− 𝑥
†
⟩ ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥

‡
∈ 𝐶}, then the following hold:

(i) 𝑈
𝜓

𝜛
is single-valued and𝑈

𝜓

𝜛
is firmly nonexpansive, that

is, for any 𝑥
†
, 𝑥
‡

∈ 𝐻, ‖𝑈𝜓
𝜛
𝑥
†
− 𝑈
𝜓

𝜛
𝑥
‡
‖
2

≤ ⟨𝑈
𝜓

𝜛
𝑥
†
−

𝑈
𝜓

𝜛
𝑥
‡
, 𝑥
†
− 𝑥
‡
⟩;

(ii) EP(𝜓) is closed and convex and EP(𝜓) = Fix(𝑈𝜓
𝜛
).

Lemma 2 (see [21]). Let 𝐻 be a Hilbert space and 𝐶 ⊂ 𝐻

a closed convex subset. Let 𝑊 : 𝐶 → 𝐶 be a nonexpansive
mapping.Then, themapping 𝐼−𝑊 is demiclosed.That is, if {𝜌𝑛}
is a sequence in 𝐶 such that 𝜌𝑛 → ] weakly and (𝐼 −𝑊)𝜌

𝑛
→

𝑢 strongly, then (𝐼 − 𝑊)] = 𝑢.

Lemma 3 (see [22]). Assume that {𝜂
𝑛
} is a sequence of

nonnegative real numbers such that

𝜂
𝑛+1

≤ (1 − 𝜅
𝑛
) 𝜂
𝑛
+ 𝜍
𝑛
, 𝑛 ∈ N, (11)

where {𝜅
𝑛
} is a sequence in (0, 1) and {𝜍

𝑛
} is a sequence such

that

(1) ∑
∞

𝑛=1
𝜅
𝑛
= ∞;

(2) lim sup
𝑛→∞

(𝜍
𝑛
/𝜅
𝑛
) ≤ 0 or ∑∞

𝑛=1
|𝜍
𝑛
| < ∞.

Then lim
𝑛→∞

𝜂
𝑛
= 0.

3. Main Results

Let𝐻
1
and𝐻

2
be twoHilbert spaces and𝐶 ⊂ 𝐻

1
and𝑄 ⊂ 𝐻

2

two nonempty closed convex subsets. Let 𝐴 : 𝐻
1

→ 𝐻
2
be a

bounded linear operator with its adjoint𝐴∗. Let 𝜓 : 𝐶×𝐶 →

R and let 𝜑 : 𝐷 × 𝐷 → R be two bifunctions satisfying
the conditions (H1)–(H4) in Lemma 1. Let 𝑆 : 𝐷 → 𝐷 and
𝑊: 𝐶 → 𝐶 be two nonexpansive mappings.

Algorithm 4. Let 𝑥
0
∈ 𝐻
1
. Define a sequence {𝑥

𝑛
} as follows:

𝜌
𝑛+1

= 𝑊𝑈
𝜓

𝜄
[(1 − 𝜁

𝑛
)

× (𝜌
𝑛
+ 𝜍𝐴
∗
(𝑆𝑈
𝜑

𝜅
− 𝐼)𝐴𝜌

𝑛
)] , ∀𝑛 ∈ N,

(12)

where 𝜄, 𝜅, and 𝜍 are three constants satisfying 𝜄 ∈ (0,∞), 𝜅 ∈

(0,∞), 𝜍 ∈ (0, 1/‖𝐴‖
2
), and {𝜁

𝑛
} is a real number sequence in

(0, 1).

In the sequel, we assume that

Θ = {𝑥 ∈ Fix (𝑊) ∩ EP (𝜓) : 𝐴𝑥 ∈ Fix (𝑆) ∩ EP (𝜑)} ̸= 0.

(13)

Theorem 5. If {𝜁
𝑛
} satisfies lim

𝑛→∞
𝜁
𝑛

= 0, ∑∞
𝑛=1

𝜁
𝑛

= ∞

and lim
𝑛→∞

𝜁
𝑛+1

/𝜁
𝑛

= 1, then {𝜌
𝑛
} generated by algorithm

(12) converges strongly toproj
Θ
(0)which is theminimum-norm

element in Θ.

Proof. Let 𝑝 = proj
Θ
(0). Then, 𝑝 ∈ Fix(𝑊)∩EP(𝜓) and𝐴𝑝 ∈

Fix(𝑆)∩EP(𝜑). Set 𝑧𝑛 = 𝑈
𝜑

𝜅
𝐴𝜌
𝑛, 𝑦𝑛 = (1−𝜁

𝑛
)(𝜌
𝑛
+𝜍𝐴
∗
(𝑆𝑈
𝜑

𝜅
−

𝐼)𝐴𝜌
𝑛
) and 𝑢

𝑛
= 𝑈
𝜓

𝜄
[(1 − 𝜁

𝑛
)(𝜌
𝑛
+ 𝜍𝐴
∗
(𝑆𝑈
𝜑

𝜅
− 𝐼)𝐴𝜌

𝑛
)] for all

𝑛 ∈ N. Then 𝑢
𝑛

= 𝑈
𝜓

𝜄
𝑦
𝑛. From Lemma 1, we know that 𝑈𝜓

𝜄

and 𝑈
𝜑

𝜅
are firmly nonexpansive. Thus, we have

󵄩󵄩󵄩󵄩𝑧
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑈
𝜑

𝜅
𝐴𝜌
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝐴𝜌
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩 , (14)
󵄩󵄩󵄩󵄩𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑈
𝜓

𝜄
𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩 , (15)

󵄩󵄩󵄩󵄩𝑆𝑈
𝜑

𝜅
𝐴𝜌
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑆𝑈
𝜑

𝜅
𝐴𝜌
𝑛
− 𝑆𝑈
𝜑

𝜅
𝐴𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑈
𝜑

𝜅
𝐴𝜌
𝑛
− 𝑈
𝜑

𝜅
𝐴𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝐴𝜌
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑈
𝜑

𝜅
𝐴𝜌
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

.

(16)
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Note that

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛+1

− 𝑢
𝑛󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑈
𝜓

𝜄
𝑦
𝑛+1

− 𝑈
𝜓

𝜄
𝑦
𝑛󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛+1

− 𝑦
𝑛󵄩󵄩󵄩󵄩󵄩

,

(17)

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛+1

− 𝑧
𝑛󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑈
𝜑

𝜅
𝐴𝜌
𝑛+1

− 𝑈
𝜑

𝜅
𝐴𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐴𝜌
𝑛+1

− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

.

(18)

From (12) and (15), we have

󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩𝑊𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩 . (19)

Observe that

󵄩󵄩󵄩󵄩𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝜁

𝑛
)

× (𝜌
𝑛
− 𝑝 + 𝜍𝐴

∗
(𝑆𝑧
𝑛
− 𝐴𝜌
𝑛
)) − 𝜁
𝑛
𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩(𝜌
𝑛
− 𝑝 + 𝜍𝐴

∗
(𝑆𝑧
𝑛
− 𝐴𝜌
𝑛
))

󵄩󵄩󵄩󵄩

2

+ 𝜁
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

= (1 − 𝜁
𝑛
) [

󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩 + 2𝜍

× ⟨𝜌
𝑛
− 𝑝, 𝐴

∗
(𝑆𝑧
𝑛
− 𝐴𝜌
𝑛
)⟩

+𝜍
2󵄩󵄩󵄩󵄩𝐴
∗
(𝑆𝑧
𝑛
− 𝐴𝜌
𝑛
)
󵄩󵄩󵄩󵄩

2

]

+ 𝜁
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

.

(20)

Since 𝐴
∗ is the adjoint of 𝐴, we have

⟨𝜌
𝑛
− 𝑝, 𝐴

∗
(𝑆𝑧
𝑛
− 𝐴𝜌
𝑛
)⟩

= ⟨𝐴 (𝜌
𝑛
− 𝑝) , 𝑆𝑧

𝑛
− 𝐴𝜌
𝑛
⟩

= ⟨𝐴𝜌
𝑛
− 𝐴𝑝 + 𝑆𝑧

𝑛
− 𝐴𝜌
𝑛

− (𝑆𝑧
𝑛
− 𝐴𝜌
𝑛
) , 𝑆𝑧
𝑛
− 𝐴𝜌
𝑛
⟩

= ⟨𝑆𝑧
𝑛
− 𝐴𝑝, 𝑆𝑧

𝑛
− 𝐴𝜌
𝑛
⟩ −

󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

.

(21)

Using parallelogram law, we obtain

⟨𝑆𝑧
𝑛
− 𝐴𝑝, 𝑆𝑧

𝑛
− 𝐴𝜌
𝑛
⟩

=
1

2
(
󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝐴𝜌
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

) .

(22)

From (16), (21) and (22), we have

⟨𝜌
𝑛
− 𝑝, 𝐴

∗
(𝑆𝑧
𝑛
− 𝐴𝜌
𝑛
)⟩

=
1

2
(
󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝐴𝜌
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

)

−
󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

≤
1

2
(
󵄩󵄩󵄩󵄩𝐴𝜌
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝐴𝜌
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

)

−
󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

= −
1

2

󵄩󵄩󵄩󵄩𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

−
1

2

󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

.

(23)

By (20) and (23), we deduce

󵄩󵄩󵄩󵄩𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜁
𝑛
) [

󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜍
2
‖𝐴‖
2󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

+ 2𝜍 (−
1

2

󵄩󵄩󵄩󵄩𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

−
1

2

󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

)] + 𝜁
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

= (1 − 𝜁
𝑛
)

× [
󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

+ (𝜍
2
‖𝐴‖
2
− 𝜍)

󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

−𝜍
󵄩󵄩󵄩󵄩𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

] + 𝜁
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜁
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

.

(24)

It follows from (19), we get

󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜁
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

≤ max {
󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

,
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩

2

} .

(25)

The boundedness of the sequence {𝜌
𝑛
} yields.
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Set V𝑛 = 𝜌
𝑛
+ 𝜍𝐴
∗
(𝑆𝑈
𝜑

𝜅
− 𝐼)𝐴𝜌

𝑛. Then, we have

󵄩󵄩󵄩󵄩󵄩
V𝑛+1 − V𝑛

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛

+𝜍 [𝐴
∗
(𝑆𝑧
𝑛+1

−𝐴𝜌
𝑛+1

)−𝐴
∗
(𝑆𝑧
𝑛
−𝐴𝜌
𝑛
)]

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜍 ⟨𝜌
𝑛+1

− 𝜌
𝑛
,

𝐴
∗
[(𝑆𝑧
𝑛+1

− 𝐴𝜌
𝑛+1

) − (𝑆𝑧
𝑛
− 𝐴𝜌
𝑛
)]⟩

+ 𝜍
2 󵄩󵄩󵄩󵄩󵄩

𝐴
∗
(𝑆𝑧
𝑛+1

− 𝐴𝜌
𝑛+1

)−𝐴
∗
(𝑆𝑧
𝑛
− 𝐴𝜌
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜍 ⟨𝐴𝜌
𝑛+1

− 𝐴𝜌
𝑛
,

𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛
− (𝐴𝜌

𝑛+1
− 𝐴𝜌
𝑛
)⟩

+ 𝜍
2
‖𝐴‖
2󵄩󵄩󵄩󵄩󵄩

𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛
− (𝐴𝜌

𝑛+1
− 𝐴𝜌
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

2

+ 𝜍
2
‖𝐴‖
2󵄩󵄩󵄩󵄩󵄩

𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛
− (𝐴𝜌

𝑛+1
− 𝐴𝜌
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜍 ⟨𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛
,

𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛
− (𝐴𝜌

𝑛+1
− 𝐴𝜌
𝑛
)⟩

− 2𝜍
󵄩󵄩󵄩󵄩󵄩
𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛
− (𝐴𝜌

𝑛+1
− 𝐴𝜌
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

2

+ 𝜍
2
‖𝐴‖
2󵄩󵄩󵄩󵄩󵄩

𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛
− (𝐴𝜌

𝑛+1
− 𝐴𝜌
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜍 (
󵄩󵄩󵄩󵄩󵄩
𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛
− (𝐴𝜌

𝑛+1
− 𝐴𝜌
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝐴𝜌
𝑛+1

− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

2

)

− 2𝜍
󵄩󵄩󵄩󵄩󵄩
𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛
− (𝐴𝜌

𝑛+1
− 𝐴𝜌
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

2

+ (𝜍
2
‖𝐴‖
2
− 𝜍)

×
󵄩󵄩󵄩󵄩󵄩
𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛
− (𝐴𝜌

𝑛+1
− 𝐴𝜌
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜍 (
󵄩󵄩󵄩󵄩󵄩
𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
(𝐴𝜌
𝑛+1

− 𝐴𝜌
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

)

≤
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

2

+ (𝜍
2
‖𝐴‖
2
− 𝜍)

×
󵄩󵄩󵄩󵄩󵄩
𝑆𝑧
𝑛+1

− 𝑆𝑧
𝑛
− (𝐴𝜌

𝑛+1
− 𝐴𝜌
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜍 (
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛+1

− 𝑧
𝑛󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝐴𝜌
𝑛+1

− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

2

) .

(26)

Since 𝜍 ∈ (0, 1/‖𝐴‖
2
), we derive by virtue of (18) and (26) that

󵄩󵄩󵄩󵄩󵄩
V𝑛+1 − V𝑛

󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

. (27)

According to (17) and (27), we have
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑊𝑢
𝑛+1

− 𝑊𝑢
𝑛󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛+1

− 𝑢
𝑛󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛+1

− 𝑦
𝑛󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝜁

𝑛+1
) V𝑛+1 − (1 − 𝜁

𝑛
) V𝑛

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝜁

𝑛+1
) (V𝑛+1 − V𝑛) + (𝜁

𝑛
− 𝜁
𝑛+1

) V𝑛
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜁
𝑛+1

)
󵄩󵄩󵄩󵄩󵄩
V𝑛+1 − V𝑛

󵄩󵄩󵄩󵄩󵄩
+

󵄨󵄨󵄨󵄨𝜁𝑛+1 − 𝜁
𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩V
𝑛󵄩󵄩󵄩󵄩

≤ (1 − 𝜁
𝑛+1

)
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜁𝑛+1 − 𝜁

𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩V
𝑛󵄩󵄩󵄩󵄩 .

(28)

It follows that
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

≤

󵄨󵄨󵄨󵄨𝜁𝑛+1 − 𝜁
𝑛

󵄨󵄨󵄨󵄨

𝜁
𝑛+1

󵄩󵄩󵄩󵄩V
𝑛󵄩󵄩󵄩󵄩 . (29)

Since {𝜌
𝑛
} is bounded, we can deduce {V𝑛} is also bounded.

From (29), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

= 0. (30)

Hence,
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑊𝑢

𝑛󵄩󵄩󵄩󵄩 = 0. (31)

Using the firmly-nonexpansivenessity of 𝑈𝜓
𝜄
, we have

󵄩󵄩󵄩󵄩𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑈
𝜓

𝜄
𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑈
𝜓

𝜄
𝑦
𝑛
− 𝑦
𝑛󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢
𝑛
− 𝑦
𝑛󵄩󵄩󵄩󵄩

2

.

(32)

Thus, we get
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢
𝑛
− 𝑦
𝑛󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜁
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢
𝑛
− 𝑦
𝑛󵄩󵄩󵄩󵄩

2

.

(33)
It follows that
󵄩󵄩󵄩󵄩𝑢
𝑛
− 𝑦
𝑛󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜁
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

≤ (
󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

)
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜁
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

.

(34)
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This together with (30) and (C1) implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢
𝑛
− 𝑦
𝑛󵄩󵄩󵄩󵄩 = 0. (35)

Note that
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝜁
𝑛
) (𝜍
2
‖𝐴‖
2
− 𝜍)

󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

− (1 − 𝜁
𝑛
) 𝜍

󵄩󵄩󵄩󵄩𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

+ 𝜁
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

.

(36)

Hence,

(1 − 𝜁
𝑛
) (𝜍 − 𝜍

2
‖𝐴‖
2
)
󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

+ (1 − 𝜁
𝑛
) 𝜍

󵄩󵄩󵄩󵄩𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜁
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

≤ (
󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝜌
𝑛󵄩󵄩󵄩󵄩󵄩

+ 𝜁
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

,

(37)

which implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩 = 0. (38)

So, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝑧
𝑛󵄩󵄩󵄩󵄩 = 0. (39)

Since
󵄩󵄩󵄩󵄩𝑦
𝑛
− 𝑝
𝑛󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝜍𝐴
∗
(𝑆𝑈
𝜑

𝜅
− 𝐼)𝐴𝜌

𝑛
+ 𝜁
𝑛
V𝑛󵄩󵄩󵄩󵄩

≤ 𝜍 ‖𝐴‖
󵄩󵄩󵄩󵄩𝑆𝑧
𝑛
− 𝐴𝜌
𝑛󵄩󵄩󵄩󵄩 + 𝜁

𝑛

󵄩󵄩󵄩󵄩V
𝑛󵄩󵄩󵄩󵄩 ,

(40)

we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑦
𝑛󵄩󵄩󵄩󵄩 = 0. (41)

From (31), (35), and (41), we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑊𝜌
𝑛󵄩󵄩󵄩󵄩 = 0. (42)

Now, we show that

lim sup
𝑛→∞

⟨𝑝, 𝑦
𝑛
− 𝑝⟩ ≥ 0. (43)

Choose a subsequence {𝑦
𝑛𝑖} of {𝑦𝑛} such that

lim sup
𝑛→∞

⟨𝑝, 𝑦
𝑛
− 𝑝⟩ = lim

𝑖→∞

⟨𝑝, 𝑦
𝑛𝑖 − 𝑝⟩ . (44)

Notice that {𝑦
𝑛𝑖} is bounded, we can choose {𝑦

𝑛𝑖𝑗 } of {𝑦
𝑛𝑖}

such that 𝑦
𝑛𝑖𝑗 ⇀ 𝑧. Without loss of generality, we assume

that 𝑦𝑛𝑖 ⇀ 𝑧. From the above conclusions, we derive that

𝜌
𝑛𝑖 ⇀ 𝑧, 𝑢

𝑛𝑖
⇀ 𝑧,

𝐴𝜌
𝑛𝑖 ⇀ 𝐴𝑧, 𝑧

𝑛𝑖 ⇀ 𝐴𝑧.

(45)

By Lemma 2, (39), and (41), we deduce 𝑧 ∈ Fix(𝑊) and 𝐴𝑧 ∈

Fix(𝑆).
Next, we show that 𝑧 ∈ EP(𝜓). Since 𝑢

𝑛
= 𝑈
𝜓

𝜄
𝑦
𝑛, we have

𝜓 (𝑢
𝑛
, 𝑥
†
) +

1

𝜄
⟨𝑥
†
− 𝑢
𝑛
, 𝑢
𝑛
− 𝑦
𝑛
⟩ ≥ 0, ∀𝑥

†
∈ 𝐶. (46)

By the monotonicity of 𝜓, we have

1

𝜄
⟨𝑥
†
− 𝑢
𝑛
, 𝑢
𝑛
− 𝑦
𝑛
⟩ ≥ 𝜓 (𝑥

†
, 𝑢
𝑛
) , (47)

and so

⟨𝑥
†
− 𝑢
𝑛𝑖
,

𝑢
𝑛𝑖

− 𝑦
𝑛𝑖

𝜄
⟩ ≥ 𝜓 (𝑥

†
, 𝑢
𝑛𝑖
) . (48)

Since ‖𝑢
𝑛
− 𝑦
𝑛
‖ → 0, 𝑢

𝑛𝑖
⇀ 𝑧, we obtain (𝑢

𝑛𝑖
− 𝑦
𝑛𝑖)/𝜄 → 0.

Thus, 0 ≥ 𝜓(𝑥
†
, 𝑧). For 𝑡 with 0 < 𝑡 ≤ 1 and 𝑥

†
∈ 𝐶, let

𝑦
𝑡
= 𝑡𝑥
†
+ (1 − 𝑡)𝑧 ∈ 𝐶. We obtain 𝜓(𝑦

𝑡
, 𝑧) ≤ 0. Hence,

0 = 𝜓 (𝑦
𝑡
, 𝑦
𝑡
) ≤ 𝑡𝜓 (𝑦

𝑡
, 𝑥
†
) + (1 − 𝑡) 𝜓 (𝑦

𝑡
, 𝑧) ≤ 𝑡𝜓 (𝑦

𝑡
, 𝑥
†
) .

(49)

So, 0 ≤ 𝜓(𝑦
𝑡
, 𝑥
†
). And, thus, 0 ≤ 𝜓(𝑧, 𝑥

†
). This implies that

𝑧 ∈ EP(𝜓). Similarity, we can prove that 𝐴𝑧 ∈ EP(𝜑). To this
end, we deduce 𝑧 ∈ Fix(𝑊)∩EP(𝜓) and𝐴𝑧 ∈ Fix(𝑆)∩EP(𝜑).
That is to say, 𝑧 ∈ Θ. Therefore,

lim sup
𝑛→∞

⟨𝑝, 𝑦
𝑛
− 𝑝⟩ = lim

𝑖→∞

⟨𝑝, 𝑦
𝑛𝑖 − 𝑝⟩

= lim
𝑖→∞

⟨𝑝, 𝑧 − 𝑝⟩

≥ 0.

(50)

Finally, we prove 𝜌
𝑛

→ 𝑝. From (12), we have

󵄩󵄩󵄩󵄩󵄩
𝜌
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝜁

𝑛
) (V𝑛 − 𝑝) − 𝜁

𝑛
𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩V
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝜁
𝑛
⟨𝑝, 𝑦
𝑛
− 𝑝⟩

≤ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩𝜌
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝜁
𝑛
⟨𝑝, 𝑦
𝑛
− 𝑝⟩ .

(51)

Applying Lemma 3 and (50) to (51), we deduce 𝜌
𝑛

→ 𝑝. The
proof is completed.

Algorithm 6. Let 𝜌0 ∈ 𝐻
1
arbitrarily define a sequence {𝜌

𝑛
}

by the following:

𝜌
𝑛+1

= 𝑊((1 − 𝜁
𝑛
) (𝜌
𝑛
+ 𝜍𝐴
∗
(𝑆 − 𝐼) 𝐴𝜌

𝑛
)) , (52)

for all 𝑛 ∈ N, where 𝜍 ∈ (0, 1/‖𝐴‖
2
) and {𝜁

𝑛
} is a real number

sequence in (0, 1).

Corollary 7. Suppose Θ
1
= {𝑥 ∈ Fix(𝑊) : 𝐴𝑥 ∈ Fix(𝑆)} ̸= 0.

If {𝜁
𝑛
} satisfies lim

𝑛→∞
𝜁
𝑛

= 0, ∑
∞

𝑛=1
𝜁
𝑛

= ∞, and
lim
𝑛→∞

𝜁
𝑛+1

/𝜁
𝑛

= 1, then the sequence {𝜌
𝑛
} generated by

algorithm (52) converges strongly to 𝑝 = proj
Θ1

(0) which is
the mum-norm element in Θ

1
.
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Algorithm 8. Let 𝜌0 ∈ 𝐻
1
arbitrarily define a sequence {𝜌

𝑛
}

by the following:

𝜌
𝑛+1

= 𝑈
𝜓

𝜄
((1 − 𝜁

𝑛
) (𝜌
𝑛
+ 𝜍𝐴
∗
(𝑈
𝜑

𝜅
− 𝐼)𝐴𝜌

𝑛
)) , (53)

for all 𝑛 ∈ N, where 𝜄, 𝜅, and 𝜍 are three constants satisfying
𝜄 ∈ (0,∞), 𝜅 ∈ (0,∞), 𝜍 ∈ (0, 1/‖𝐴‖

2
), and {𝜁

𝑛
} is a real

number sequence in (0, 1).

Corollary 9. Suppose Θ
2

= {𝑥 ∈ EP(𝜓) : 𝐴𝑥 ∈ EP(𝜑)} ̸= 0.
If {𝜁
𝑛
} satisfies lim

𝑛→∞
𝜁
𝑛

= 0, ∑
∞

𝑛=1
𝜁
𝑛

= ∞, and
lim
𝑛→∞

𝜁
𝑛+1

/𝜁
𝑛

= 1, then the sequence {𝜌
𝑛
} generated by

algorithm (53) converges strongly to 𝑝 = proj
Θ2
(0) which is the

mum-norm element in Θ
2
.

Algorithm 10. Let 𝜌0 ∈ 𝐻
1
arbitrarily define a sequence {𝜌

𝑛
}

by the following:

𝜌
𝑛+1

= proj
𝐶
((1 − 𝜁

𝑛
) (𝜌
𝑛
+ 𝜍𝐴
∗
(proj
𝑄

− 𝐼)𝐴𝜌
𝑛
)) , (54)

for all 𝑛 ∈ N, where 𝜍 ∈ (0, 1/‖𝐴‖
2
) and {𝜁

𝑛
} is a real number

sequence in (0, 1).

Corollary 11. Suppose Θ
3

= {𝑥 ∈ 𝐶 : 𝐴𝑥 ∈ 𝑄} ̸= 0. If {𝜁
𝑛
}

satisfies lim
𝑛→∞

𝜁
𝑛
= 0, ∑∞

𝑛=1
𝜁
𝑛
= ∞, and lim

𝑛→∞
𝜁
𝑛+1

/𝜁
𝑛
=

1, then the sequence {𝜌𝑛} generated by algorithm (54) converges
strongly to 𝑝 = proj

Θ3
(0) which is the mum-norm element in

Θ
3
.
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