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The normal proportional derivative (PD) control is modified to a new dual form for the regulation of a ball and plate system. First,
to analyze this controller, a novel complete nonlinear model of the ball and plate system is obtained. Second, an asymptotic stable
dual PD control with a nonlinear compensation is developed. Finally, the experimental results of ball and plate system are provided
to verify the effectiveness of the proposed methodology.

1. Introduction

The ball and plate system is one of the most popular and
importantmodels in control education, and it is a benchmark
nonlinear plant [1], because it is more complex than the tradi-
tional ball and beam system [2].The ball and beam systemhas
twodegrees of freedomwhere the ball can roll freely on a rigid
plate; see Figure 1. Since the movement of the ball over the
plate can reach high speeds, the design of a suitable controller
for this system is a major challenge; therefore, these systems
are not commonly used in laboratories.

The ball and plate system has low consumer appeal.
However, the challenge of balancing is a problem under con-
tinuous study for robotics transportation applications, often
as extensions of the inverted pendulum project. Therefore,
the system can present many challenges and opportunities
as an educational tool of the control systems engineering for
university students.Thus, this system has enormous potential
for advanced control techniques, such as fuzzy control [3, 4],

classical control [5], robust control [6–10], nonlinear control
[11, 12], and sliding mode control [13].

There are some reported control algorithms for the ball
and plate system in the literature. In [14], a stabilizing switch-
ing control scheme is proposed. By the concepts of switching-
driving Lyapunov function and switching-driven stability,
a locally asymptotically stabilizing switching controller is
obtained. In [15], a linearmodel and simple PID controller are
used for a real-time ball and plate system based on DSpace.
On the other hand, intelligent control is suitable when the
model of the ball and plate system is not available. In [16], a
hierarchical fuzzy control with a genetic algorithm is applied
for the adjustment of the membership functions.

From the above controllers, there are two problems for
the ball and plate control:

(1) some laboratories use simple controllers such as PD
control, and the theory analysis is based on linear
models [15];
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(2) nonlinear controllers for ball and plate system have
good theory results; nevertheless, they are complex
and rarely used in real applications [15].

In this paper, a novel dual PD control for the ball and plate
system is presented. Continuing with the previous results
of this research group, on the ball and beam system with
two degrees of freedom of [17], a new ball and plate is
assembled in [18] to reach the objective of this research.
This prototype fulfills the requirements of a real-time control
via an embedded system designed by minimal resources. To
analyze the closed-loop system (see Figure 2), a new dynamic
model of the ball and plate is obtained; therefore, a stability
analysis using this novel nonlinearmodel is developed. To the
best of our knowledge, this kind of analysis has not yet been
established in the literature. Finally, experimental results are
performed to evaluate the theory results.

This paper is organized as follows. In Section 2, the ball
and plate dynamic model is introduced. Section 3 introduces
dual PD control. In Section 4, the stability analysis of the
proposed controller is considered. Ball and beam prototype is
shown in Section 5. In Section 6, experimental results of three
controllers applied to the ball and beam system are shown.
Section 7 presents conclusions and suggests future research
directions.

2. Ball and Plate System

The new ball and plate system is shown in Figure 1. In this
system a ball is placed on a plate where it is allowed to roll
with two degrees of freedom. As the two motors turn, they
produce a shift in the angles 𝜃

𝑥
and 𝜃
𝑦
, which at the same time

cause a variation of position of the ball in (𝑥, 𝑦) due to the
gravity force. In the absence of friction or other disturbances,
the dynamics of the ball and plate system can be obtained by
the Lagrangian method [19, 20].

The kinetic energy of the system is
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where 𝐸
𝑐
is the kinetic energy of the ball;𝑚 is the mass of the

ball; 𝐼
𝑐𝑑𝑚

is the inertia moment of the ball; 𝑅 is the radio of
the ball; √�̇�2 + ̇𝑦2 is the linear velocity of the ball; 𝑥 and 𝑦

are the position of the ball on plate; 𝜃
𝑥
and 𝜃
𝑦
are the angular

position of the plate; 𝑤 is the angular velocity of the ball; and
√ ̇𝜃2
𝑥
+ ̇𝜃2
𝑦
is the angular velocity of the plate.

On the other hand, potential energy of the ball due to the
gravity is given by

𝐸
𝑝
= 𝑚𝐺(𝑥 sin (𝜃

𝑥
) + 𝑦 sin (𝜃

𝑦
)) , (2)

where 𝐸
𝑝
is the potential energy of the ball and 𝐺 is the

acceleration due to gravity.
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Figure 1: Ball and plate system.

From (1) and (2), the Lagrange equation is
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Lagrange’s equations of motion are
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Figure 2: Control scheme of the ball and plate system.

where 𝜏
𝑥
and 𝜏
𝑦
are the torque applied to the plate. Develop-

ing (4) gives the whole ball and plate system as follows:
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(5)

Define the system state as follows:
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𝑇

. (6)

Define the regulation errors as follows:

𝑥 = 𝑥
∗

− 𝑥, 𝑦 = 𝑦
∗

− 𝑦, (7)

where 𝑥∗ and𝑦∗ are the desired ball position. For the ball and
plate system, in the balance position 𝜃

∗

𝑥
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and ̇𝑦
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𝑇.

It is difficult to analyze the stability of the ball and plate
system (5) with normal PD control. Nevertheless, it is well
known that PD control can stabilize the manipulator robots
[21]. Now, a transformation of the ball and plate closed-loop
system will be discussed.

Lemma 1. The ball and plate closed-loop system (5) can be
transformed into the following form:

𝑀(𝑞) ̈𝑞 + 𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝐺 (𝑞) = 𝐵𝑞 + 𝐷𝜋, (8)

where 𝑞 = 𝑞
∗

− 𝑞, 𝑞 is defined in (6), and 𝑞∗ is defined in (7).

Proof. See Appendix A for the proof.

3. Dual PD Control

The goal of this research is to develop a PD regulation with
compensation capable of controlling the position of ball on a
plate in both axes (𝑥, 𝑦). Initially, the plate is at the horizontal,
that is, 𝜃

𝑥
= 𝜃
𝑦

= 0, and tilts in both axes to control the
position of the ball. Each tilting axis will be operated by a DC
motor. The position of the ball on the plate is measured by a
camera [18].

A dual PD controller is an adequate basic term to obtain
an acceptable response of the system; however, an exact
nonlinear compensator is included to find the objective of
guaranteeing the closed-loop system stability. Figure 2 shows
a diagram of this controller scheme.

The dual PD control law of the 𝑥-axis is as follows:
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The dual PD control law of the 𝑦-axis is as follows:
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where 𝑘
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compensators, which will be designed in the next section.
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4. Stability Analysis

In this section, Lyapunov’s first method is used to prove the
dual PD control with nonlinear compensation (14) and (15) is
asymptotically stable.

First, it is analyzed if the matrices 𝑀 and 𝐵 may be
candidates for Lyapunov function. The matrix 𝑀 is not
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Position of the ball is (𝑥, 𝑦) > 0; therefore, the matrix
𝑀 that satisfies all determinants of the main minors (16) are
positive; then,𝑀 is a positive definite matrix that satisfies
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The stability of the closed-loop system is stated in the
following theorem.

Theorem 2. Consider the ball and plate system (8), the dual
PD control (14), (15), and the following compensators of 𝜋

𝑥

and 𝜋
𝑦
as follows

𝜋
𝑥
= {

𝑎
2
�̇� − 𝑚𝑥 ̇𝜃

𝑥
+ 𝑚𝑥�̇� ̇𝜃

𝑥
− 𝑚𝑥 ̇𝜃

𝑦
+ 𝑚𝑦�̇� ̇𝜃

𝑦
if �̇� ̸= 0

−𝑚𝑥 ̇𝜃
𝑥
− 𝑚𝑥 ̇𝜃

𝑦
if �̇� = 0

𝜋
𝑦
= {

𝑏
2
̇𝑦 − 𝑚𝑦 ̇𝜃

𝑦
+ 𝑚𝑦 ̇𝑦 ̇𝜃

𝑦
− 𝑚𝑦 ̇𝜃

𝑥
+ 𝑚𝑥 ̇𝑦 ̇𝜃

𝑥
if ̇𝑦 ̸= 0

−𝑚𝑦 ̇𝜃
𝑦
− 𝑚𝑦 ̇𝜃

𝑥
if ̇𝑦 = 0.

(20)

Therefore, the closed-loop system of the ball and plate system is
asymptotically stable

lim
𝑡→∞

𝑥 (𝑡) = 0,

lim
𝑡→∞

𝑦 (𝑡) = 0.

(21)

Proof. Since 𝑀(𝑥) is a positive definite matrix, 𝐵 in (18) is a
quadratic form, and recalling that 𝜃

𝑥
and 𝜃
𝑦
are not negative,

the following positive definite quadratic form is used as the
Lyapunov function:

𝑉 (𝑞, ̇𝑞) =
1

2
̇𝑞
𝑇

𝑀(𝑞) ̇𝑞 +
1

2
𝑞
𝑇

𝐵𝑞 + 𝑚𝐺𝑥 sin 𝜃
𝑥
+ 𝑚𝐺𝑦 sin 𝜃

𝑦
.

(22)

To assure the potential energy𝐸
𝑝
= 𝑚𝐺(𝑥 sin(𝜃

𝑥
)+𝑦 sin(𝜃

𝑦
))

is positive, we let 𝜃
𝑥

≥ 0 and 𝜃
𝑦

≥ 0, 𝑉(𝑥, �̇�) ≥ 0.
Differentiating it with respect to time and recalling that 𝑥∗
and 𝑦

∗ are constants, it yields

𝑑𝑉 = ̇𝑞
𝑇

𝑀(𝑞) ̈𝑞 +
1

2
̇𝑞
𝑇

�̇� (𝑞) ̇𝑞 − ̇𝑞
𝑇

𝐵𝑞 + 𝑚𝐺�̇� sin 𝜃
𝑥

+ 𝑚𝐺𝑥 cos 𝜃
𝑥

̇𝜃
𝑥
+ 𝑚𝐺 ̇𝑦 sin 𝜃

𝑦
+ 𝑚𝐺𝑦 cos 𝜃

𝑦

̇𝜃
𝑦
.

(23)

It is (see Appendix B)

𝑑𝑉 = −𝑎
5

̇𝜃
2

𝑥
+ ̇𝜃
𝑥
[𝜋
𝑥
− 𝑎
2
�̇� + 𝑚𝑥 ̇𝜃

𝑥
− 𝑚𝑥�̇� ̇𝜃

𝑥
]

+ ̇𝜃
𝑥
[+𝑚𝑥 ̇𝜃

𝑦
− 𝑚𝑦�̇� ̇𝜃

𝑦
− 𝑚𝐺𝑥 cos 𝜃

𝑥
+ 𝑚𝐺𝑥 cos 𝜃

𝑥
]

− 𝑚�̇�𝐺 sin 𝜃
𝑥
+ 𝑚𝐺�̇� sin 𝜃

𝑥
− 𝑏
5

̇𝜃
2

𝑦

+ ̇𝜃
𝑦
[𝜋
𝑦
− 𝑏
2
̇𝑦 + 𝑚𝑦 ̇𝜃

𝑦
− 𝑚𝑦 ̇𝑦 ̇𝜃

𝑦
+ 𝑚𝑦 ̇𝜃

𝑥
− 𝑚𝑥 ̇𝑦]

+ ̇𝜃
𝑦
[−𝑚𝐺𝑦 cos 𝜃

𝑦
+ 𝑚𝐺𝑦 cos 𝜃

𝑦
]

− 𝑚 ̇𝑦𝐺 sin 𝜃
𝑦
+ 𝑚𝐺 ̇𝑦 sin (𝜃

𝑦
) .

(24)
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Using the compensators (20) in (24) gives

𝑑𝑉 ≤ −𝑎
5

̇𝜃
2

𝑥
− 𝑏
5

̇𝜃
2

𝑦
. (25)

Since 𝑎
5
> 0 and 𝑏

5
> 0, 𝑑𝑉 is a semidefinite negative func-

tion.Thus, the closed-loop system is stable in the equilibrium
point [�̇�, ̇𝑦] = [0, 0]. To prove asymptotic stability, LaSalle’s
theorem is used in the following region:

Ω = {[𝑥, 𝜃
𝑥
, 𝑦, 𝜃
𝑦
] | 𝑑𝑉 = 0} . (26)

From (22), 𝑑𝑉 = 0 if and only if ̇𝜃
𝑥
= ̇𝜃
𝑦
= 0. For a solution

𝜃
𝑥,𝑦

(𝑡) to belong toΩ for all 𝑡 ≥ 0, it is necessary and sufficient
that 𝜃

𝑥
= 𝜃
𝑦
= 0 for all 𝑡 ≥ 0. Therefore it must also hold that

𝑥 = 𝑦 = 0 for all 𝑡 ≥ 0. It is concluded that the closed-loop
system is the only initial condition in Ω for which 𝑥(𝑡) ∈ Ω

for all 𝑡 ≥ 0. Finally, the origin of the closed-loop system is
asymptotically stable in [𝑥, 𝜃

𝑥
, 𝑦, 𝜃
𝑦
] = [0, 0, 0, 0] [6–10].

Remark 3. In [22–26], the authors use proportional-integral-
derivative controllers; nevertheless, the proposed controller is
different because it has 4 dynamic alternatives being selected
by the controller depending on the 𝑥 and 𝑦 values of the ball
and beam system, and it is called the dual PD control. The
proposed controller has the main merit that it can guarantee
the convergence of the regulation error; that is, the dual
PD controller obtains a desired behavior in the system. The
shortcoming of the proposed method is that the changes
between the 4 dynamic alternatives in the controller could
cause the undesired chattering.

5. Prototype

Figure 3 shows the prototype used to test the new dual PD
controller. Simulink is used to test the model (8); consider
𝑀 = 0.11 kg, 𝑅 = 1.27 cm, and 𝐺 = 9.81m/s2. Once the
simulation is successful, the implementation on FPGA is
carried out. The prototype has the following parts: the plate
size is 50 × 50 cm, the ball is with a radius of 1.27 cm,
and a CMOS camera model MT9M011 [27] is used as a
visual position sensor of the ball. The model used as image
sensor is the TRDB card DC2 [27] of Terasic company. The
designed hardware components of the prototype are image
preprocessing, ball position, and dual PD controller with
compensator.The image preprocessing component receives a
color image fromCMOS camera and delivers a binary image.
The ball position component receives the binary image and
delivers the position (𝑥, 𝑦) of the ball on the plate; these
components are able to process 16 images per second [18];
the position of the ball is sent to the dual PD controller
component; this includes the new control law. Finally, the
motors receive these control laws and they move the plate
on 𝑥 and 𝑦 directions, simultaneously. The DC motors are
selected as an actuator for its high torque. This motor is a
powerful 12 V brushed DC motor with a 50 : 1 metal gearbox
and an integrated quadrature encoder [28]. To obtain real-
time operation, all modules are embedded in hardware using
the very high speed hardware description language (VHDL)
using Quartus II version 7.2 and are implemented in Altera

Figure 3: Ball and plate prototype.

DE2 [29] (Development Education board) with a Cyclone II
FPGA.

6. Experimental Results

To verify the advantages of the dual PD controller with
compensator, several experiments are performed for the
regulation [11], [12]. A first set of experiments are performed
using the proposed method which implements the control
laws (13) and (14); these experiments are repeated using the
dual PD controller without compensator, meaning 𝜋

𝑥
= 𝜋
𝑦
=

0 in (13) and (14). Finally, the proposed controller is compared
with a fuzzy logic controller [18] using the same experiments.

Consider that the movement of the ball is slow and does
not show tendency to slip (smooth bearing), due to the slow
speed and acceleration of the plate; the interactions of the
movements of the plate are uncoupled; the details of the
performance are shown in Figures 4–6, where the position,
velocity, and control signals are presented as the dual PD
control with compensator, PD control without compensation,
and fuzzy logic controller responses.

Figure 4 shows the position of the ball on the 𝑥-axis; in
this experiment the initial position is 0.02587m and the final
position is 0.4375m, and it shows that the dual PD control
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Figure 5: Velocity of the ball on the 𝑥-axis.

with compensator reaches the desired value faster than the
other twomethods. Figure 5 shows behavior of the velocity of
the ball on the 𝑥-axis; in this experiment the initial velocity is
0, and it shows that the dual PD control with compensator
is stabilized faster than the other methods. Figure 6 shows
behavior of the control signals on the 𝑥-axis, where the dual
PD control with compensator shows the best behavior.

7. Conclusions and Future Work

The dual PD control with nonlinear compensation has been
presented to solve the regulation problem for the ball and
plate system. To use these controllers, a new dynamic model
in the manipulator robot form was obtained. The proposed
nonlinear model is very useful to design and validate dif-
ferent control algorithms which can then be extrapolated
to problems with the same characteristics; one advantage of
working with a nonlinear model is that the full dynamic can
be seen, making it possible to analyze the behavior of the
system at each equilibrium point. By using the first method
of Lyapunov, a new Lyapunov function is presented for the
stability analysis; as a result of this analysis, the asymptotic
stability of the closed-loop system can be guaranteed. On
the order hand, the exact compensator requires to have a
precise knowledge of the system nonlinearities; however,
the methodology of how to obtain it is presented in detail.
Furthermore, the experimental result shows the excellent
performance of the proposed controller, obtaining the best
behavior in comparison with the other selected controllers;
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Figure 6: Control of the ball on the 𝑥-axis.

see Figures 4, 5, and 6. As a future work, a PD regulator with
an intelligent compensator will be developed [30–33].

Appendices

A. Ball and Plate Model

Substituting (14) and (15) into (5), we have

(𝑚 +
𝐼
𝑐𝑑𝑚

𝑅2
) �̈� − 𝑚𝑥 ̇𝜃

2

𝑥
− 𝑚𝑦 ̇𝜃

𝑥

̇𝜃
𝑦
+ 𝑚𝐺 sin 𝜃

𝑥
= 0,

(𝐼
𝑐𝑑𝑚

+ 𝑚𝑥
2

) ̈𝜃
𝑥
+ 2𝑚𝑥�̇� ̇𝜃

𝑥
+ 𝑚𝑥𝑦 ̈𝜃

𝑦

+ (𝑚𝑥 ̇𝑦 + 𝑚�̇�𝑦) ̇𝜃
𝑦
+ 𝑚𝐺𝑥 cos 𝜃

𝑥
= 𝑈
𝑥
,

(𝑚 +
𝐼
𝑐𝑑𝑚

𝑅2
) ̈𝑦 − 𝑚𝑦 ̇𝜃

2

𝑦
− 𝑚𝑥 ̇𝜃

𝑥

̇𝜃
𝑦
+ 𝑚𝐺 sin 𝜃

𝑦
= 0,

(𝐼
𝑐𝑑𝑚

+ 𝑚𝑦
2

) ̈𝜃
𝑦
+ 2𝑚𝑦 ̇𝑦 ̇𝜃

𝑦
+ 𝑚𝑥𝑦 ̈𝜃

𝑥

+ (𝑚𝑥 ̇𝑦 + 𝑚�̇�𝑦) ̇𝜃
𝑥
+ 𝑚𝐺𝑦 cos 𝜃

𝑦
= 𝑈
𝑦
.

(A.1)

By equating all the equations to zero, we have

(𝑚 +
𝐼
𝑐𝑑𝑚

𝑅2
) �̈� − 𝑚𝑥 ̇𝜃

2

𝑥
− 𝑚𝑦 ̇𝜃

𝑥

̇𝜃
𝑦
+ 𝑚𝐺 sin 𝜃

𝑥
= 0,

(𝐼
𝑐𝑑𝑚

+ 𝑚𝑥
2

) ̈𝜃
𝑥
+ 2𝑚𝑥�̇� ̇𝜃

𝑥
+ 𝑚𝑥𝑦 ̈𝜃

𝑦

+ (𝑚𝑥 ̇𝑦 + 𝑚�̇�𝑦) ̇𝜃
𝑦
+ 𝑚𝐺𝑥 cos 𝜃

𝑥
+ 𝑎
1
𝑥 + 𝑎
2
�̇�

+ 𝑎
3
�̈� + 𝑎
4
𝜃
𝑥
+ 𝑎
5

̇𝜃
𝑥
− 𝜋
𝑥
= 0,

(𝑚 +
𝐼
𝑐𝑑𝑚

𝑅2
) ̈𝑦 − 𝑚𝑦 ̇𝜃

2

𝑦
− 𝑚𝑥 ̇𝜃

𝑥

̇𝜃
𝑦
+ 𝑚𝐺 sin 𝜃

𝑦
= 0,

(𝐼
𝑐𝑑𝑚

+ 𝑚𝑦
2

) ̈𝜃
𝑦
+ 2𝑚𝑦 ̇𝑦 ̇𝜃

𝑦
+ 𝑚𝑥𝑦 ̈𝜃

𝑥

+ (𝑚𝑥 ̇𝑦 + 𝑚�̇�𝑦) ̇𝜃
𝑥
+ 𝑚𝐺𝑦 cos 𝜃

𝑦
+ 𝑏
1
𝑦 + 𝑏
2
̇𝑦

+ 𝑏
3
̈𝑦 + 𝑏
4
𝜃
𝑦
+ 𝑏
5

̇𝜃
𝑦
− 𝜋
𝑦
= 0.

(A.2)



Mathematical Problems in Engineering 7

The inertia matrix𝑀(𝑞) is

𝑀(𝑞) =
[
[
[

[

𝑙
1

0 0 0

𝑎
3

𝐼
𝑐𝑑𝑚

+ 𝑚𝑥
2

0 𝑚𝑥𝑦

0 0 𝑙
2

0

0 𝑚𝑥𝑦 𝑏
3

𝐼
𝑐𝑑𝑚

+ 𝑚𝑦
2

]
]
]

]

, (A.3)

where 𝑙
1
= 𝑚+(𝐼

𝑐𝑑𝑚
/𝑅
2

) and 𝑙
2
= 𝑚+(𝐼

𝑐𝑑𝑚
/𝑅
2

).The Coriolis
matrix 𝐶(𝑞, ̇𝑞) is

𝐶 (𝑞, ̇𝑞) =
[
[
[

[

0 −𝑚𝑥 ̇𝜃
𝑥

0 −𝑚𝑦 ̇𝜃
𝑥

𝑙
3

𝑎
5

0 𝑚𝑥 ̇𝑦 + 𝑚�̇�𝑦

0 −𝑚𝑥 ̇𝜃
𝑦

0 −𝑚𝑦 ̇𝜃
𝑦

0 𝑚𝑥 ̇𝑦 + 𝑚�̇�𝑦 𝑙
4

𝑏
5

]
]
]

]

, (A.4)

where 𝑙
3
= 2𝑚𝑥 ̇𝜃

𝑥
+ 𝑎
2
and 𝑙
4
= 2𝑚𝑦 ̇𝜃

𝑦
+ 𝑏
2
. The matrix 𝐵 is

𝐵 =
[
[
[

[

0 0 0 0

𝑎
1

𝑎
4

0 0

0 0 0 0

0 0 𝑏
1

𝑏
4

]
]
]

]

. (A.5)

The gravity matrix 𝐺 is

𝐺 (𝑞) =
[
[
[

[

𝑚𝐺 sin 𝜃
𝑥

𝑚𝐺𝑥 cos 𝜃
𝑥

𝑚𝐺 sin 𝜃
𝑦

𝑚𝐺𝑦 cos 𝜃
𝑦

]
]
]

]

. (A.6)

The compensator matrix𝐷𝜋 is

𝐷𝜋 =
[
[
[

[

0

𝜋
𝑥

0

𝜋
𝑦

]
]
]

]

. (A.7)

Therefore the ball and plate system model can be described
in the form (8).

B. Stability Analysis

From (8), the inertial matrix𝑀(𝑞) ̈𝑞 is

𝑀(𝑞) ̈𝑞 = 𝐵𝑞 + 𝐷𝜋 − 𝐶 (𝑞, ̇𝑞) ̇𝑞 − 𝐺 (𝑞) . (B.1)

Substituting (B.1) into (23), we have

𝑑𝑉 = ̇𝑞
𝑇

[𝐵𝑞 + 𝐷𝜋 − 𝐶 (𝑞, ̇𝑞) ̇𝑞 − 𝐺 (𝑞)]

+
1

2
̇𝑞
𝑇

�̇� (𝑞) ̇𝑞 − ̇𝑞
𝑇

𝐵𝑞 + 𝑚𝐺�̇� sin 𝜃
𝑥

+ 𝑚𝐺𝑥 cos 𝜃
𝑥

̇𝜃
𝑥
+ 𝑚𝐺 ̇𝑦 sin 𝜃

𝑦
+ 𝑚𝐺𝑦 cos 𝜃

𝑦

̇𝜃
𝑦
.

(B.2)

Developing (B.2), we have

𝑑𝑉 = ̇𝑞
𝑇

𝐵𝑞 + ̇𝑞
𝑇

𝐷𝜋 − ̇𝑞
𝑇

𝐶 (𝑞, ̇𝑞) ̇𝑞 − ̇𝑞
𝑇

𝐺 (𝑞)

+
1

2
̇𝑞
𝑇

�̇� (𝑞) ̇𝑞 − ̇𝑞
𝑇

𝐵𝑞 + 𝑚𝐺�̇� sin 𝜃
𝑥

+ 𝑚𝐺𝑥 cos 𝜃
𝑥

̇𝜃
𝑥
+ 𝑚𝐺 ̇𝑦 sin 𝜃

𝑦
+ 𝑚𝐺𝑦 cos 𝜃

𝑦

̇𝜃
𝑦
.

(B.3)

Factoring similar terms, we have

𝑑𝑉 = ̇𝑞
𝑇

[𝐵𝑞 − 𝐵𝑞 + 𝐷𝜋 − 𝐺 (𝑞)]

+
1

2
̇𝑞
𝑇

�̇� (𝑞) ̇𝑞 − ̇𝑞
𝑇

𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝑚𝐺�̇� sin 𝜃
𝑥

+ 𝑚𝐺𝑥 cos 𝜃
𝑥

̇𝜃
𝑥
+ 𝑚𝐺 ̇𝑦 sin 𝜃

𝑦
+ 𝑚𝐺𝑦 cos 𝜃

𝑦

̇𝜃
𝑦
.

(B.4)

Eliminating and grouping terms, we have

𝑑𝑉 = ̇𝑞
𝑇

[𝐷𝜋 − 𝐺 (𝑞)] +
1

2
̇𝑞
𝑇

[�̇� (𝑞) − 2𝐶 (𝑞, ̇𝑞)] ̇𝑞

+ 𝑚𝐺�̇� sin 𝜃
𝑥
+ 𝑚𝐺𝑥 cos 𝜃

𝑥

̇𝜃
𝑥

+ 𝑚𝐺 ̇𝑦 sin 𝜃
𝑦
+ 𝑚𝐺𝑦 cos 𝜃

𝑦

̇𝜃
𝑦
.

(B.5)

From (B.5), the differentiate of𝑀(𝑞) is

�̇� =
[
[
[

[

0 0 0 0

0 2𝑚𝑥 0 𝑚 (𝑥 + 𝑦)

0 0 0 0

0 𝑚 (𝑥 + 𝑦) 0 2𝑚𝑦

]
]
]

]

. (B.6)

Equation (B.6) is substituted in [�̇�(𝑞) − 2𝐶(𝑞, ̇𝑞)] as follows:

[�̇� (𝑞) − 2𝐶 (𝑞, ̇𝑞)]

=
[
[
[

[

0 0 0 0

0 2𝑚𝑥 0 𝑚 (𝑥 + 𝑦)

0 0 0 0

0 𝑚 (𝑥 + 𝑦) 0 2𝑚𝑦

]
]
]

]

− ⋅ ⋅ ⋅

− 2
[
[
[

[

0 −𝑚𝑥 ̇𝜃
𝑥

0 −𝑚𝑦 ̇𝜃
𝑥

𝑙
5

𝑎
5

0 𝑚𝑥 ̇𝑦 + 𝑚�̇�𝑦

0 −𝑚𝑥 ̇𝜃
𝑦

0 −𝑚𝑦 ̇𝜃
𝑦

0 𝑚𝑥 ̇𝑦 + 𝑚�̇�𝑦 𝑙
6

𝑏
5

]
]
]

]

,

(B.7)

where 𝑙
5
= 2𝑚𝑥 ̇𝜃

𝑥
+𝑎
2
and 𝑙
6
= 2𝑚𝑦 ̇𝜃

𝑦
+𝑏
2
. Developing (B.7)

and separating terms variables constants, we have

[
[
[
[

[

0 2𝑚𝑥 ̇𝜃
𝑥

0 2𝑚𝑦 ̇𝜃
𝑥

−4𝑚𝑥 ̇𝜃
𝑥

2𝑚𝑥 0 𝑙
8

0 2𝑚𝑥 ̇𝜃
𝑦

0 2𝑚𝑦 ̇𝜃
𝑦

0 𝑙
7

−4𝑚𝑦 ̇𝜃
𝑦

2𝑚𝑦

]
]
]
]

]

−

[
[
[
[
[

[

0 0 0 0

2𝑎
2

2𝑎
5

0 0

0 0 0 0

0 0 2𝑏
2

2𝑏
5

]
]
]
]
]

]

,

(B.8)

where 𝑙
7
= 𝑚(𝑥 + 𝑦) − 2𝑚𝑥 ̇𝑦 − 2𝑚�̇�𝑦 and 𝑙

8
= −2𝑚𝑥 ̇𝑦 −

2𝑚�̇�𝑦 + 𝑚(𝑥 + 𝑦). We define a new matrix 𝑃:

𝑃 =
[
[
[

[

0 0 0 0

−2𝑎
2

−2𝑎
5

0 0

0 0 0 0

0 0 −2𝑏
2

−2𝑏
5

]
]
]

]

. (B.9)
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Differentiating (6), we have

̇𝑞 =
[
[
[

[

�̇�

̇𝜃
𝑥

̇𝑦

̇𝜃
𝑦

]
]
]

]

̇𝑞
𝑇

= [�̇� ̇𝜃
𝑥

̇𝑦 ̇𝜃
𝑦
] (B.10)

(1/2) ̇𝑞
𝑇

𝑃 ̇𝑞 is calculated by multiplying ̇𝑞
𝑇

𝑃 :

̇𝑞
𝑇

𝑃 = [�̇� ̇𝜃
𝑥

̇𝑦 ̇𝜃
𝑦
]
[
[
[

[

0 0 0 0

−2𝑎
2

−2𝑎
5

0 0

0 0 0 0

0 0 −2𝑏
2

−2𝑏
5

]
]
]

]

, (B.11)

̇𝑞
𝑇

𝑃 = [−2𝑎
2

̇𝜃
𝑥

−2𝑎
5

̇𝜃
𝑥

−2𝑏
2

̇𝜃
𝑦

−2𝑏
5

̇𝜃
𝑦
] . (B.12)

After multiplying (B.12) by ̇𝑞, we have

̇𝑞
𝑇

𝑃 ̇𝑞 = [−2𝑎
2

̇𝜃
𝑥

−2𝑎
5

̇𝜃
𝑥

−2𝑏
2

̇𝜃
𝑦

−2𝑏
5

̇𝜃
𝑦
]
[
[
[

[

�̇�

̇𝜃
𝑥

̇𝑦

̇𝜃
𝑦

]
]
]

]

, (B.13)

̇𝑞
𝑇

𝑃 ̇𝑞 = −2𝑎
2

̇𝜃
𝑥
�̇� − 2𝑎

5

̇𝜃
2

𝑥
− 2𝑏
2

̇𝜃
𝑦

̇𝑦 − 2𝑏
5

̇𝜃
2

𝑦
. (B.14)

Finally multiplying (B.14) by (1/2),we have

1

2
̇𝑞
𝑇

𝑃 ̇𝑞 = −𝑎
2

̇𝜃
𝑥
�̇� − 𝑎
5

̇𝜃
2

𝑥
− 𝑏
2

̇𝜃
𝑦

̇𝑦 − 𝑏
5

̇𝜃
2

𝑦
. (B.15)

Equation (B.8) is calculated as follows:

1

2
̇𝑞
𝑇

[
[
[
[

[

0 2𝑚𝑥 ̇𝜃
𝑥

0 2𝑚𝑦 ̇𝜃
𝑥

−4𝑚𝑥 ̇𝜃
𝑥

2𝑚𝑥 0 𝑙
8

0 2𝑚𝑥 ̇𝜃
𝑦

0 2𝑚𝑦 ̇𝜃
𝑦

0 𝑙
7

−4𝑚𝑦 ̇𝜃
𝑦

2𝑚𝑦

]
]
]
]

]

̇𝑞, (B.16)

where 𝑙
7
and 𝑙
8
are given in (B.8). From (B.16), we first have

[�̇� ̇𝜃
𝑥

̇𝑦 ̇𝜃
𝑦
]

[
[
[
[

[

0 2𝑚𝑥 ̇𝜃
𝑥

0 2𝑚𝑦 ̇𝜃
𝑥

−4𝑚𝑥 ̇𝜃
𝑥

2𝑚𝑥 0 𝑙
8

0 2𝑚𝑥 ̇𝜃
𝑦

0 2𝑚𝑦 ̇𝜃
𝑦

0 𝑙
7

−4𝑚𝑦 ̇𝜃
𝑦

2𝑚𝑦

]
]
]
]

]

= [−4𝑚𝑥 ̇𝜃
2

𝑥
𝑙
9

−4𝑚𝑦 ̇𝜃
2

𝑦
𝑙
10
] ,

(B.17)

where 𝑙
9
= 2𝑚𝑥�̇� ̇𝜃

𝑥
+ 2𝑚𝑥 ̇𝜃

𝑥
+ 2𝑚𝑥 ̇𝑦 ̇𝜃

𝑦
+ 𝑚 ̇𝜃
𝑦
(𝑥 + 𝑦) −

2𝑚 ̇𝜃
𝑦
𝑥 ̇𝑦 − 2𝑚 ̇𝜃

𝑦
�̇�𝑦, 𝑙
10

= 2𝑚𝑦�̇� ̇𝜃
𝑥
− 2𝑚 ̇𝜃

𝑥
𝑥 ̇𝑦 − 2𝑚 ̇𝜃

𝑥
�̇�𝑦 +

𝑚 ̇𝜃
𝑥
(𝑥 + 𝑦) + 2𝑚𝑦 ̇𝑦 ̇𝜃

𝑦
+ 2𝑚𝑦 ̇𝜃

𝑦
, and 𝑙

7
and 𝑙
8
are given in

(B.16). Then multiplying (B.17) by ̇𝑞, we have

[−4𝑚𝑥 ̇𝜃
2

𝑥
𝑙
9

−4𝑚𝑦 ̇𝜃
2

𝑦
𝑙
10
]
[
[
[

[

�̇�

̇𝜃
𝑥

̇𝑦

̇𝜃
𝑦

]
]
]

]

, (B.18)

= −4𝑚𝑥�̇� ̇𝜃
2

𝑥
+ 2𝑚𝑥�̇� ̇𝜃

2

𝑥
+ 2𝑚𝑥 ̇𝜃

2

𝑥
+ 2𝑚𝑥 ̇𝑦 ̇𝜃

𝑦

̇𝜃
𝑥

+ 𝑚 ̇𝜃
𝑦

̇𝜃
𝑥
(𝑥 + 𝑦) − 2𝑚 ̇𝜃

𝑦

̇𝜃
𝑥
𝑥 ̇𝑦 − 2𝑚 ̇𝜃

𝑦

̇𝜃
𝑥
�̇�𝑦 − ⋅ ⋅ ⋅

− 4𝑚𝑦 ̇𝑦 ̇𝜃
2

𝑦
+ 2𝑚𝑦�̇� ̇𝜃

𝑥

̇𝜃
𝑦
− 2𝑚 ̇𝜃

𝑥

̇𝜃
𝑦
𝑥 ̇𝑦 − 2𝑚 ̇𝜃

𝑥

̇𝜃
𝑦
�̇�𝑦

+ 𝑚 ̇𝜃
𝑥

̇𝜃
𝑦
(𝑥 + 𝑦) + 2𝑚𝑦 ̇𝑦 ̇𝜃

2

𝑦
+ 2𝑚𝑦 ̇𝜃

2

𝑦
,

(B.19)

= −2𝑚𝑥�̇� ̇𝜃
2

𝑥
− 2𝑚𝑦 ̇𝑦 ̇𝜃

2

𝑦
+ 2𝑚𝑥 ̇𝜃

2

𝑥
+ 2𝑚𝑦 ̇𝜃

2

𝑦

+ 2𝑚𝑥 ̇𝜃
𝑦

̇𝜃
𝑥
+ 2𝑚𝑦 ̇𝜃

𝑦

̇𝜃
𝑥
− 2𝑚𝑥 ̇𝑦 ̇𝜃

𝑦

̇𝜃
𝑥
− 2𝑚�̇�𝑦 ̇𝜃

𝑥

̇𝜃
𝑦
.

(B.20)

Finally multiplying (B.20) by 1/2, we obtain

= −𝑚𝑥�̇� ̇𝜃
2

𝑥
− 𝑚𝑦 ̇𝑦 ̇𝜃

2

𝑦
+ 𝑚𝑥 ̇𝜃

2

𝑥
+ 𝑚𝑦 ̇𝜃

2

𝑦

+ 𝑚𝑥 ̇𝜃
𝑦

̇𝜃
𝑥
+ 𝑚𝑦 ̇𝜃

𝑦

̇𝜃
𝑥
− 𝑚𝑥 ̇𝑦 ̇𝜃

𝑦

̇𝜃
𝑥
− 𝑚�̇�𝑦 ̇𝜃

𝑥

̇𝜃
𝑦
.

(B.21)

Therefore, the term (1/2) ̇𝑞
𝑇

[�̇�(𝑞) − 2𝐶(𝑞, ̇𝑞)] ̇𝑞 is equal to the
sum of (B.21) and (B.15) as follows:

= −𝑎
2

̇𝜃
𝑥
�̇� − 𝑎
5

̇𝜃
2

𝑥
− 𝑏
2

̇𝜃
𝑦

̇𝑦 − 𝑏
5

̇𝜃
2

𝑦

− 𝑚𝑥�̇� ̇𝜃
2

𝑥
− 𝑚𝑦 ̇𝑦 ̇𝜃

2

𝑦
+ 𝑚𝑥 ̇𝜃

2

𝑥
+ 𝑚𝑦 ̇𝜃

2

𝑦
+ 𝑚𝑥 ̇𝜃

𝑦

̇𝜃
𝑥

+ 𝑚𝑦 ̇𝜃
𝑦

̇𝜃
𝑥
− ⋅ ⋅ ⋅ − 𝑚𝑥 ̇𝑦 ̇𝜃

𝑦

̇𝜃
𝑥
− 𝑚�̇�𝑦 ̇𝜃

𝑥

̇𝜃
𝑦
.

(B.22)

From (B.5), we calculate the term − ̇𝑞
𝑇

𝐺(𝑞) as follows:

= − [�̇� ̇𝜃
𝑥

̇𝑦 ̇𝜃
𝑦
]
[
[
[

[

𝑚𝐺 sin 𝜃
𝑥

𝑚𝐺𝑥 cos 𝜃
𝑥

𝑚𝐺 sin 𝜃
𝑦

𝑚𝐺𝑦 cos 𝜃
𝑦

]
]
]

]

= −𝑚�̇�𝐺 sin 𝜃
𝑥
− 𝑚𝑥 ̇𝜃

𝑥
𝐺 cos 𝜃

𝑥

− 𝑚 ̇𝑦𝐺 sin 𝜃
𝑦
− 𝑚𝑦 ̇𝜃

𝑦
𝐺 cos 𝜃

𝑦
.

(B.23)

Finally, the term is calculated ̇𝑞
𝑇

𝐷𝜋 from (B.5):

[�̇� ̇𝜃
𝑥

̇𝑦 ̇𝜃
𝑦
]
[
[
[

[

0

𝜋
𝑥

0

𝜋
𝑦

]
]
]

]

= 𝜋
𝑥

̇𝜃
𝑥
+ 𝜋
𝑦

̇𝜃
𝑦
. (B.24)

Therefore, to obtain the derivative of the Lyapunov function,
add (B.22), (B.23), and (B.24), and factoring ̇𝜃

𝑥
and ̇𝜃

𝑦
, we

have (24).
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