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We propose a nonlinear discrete system of two species with the effect of toxic substances. By constructing a suitable Lyapunov-
type function, we obtain the sufficient conditions which guarantee that one of the components will be driven to extinction while
the other will be globally attractive with any positive solution of a discrete equation. Two examples together with their numerical
simulations illustrate the feasibility of our main results. The results not only improve but also complement some known results.

1. Introduction

Let 𝑍 denote the set of all nonnegative integers. For any
bounded sequence {𝑓(𝑛)}, set 𝑓𝑢 = sup

𝑛∈𝑍
𝑓(𝑛) and 𝑓

𝑙

=

inf
𝑛∈𝑍

𝑓(𝑛).

In the real world, there are many types of interactions
between two species. Competitive relations are among the
most common ecological interactions. As we all know, the
competitive system has been established and was accepted
by many scientists and now it became the most important
means to explain the ecological phenomenon. During the last
decade, the study of the dynamic behaviors of competitive
system with toxic substance or feedback control have been
discussed bymany authors; see, for example, [1–16]. However,
most of the studies are based on the traditional Lotka-Volterra
competitive system [5, 7, 8, 17–20]; seldom did scholars
consider the nonlinear case [1–4, 8, 9, 11, 12, 15, 16, 21–25].

In [1], Li and Chen studied the extinction property of the
following two species competitive system:

�̇�
1
(𝑡) = 𝑥

1
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1
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1
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1
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2
(𝑡)

− 𝑐
2
(𝑡) 𝑥
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(𝑡) 𝑥
2
(𝑡)] ,

(1)

where 𝑟
𝑖
(𝑡),𝑎
𝑖
(𝑡),𝑏
𝑖
(𝑡),𝑐
𝑖
(𝑡), 𝑖 = 1, 2, are assumed to be contin-

uous and bounded above and below by positive constants and
𝑥
1
(𝑡), 𝑥
2
(𝑡) are population density of species 𝑥

1
and 𝑥
2
at time

𝑡, respectively.
In fact, when the size of the population is relatively small,

the discrete time models governed by difference equations
are more appropriate than the continuous ones. Therefore, Li
and Chen [2] and Guo et al. [3] studied the following discrete
Lotka-Volterra competition system:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [𝑟

1
(𝑛) − 𝑎

1
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2
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2
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2
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(2)

where {𝑟
𝑖
(𝑛)}, {𝑎

𝑖
(𝑛)}, {𝑏

𝑖
(𝑛)}, and {𝑐

𝑖
(𝑛)}, 𝑖 = 1, 2, are

bounded nonnegative sequences defined on 𝑛 ∈ 𝑍. In [2], Li
and Chen showed that if the coefficients of system (2) satisfy
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species 𝑥
2
will be driven to extinction. In [3], Guo et al.

introduced the average growth rate and showed that if the
coefficients of system (2) satisfy the following inequality:

𝑀[𝑟
2
]

𝑚 [𝑟
1
]
< min{

𝑎
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1

} , (𝐻


0
)

then the same conclusion holds. Obviously, condition (𝐻


0
) is

weaker than that of (𝐻
0
).

Since conditions (𝐻
0
) and (𝐻



0
) are all sufficient condi-

tions, one of the interesting problems is whether the results
still hold under the weaker condition. Now let us consider
the following example.

Example 1. Consider the following system:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [(0.6 + 0.3 sin (𝑛))

− (1 + 0.3 sin (𝑛)) 𝑥
1
(𝑛) − (1 + 0.5 sin (𝑛)) 𝑥

2
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1
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(𝑛)] .

(3)

In this case

𝑟
1
(𝑛) = 0.6 + 0.3 sin (𝑛) ,

𝑎
1
(𝑛) = 1 + 0.3 sin (𝑛) ,
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(4)

By simple computation, one can see that
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Figure 1: Dynamic behaviors of system (3) with initial values
(𝑥
1
(0), 𝑥
2
(0)) = (0.14, 0.19), (0.27, 0.69), and (0.8, 0.39), respec-

tively.

and (6) and (7) show that neither (𝐻
0
) nor (𝐻



0
) holds;

hence one could not draw any conclusion about the dynamic
behaviors of the system. However, Figure 1 shows species 𝑥

2

will be driven to extinction in this case. This motivates us to
revisit the extinction property of system (2).

On the other hand, Gilpin and Ayala [21] conducted
experiment on fruit fly dynamics to test the validity of 10
models of competitions. One of the models accounting best
for the experimental results is given by

�̇�
1
(𝑡) = 𝑟

1
𝑥
1
(𝑡) (1 − (

𝑥
1
(𝑡)

𝐾
1

)

𝜃
1

− 𝛼
12

𝑥
2
(𝑡)

𝐾
2

) ,

�̇�
2
(𝑡) = 𝑟

2
𝑥
2
(𝑡) (1 − (

𝑥
2
(𝑡)

𝐾
2

)

𝜃
2

− 𝛼
21

𝑥
1
(𝑡)

𝐾
1

) .

(8)

Fan and Wang [22] studied the dynamic behaviors of the
following nonautonomous 𝑛-species Gilpin-Ayala competi-
tive system:

�̇�
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) [

[

𝑏
𝑖
(𝑡) −
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,

𝑖 = 1, 2, . . . , 𝑛,

(9)

where 𝑏
𝑖
(𝑡), 𝜏
𝑖𝑗
(𝑡), and 𝑎

𝑖𝑗
(𝑡), 𝑖, 𝑗 = 1, 2, . . . , 𝑛, are continuous

for 0 ≤ 𝑡 < +∞ and 𝜃
𝑖𝑗
are positive constants.

Chen et al. [23] studied a discrete 𝑛-species Gilpin-Ayala
competitive system

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) exp[

[

𝑏
𝑖
(𝑘) −

𝑛

∑
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𝑗
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𝜃
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]

,

𝑖 = 1, 2, . . . , 𝑛,

(10)
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where 𝑏
𝑖
(𝑘), 𝑎
𝑖𝑗
(𝑘), 𝑖, 𝑗 = 1, 2, . . . , 𝑛, are all positive sequences

bounded above and below by positive constants. 𝜃
𝑖𝑗

are
positive constants.

Recently, stimulated by the works of [1, 21, 22], Chen et
al. [24] proposed the following, a nonautonomous nonlinear
competition system:
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(11)

Chen et al. showed that if the coefficients of system (10) satisfy

lim sup
𝑡→+∞

𝑟
2
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𝑟
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𝑐
2
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𝑐
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} , (12)

the second species will be driven to extinction while the first
one will stabilize at a certain solution of the system

�̇�
1
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1
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1
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Stimulated by the works of [1–3, 21–24], we propose
the following a nonlinear discrete two species competition
system:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [𝑟

1
(𝑛) − 𝑎

1
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𝛼
1

1
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2
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𝑥
2
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2
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2
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𝛼
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(14)

We introduce the following assumptions:

(𝐻
1
) {𝑟
𝑖
(𝑛)} are bounded sequence defined on 𝑍; {𝑎

𝑖
(𝑛)},

{𝑏
𝑖
(𝑛)}, and {𝑐

𝑖
(𝑛)}, 𝑖 = 1, 2, are bounded nonnegative

sequences defined on 𝑍; 𝛼
𝑖
, 𝑖 = 1, 2, are positive

constants.
(𝐻
2
) There exists positive integer 𝜔 such that for each 𝑖 =

1, 2

lim inf
𝑛→∞

𝑛+𝜔−1

∑

𝑠=𝑛

𝑟
𝑖
(𝑠) > 0. (15)

From the point of view of biology, we assume that
𝑥
𝑖
(0) > 0, 𝑖 = 1, 2; then system (14) has a positive solution

(𝑥
1
(𝑛), 𝑥
2
(𝑛)) passing through (𝑥

1
(0), 𝑥
2
(0)).

The aim of this paper is, by developing the analysis
technique of Li and Chen [2], Chen et al. [4, 24], and Xu et
al. [6], to study the extinction property of system (14).

The organization of this paper is as follows. In Section 2,
sufficient conditions for the permanence of system (14) are
obtained. In Section 3, we study the extinction of species 𝑥

2
.

In Section 4, we study the global stability of species 𝑥
1
when

species 𝑥
2
is eventual extinction. Examples are presented in

Section 5 to show the feasibility of our main results.

2. Permanence

Lemma 2 (see [26]). Assume that {𝑥(𝑛)} satisfy 𝑥(𝑛) > 0 and

𝑥 (𝑛 + 1) ≤ 𝑥 (𝑛) exp {𝑎 (𝑛) − 𝑏 (𝑛) 𝑥 (𝑛)} , 𝑛 ∈ 𝑁, (16)

where 𝑎(𝑛) and 𝑏(𝑛) are nonnegative sequences bounded above
and below by positive constants. Then

lim sup
𝑛→∞

𝑥 (𝑛) ≤
exp {𝑎

𝑢

− 1}

𝑏𝑙
. (17)

Lemma 3 (see [26]). Assume that {𝑥(𝑛)} satisfies

𝑥 (𝑛 + 1) ≥ 𝑥 (𝑛) exp {𝑎 (𝑛) − 𝑏 (𝑛) 𝑥 (𝑛)} , 𝑛 ≥ 𝑁
0
, (18)

lim sup
𝑛→∞

𝑥(𝑛) ≤ 𝑥
∗, and 𝑥(𝑁

0
) > 0, where 𝑎(𝑛) and

𝑏(𝑛) are nonnegative sequences bounded above and below by
positive constants and𝑁

0
∈ 𝑁. Then

lim inf
𝑛→∞

𝑥 (𝑛) ≥ min{
𝑎
𝑙

𝑏𝑢
exp {𝑎

𝑙

− 𝑏
𝑢

𝑥
∗

} ,
𝑎
𝑙

𝑏𝑢
} . (19)

Lemma 4. Assume that 𝑟𝑙
1
> 0; every positive solution (𝑥

1
(𝑛),

𝑥
2
(𝑛)) of system (14) satisfies

lim sup
𝑛→∞

𝑥
1
(𝑛) ≤ 𝑀

1
, (20)

where𝑀
1
= (exp{𝛼

1
𝑟
𝑢

1
− 1}/𝛼

1
𝑎
𝑙

1
)
1/𝛼
1 .

Proof. By the first equation of system (14), we have

𝑥
1
(𝑛) ≤ 𝑥

1
(𝑛) exp {𝑟

1
(𝑛) − 𝑎

1
(𝑛) 𝑥
𝛼
1

1
(𝑛)} . (21)
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1
(𝑛) = 𝑥

𝛼
1

1
(𝑛); then 𝑥

1
(𝑛) = [𝑦

1
(𝑛)]
1/𝛼
1 .

From (21), we have

[𝑦
1
(𝑛 + 1)]

1/𝛼
1

≤ [𝑦
1
(𝑛)]
1/𝛼
1 exp {𝑟

1
(𝑛) − 𝑎

1
(𝑛) 𝑦
1
(𝑛)} .

(22)

That is,

𝑦
1
(𝑛 + 1) ≤ 𝑦

1
(𝑛) exp {𝛼

1
𝑟
1
(𝑛) − 𝛼

1
𝑎
1
(𝑛) 𝑦
1
(𝑛)} . (23)

Applying Lemma 2 such that

lim sup
𝑡→+∞

𝑦
1
(𝑛) ≤

exp {𝛼
1
𝑟
𝑢

1
− 1}

𝛼
1
𝑎
𝑙

1

, (24)

hence

lim sup
𝑡→+∞

𝑥
1
(𝑛) ≤ (
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1
𝑟
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1
− 1}

𝛼
1
𝑎
𝑙

1

)

1/𝛼
1

def
= 𝑀
1
. (25)

Lemma 5. Assume that 𝑟𝑙
2
> 0; every positive solution (𝑥

1
(𝑛),

𝑥
2
(𝑛)) of system (14) satisfies

lim sup
𝑛→∞

𝑥
2
(𝑛) ≤ 𝑀

2
, (26)

where𝑀
2
= (exp{𝛼

2
𝑟
𝑢

2
− 1}/𝛼

2
𝑏
𝑙

2
)
1/𝛼
2 .
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Proof. The proof of Lemma 5 is similar to that of Lemma 4,
so we omit the detail here.

Lemma 6. Assume that

(𝐻
3
) 𝐸
1
> 0

holds; every positive solution (𝑥
1
(𝑛), 𝑥
2
(𝑛)) of system (14)

satisfies

lim inf
𝑛→∞

𝑥
1
(𝑛) ≥ 𝑚

1
, (27)

where 𝑚
1
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1
/𝐸
2
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2
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1
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2
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and 𝐸
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1
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1
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2

2
.

Proof. In view of (26), for each 𝜀 > 0, there exists a 𝑁
1
> 0

such that

𝑥
2
(𝑛) ≤ 𝑀

2
+ 𝜀, ∀𝑛 ≥ 𝑁

1
. (28)

By the first equation of system (14), we have
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(𝑛) (𝑀

2
+ 𝜀)
𝛼
2

) 𝑥
𝛼
1

1
(𝑛)} .

(29)

Suppose 𝑦
1
(𝑛) = 𝑥

𝛼
1

1
(𝑛); then 𝑥

1
(𝑛) = [𝑦

1
(𝑛)]
1/𝛼
1 .

From (28), we have

[𝑦
1
(𝑛 + 1)]

1/𝛼
1

≥ [𝑦
1
(𝑛)]
1/𝛼
1 exp {𝑟

1
(𝑛)

− 𝑏
1
(𝑛) (𝑀

2
+ 𝜀)
𝛼
2

− (𝑎
1
(𝑛) + 𝑐

1
(𝑛) (𝑀

2
+ 𝜀)
𝛼
2

) 𝑦
1
(𝑛)} .

(30)

That is,

𝑦
1
(𝑛 + 1) ≥ 𝑦

1
(𝑛) exp {𝛼

1
𝑟
1
(𝑛) − 𝛼

1
𝑏
1
(𝑛) (𝑀

2
+ 𝜀)
𝛼
2

− (𝛼
1
𝑎
1
(𝑛) + 𝛼

1
𝑐
1
(𝑛) (𝑀

2
+ 𝜀)
𝛼
2

) 𝑦
1
(𝑛)}

≥ 𝑦
1
(𝑛) exp {𝛼

1
𝑟
𝑙

1
− 𝛼
1
𝑏
𝑢

1
(𝑀
2
+ 𝜀)
𝛼
2

− (𝛼
1
𝑎
𝑢

1
+ 𝛼
1
𝑐
𝑢

1
(𝑀
2
+ 𝜀)
𝛼
2

) 𝑦
1
(𝑛)}

def
= 𝑦
1
(𝑛) exp {𝛼

1
𝐸
1𝜀

− 𝛼
1
𝐸
2𝜀
𝑦
1
(𝑛)} ,

(31)

where 𝐸
1𝜀

= 𝑟
𝑙

1
− 𝑏
𝑢

1
(𝑀
2
+ 𝜀)
𝛼
2 and 𝐸

2𝜀
= 𝑎
𝑢

1
+ 𝑐
𝑢

1
(𝑀
2
+ 𝜀)
𝛼
2 .

Applying Lemma 3 such that

lim inf
𝑛→+∞

𝑦
1
(𝑛)

≥ min{
𝐸
1

𝐸
2

exp {𝛼
1
𝐸
1
− 𝛼
1
𝐸
2
𝑀
𝛼
1

1
} ,

𝐸
1

𝐸
2

} ,

(32)

where 𝐸
1
= 𝑟
𝑙

1
− 𝑏
𝑢

1
𝑀
𝛼
2

2
and 𝐸

2
= 𝑎
𝑢

1
+ 𝑐
𝑢

1
𝑀
𝛼
2

2
.

Hence

lim inf
𝑛→+∞

𝑥
1
(𝑛)

≥ min{(
𝐸
1

𝐸
2

)

1/𝛼
1

exp {𝐸
1
− 𝐸
2
𝑀
𝛼
1

1
} , (

𝐸
1

𝐸
2

)

1/𝛼
1

} .

(33)

Note that

𝑀
1
= (

exp {𝛼
1
𝑟
𝑢

1
− 1}

𝛼
1
𝑎
𝑙

1

)

1/𝛼
1

≥ (
𝛼
1
𝑟
𝑢

1

𝛼
1
𝑎
𝑙

1

)

1/𝛼
1

= (
𝑟
𝑢

1

𝑎
𝑙

1

)

1/𝛼
1

.

(34)

Thus

𝑟
𝑙

1
− 𝑎
𝑢

1
𝑀
𝛼
1

1
≤ 0. (35)

And so

𝐸
1
− 𝐸
2
𝑀
𝛼
1

1
≤ 0. (36)

Hence

lim inf
𝑛→+∞

𝑥
1
(𝑛) ≥ (

𝐸
1

𝐸
2

)

1/𝛼
1

exp {𝐸
1
− 𝐸
2
𝑀
𝛼
1

1
}
def
= 𝑚
1
. (37)

Lemma 7. Assume that

(𝐻
4
) 𝐹
1
> 0

holds; every positive solution (𝑥
1
(𝑛), 𝑥
2
(𝑛)) of system (14)

satisfies

lim inf
𝑛→∞

𝑥
2
(𝑛) ≥ 𝑚

2
, (38)

where 𝑚
2
= (𝐹
1
/𝐹
2
)
1/𝛼
2 exp{𝐹

1
− 𝐹
2
𝑀
𝛼
2

2
}, 𝐹
1
= 𝑟
𝑙

2
− 𝑎
𝑢

2
𝑀
𝛼
1

1
,

and 𝐹
2
= 𝑏
𝑢

2
+ 𝑐
𝑢

2
𝑀
𝛼
1

1
.

Proof. The proof of Lemma 7 is similar to that of Lemma 6,
so we omit the detail here.

Lemma 8. Assume that (𝐻
1
)–(𝐻
4
) hold; then system (14) is

permanent. That is, for every solution (𝑥
1
(𝑛), 𝑥
2
(𝑛)) of system

(14), one has

𝑚
𝑖
≤ lim inf
𝑛→+∞

𝑥
𝑖
(𝑛) ≤ lim sup

𝑛→+∞

𝑥
𝑖
(𝑛) ≤ 𝑀

𝑖
, 𝑖 = 1, 2. (39)

3. Extinction

Theorem9. Assume that (𝐻
1
), (𝐻
2
) hold; assume further that

(𝐻
5
) lim sup

𝑛→∞
(∑
𝑛+𝜔−1

𝑠=𝑛
𝑟
2
(𝑠)/∑

𝑛+𝜔−1

𝑠=𝑛
𝑟
1
(𝑠)) <

lim inf
𝑛→∞

{𝑎
2
(𝑛)/𝑎
1
(𝑛), 𝑏
2
(𝑛)/𝑏
1
(𝑛), 𝑐
2
(𝑛)/𝑐
1
(𝑛) | 𝑛 ∈

𝑍}.

Let (𝑥
1
(𝑛), 𝑥
2
(𝑛)) be any positive solution of system (14);

then 𝑥
2
(𝑛) → 0 as 𝑛 → +∞.
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Proof. By Lemma 2we know that there exists 𝑛
1
> 0 such that

𝑥
1
(𝑛) ≤ 2𝑀

1
, 𝑛 ≥ 𝑛

1
. (40)

By (𝐻
2
), there exist positive constants 𝜂

0
and 𝑛

2
> 𝑛
1
such

that

𝑛+𝜔−1

∑

𝑠=𝑛

𝑟
𝑖
(𝑠) ≥ 𝜂

0
, 𝑛 ≥ 𝑛

2
. (41)

By (𝐻
5
), we can choose positive constants 𝛼, 𝛽, and 𝜀 such

that

lim sup
𝑛→∞

∑
𝑛+𝜔−1

𝑠=𝑛
𝑟
2
(𝑠)

∑
𝑛+𝜔−1

𝑠=𝑛
𝑟
1
(𝑠)

<
𝛼

𝛽
− 𝜀 <

𝛼

𝛽

< lim inf
𝑛→∞

{
𝑎
2
(𝑛)

𝑎
1
(𝑛)

,
𝑏
2
(𝑛)

𝑏
1
(𝑛)

,
𝑐
2
(𝑛)

𝑐
1
(𝑛)

} .

(42)

Thus, there exists a 𝑛
3
> 𝑛
2
> 0, such that for all 𝑛 ≥ 𝑛

3

𝑛+𝜔−1

∑

𝑠=𝑛

(𝛽𝑟
2
(𝑠) − 𝛼𝑟

1
(𝑠)) < −𝜀𝛽

𝑛+𝜔−1

∑

𝑠=𝑛

𝑟
1
(𝑠) < −𝜀𝛽𝜂

0
, (43)

𝛼𝑎
1
(𝑛) − 𝛽𝑎

2
(𝑛) < 0,

𝛼𝑏
1
(𝑛) − 𝛽𝑏

2
(𝑛) < 0,

𝛼𝑐
1
(𝑛) − 𝛽𝑐

2
(𝑛) < 0.

(44)

Let 𝑉(𝑛) = 𝑥
−𝛼

1
(𝑛)𝑥
𝛽

2
(𝑛); then

𝑉 (𝑛 + 1)

𝑉 (𝑛)
= [

𝑥
1
(𝑛 + 1)

𝑥
1
(𝑛)

]

−𝛼

[
𝑥
2
(𝑛 + 1)

𝑥
2
(𝑛)

]

𝛽

= exp {−𝛼𝑟
1
(𝑛) + 𝛼𝑎

1
(𝑛) 𝑥
𝛼
1

1
(𝑛) + 𝛼𝑏

1
(𝑛) 𝑥
𝛼
2

2
(𝑛)

+ 𝛼𝑐
1
(𝑛) 𝑥
𝛼
1

1
(𝑛) 𝑥
𝛼
2

2
(𝑛) + 𝛽𝑟

2
(𝑛) − 𝛽𝑎

2
(𝑛) 𝑥
𝛼
1

1
(𝑛)

− 𝛽𝑏
2
(𝑛) 𝑥
𝛼
2

2
(𝑛) − 𝛽𝑐

2
(𝑛) 𝑥
𝛼
1

1
(𝑛) 𝑥
𝛼
2

2
(𝑛)}

= exp {(𝛽𝑟
2
(𝑛) − 𝛼𝑟

1
(𝑛))

+ (𝛼𝑎
1
(𝑛) − 𝛽𝑎

2
(𝑛)) 𝑥

𝛼
1

1
(𝑛)

+ (𝛼𝑏
1
(𝑛) − 𝛽𝑏

2
(𝑛)) 𝑥

𝛼
2

2
(𝑛)

+ (𝛼𝑐
1
(𝑛) − 𝛽𝑐

2
(𝑛)) 𝑥

𝛼
1

1
(𝑛) 𝑥
𝛼
2

2
(𝑛)} .

(45)

From (43) and (44), it follows that

𝑉 (𝑛 + 1) ≤ 𝑉 (𝑛) exp (𝛽𝑟
2
(𝑛) − 𝛼𝑟

1
(𝑛)) , 𝑛 ≥ 𝑛

3
. (46)

For any 𝑛 ≥ 𝑛
3
, we choose an integer 𝑚 ≥ 0 such that 𝑛 ∈

[𝑛
3
+ 𝑚𝜔, 𝑛

3
+ (𝑚 + 1)𝜔). Integrating (46) from 𝑛

3
to 𝑛 − 1,

from (43), we have

𝑉 (𝑛) ≤ 𝑉 (𝑛
3
) exp{

𝑛−1

∑

𝑠=𝑛
3

(𝛽𝑟
2
(𝑠) − 𝛼𝑟

1
(𝑠))}

= 𝑉 (𝑛
3
) exp(

𝑛
3
+𝑚𝜔−1

∑

𝑠=𝑛
3

+

𝑛−1

∑

𝑠=𝑛
3
+𝑚𝜔−1

)

⋅ (𝛽𝑟
2
(𝑠) − 𝛼𝑟

1
(𝑠))

≤ 𝑉 (𝑛
3
) exp {−𝜀𝛽𝜂

0
𝑚 + 𝐴

1
}

< 𝑉 (𝑛
3
) exp {−𝜀𝛽𝜂

0
(
𝑛 − 𝑛
3

𝜔
− 1) + 𝐴

1
}

= 𝑉 (𝑛
3
) exp{−

𝜀𝛽𝜂
0
𝑛

𝜔
+ 𝐴
∗

1
} ,

(47)

where𝐴∗
1
= 𝜀𝛽𝜂

0
𝑛
3
/𝜔+ 𝜀𝛽𝜂

0
+𝐴
1
and𝐴

1
= sup

𝑛∈𝑍
|𝛽𝑟
2
(𝑛) −

𝛼𝑟
1
(𝑛)|𝜔.

(47) implies that

𝑥
2
(𝑛) < [𝑥

−𝛼

1
(𝑛
3
) 𝑥
𝛽

2
(𝑛
3
) (2𝑀

1
)
𝛼 exp {𝐴

∗

1
}]
1/𝛽

⋅ exp {−
𝜀𝜂
0
𝑛

𝜔
} ,

(48)

for all 𝑛 ≥ 𝑛
3
. Hence, 𝑥

2
(𝑛) → 0 exponentially as 𝑛 → +∞.

4. Global Stability

In Section 3, we prove that species 𝑥
2
will be driven to

extinction if the conditions (𝐻
1
), (𝐻
2
), and (𝐻

5
) hold. Now

we investigate the stability property of species 𝑥
1
under the

same conditions.
Before we state the main result of this section, we first

introduce some lemmas.

Lemma 10. Assume that (𝐻
1
), (𝐻
2
), (𝐻
5
), and 𝑟

𝑙

1
> 0 hold;

let (𝑥
1
(𝑛), 𝑥
2
(𝑛)) be any positive solution of system (14); then

𝑚


1
≤ lim inf
𝑛→∞

𝑥
1
(𝑛) ≤ lim sup

𝑛→∞

𝑥
1
(𝑛) ≤ 𝑀

1
, (49)

where𝑚
1
= (𝑟
𝑙

1
/𝑎
𝑢

1
)
1/𝛼
1exp{𝑟𝑙

1
− 𝑎
𝑢

1
𝑀
𝛼
1

1
}.

Proof. Under the assumption conditions (𝐻
1
), (𝐻
2
), and

(𝐻
5
), it follows fromTheorem 9 that

lim
𝑛→∞

𝑥
2
(𝑛) = 0. (50)

From Lemma 4, we have

lim sup
𝑛→∞

𝑥
1
(𝑛) ≤ 𝑀

1
. (51)

By Lemma 10, it is enough to show that

lim inf
𝑛→∞

𝑥
1
(𝑛) ≥ 𝑚



1
. (52)
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In view of (50) and (51), for each 𝜀 > 0, there exists an integer
𝑛
0
∈ 𝑍 such that

𝑥
1
(𝑛) ≤ 𝑀

1
+ 𝜀,

𝑥
2
(𝑛) ≤ 𝜀,

∀𝑛 ≥ 𝑛
0
.

(53)

We consider the following two cases.

Case 1.Weassume that there exists an 𝑙
0
≥ 𝑛
0
such that𝑥

1
(𝑙
0
+

1) ≤ 𝑥
1
(𝑙
0
). Note that for 𝑛 ≥ 𝑙

0

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [𝑟

1
(𝑛) − 𝑎

1
(𝑛) 𝑥
𝛼
1

1
(𝑛)

− 𝑏
1
(𝑛) 𝑥
𝛼
2

2
(𝑛) − 𝑐

1
(𝑛) 𝑥
𝛼
1

1
(𝑛) 𝑥
𝛼
2

2
(𝑛)]

≥ 𝑥
1
(𝑛) exp [𝑟

𝑙

1
− 𝑎
𝑢

1
𝑥
𝛼
1

1
(𝑛) − 𝑏

𝑢

1
𝜀
𝛼
2

− 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

𝜀
𝛼
2] .

(54)

In particular, with 𝑛 = 𝑙
0
, we obtain

𝑟
𝑙

1
− 𝑎
𝑢

1
𝑥
𝛼
1

1
(𝑙
0
) − 𝑏
𝑢

1
𝜀
𝛼
2 − 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

𝜀
𝛼
2 ≤ 0, (55)

which implies that

𝑥
1
(𝑙
0
) ≥ (

𝑟
𝑙

1
− (𝑏
𝑢

1
+ 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

) 𝜀
𝛼
2

𝑎
𝑢

1

)

1/𝛼
1

. (56)

From (54) and (56), it follows that

𝑥
1
(𝑙
0
+ 1) ≥ (

𝑟
𝑙

1
− (𝑏
𝑢

1
+ 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

) 𝜀
𝛼
2

𝑎
𝑢

1

)

1/𝛼
1

⋅ exp [𝑟
𝑙

1
− 𝑎
𝑢

1
𝑥
𝛼
1

1
(𝑙
0
) − 𝑏
𝑢

1
𝜀
𝛼
2 − 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

𝜀
𝛼
2]

≥ (

𝑟
𝑙

1
− (𝑏
𝑢

1
+ 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

) 𝜀
𝛼
2

𝑎
𝑢

1

)

1/𝛼
1

exp [𝑟
𝑙

1

− 𝑎
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

− 𝑏
𝑢

1
𝜀
𝛼
2 − 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

𝜀
𝛼
2] .

(57)

Let

𝑥
1𝜀

= (

𝑟
𝑙

1
− (𝑏
𝑢

1
+ 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

) 𝜀
𝛼
2

𝑎
𝑢

1

)

1/𝛼
1

exp [𝑟
𝑙

1

− 𝑎
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

− 𝑏
𝑢

1
𝜀
𝛼
2 − 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

𝜀
𝛼
2] .

(58)

Note that

𝑀
1
= (

exp {𝛼
1
𝑟
𝑢

1
− 1}

𝛼
1
𝑎
𝑙

1

)

1/𝛼
1

≥ (
𝛼
1
𝑟
𝑢

1

𝛼
1
𝑎
𝑙

1

)

1/𝛼
1

≥ (
𝑟
𝑢

1

𝑎
𝑙

1

)

1/𝛼
1

,

(59)

and thus 𝑟𝑙
1
− 𝑎
𝑢

1
𝑀
𝛼
1

1
≤ 0; also, for arbitrary 𝜀,

𝑟
𝑙

1
− 𝑎
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

− 𝑏
𝑢

1
𝜀
𝛼
2 − 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

𝜀
𝛼
2 ≤ 0, (60)

or

(

𝑟
𝑙

1
− (𝑏
𝑢

1
+ 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

) 𝜀
𝛼
2

𝑎
𝑢

1

)

1/𝛼
1

≥ 𝑥
1𝜀
. (61)

We claim that

𝑥
1
(𝑛) ≥ 𝑥

1𝜀
, ∀𝑛 ≥ 𝑙

0
. (62)

By way of contradiction, assume that there exists a 𝑝
0
> 𝑙
0

such that 𝑥
1
(𝑝
0
) < 𝑥
1𝜀
. Then 𝑝

0
≥ 𝑙
0
+ 2. Let �̃�

0
≥ 𝑙
0
+ 2 be

the smallest integer such that 𝑥
1
(�̃�
0
) < 𝑥
1𝜀
.Then 𝑥

1
(�̃�
0
−1) >

𝑥
1
(�̃�
0
). The above argument produces that 𝑥

1
(�̃�
0
) ≥ 𝑥

1𝜀
, a

contradiction. This proves the claim.

Case 2. We assume that 𝑥
1
(𝑛 + 1) > 𝑥

1
(𝑛) for 𝑛 ≥ 𝑛

0
; then

lim
𝑛→∞

𝑥
1
(𝑛) = 𝑥

1
. We claim that

𝑥
1
≥ (

𝑟
𝑙

1
− (𝑏
𝑢

1
+ 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

) 𝜀
𝛼
2

𝑎
𝑢

1

)

1/𝛼
1

. (63)

By way of contradiction, assume that

𝑥
1
< (

𝑟
𝑙

1
− (𝑏
𝑢

1
+ 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

) 𝜀
𝛼
2

𝑎
𝑢

1

)

1/𝛼
1

. (64)

Taking limit in the first equation in system (14) gives

lim
𝑛→∞

(𝑟
1
(𝑛) − 𝑎

1
(𝑛) 𝑥
𝛼
1

1
(𝑛) − 𝑏

1
(𝑛) 𝑥
𝛼
2

2
(𝑛)

− 𝑐
1
(𝑛) 𝑥
𝛼
1

1
(𝑛) 𝑥
𝛼
2

2
(𝑛)) = 0,

(65)

which is a contradiction since

lim
𝑛→∞

(𝑟
1
(𝑛) − 𝑎

1
(𝑛) 𝑥
𝛼
1

1
(𝑛) − 𝑏

1
(𝑛) 𝑥
𝛼
2

2
(𝑛)

− 𝑐
1
(𝑛) 𝑥
𝛼
1

1
(𝑛) 𝑥
𝛼
2

2
(𝑛)) ≥ 𝑟

𝑙

1
− 𝑎
𝑢

1
𝑥
𝛼
1

1
− 𝑏
𝑢

1
𝜀
𝛼
2

− 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

𝜀
𝛼
2 > 0.

(66)

This proves the claim; then we have

lim inf
𝑛→∞

𝑥
1
(𝑛) = lim

𝑛→∞

𝑥
1
(𝑛) = 𝑥

1
≥ 𝑥
1𝜀
. (67)

Combining Case 1 and Case 2, we see that

lim inf
𝑛→∞

𝑥
1
(𝑛) ≥ 𝑥

1𝜀
. (68)

Setting 𝜀 → 0, note that

lim
𝜀→0

𝑥
1𝜀

= (
𝑟
𝑙

1

𝑎
𝑢

1

)

1/𝛼
1

exp {𝑟
𝑙

1
− 𝑎
𝑢

1
𝑀
𝛼
1

1
}

def
= 𝑚


1
. (69)

Now, we can easily see that (52) holds. This completes the
proof of Lemma 10.
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We consider a discrete equation

𝑥 (𝑛 + 1) = 𝑥 (𝑛) exp (𝑟
1
(𝑛) − 𝑎

1
(𝑛) 𝑥
𝛼
1 (𝑛)) ,

𝑛 ∈ 𝑁,

(70)

where {𝑟
1
(𝑛)} and {𝑎

1
(𝑛)} are bounded nonnegative sequen-

ces; similarly to the proof of Lemma 10, we can obtain the
following lemma.

Lemma 11. For any positive solution {𝑥(𝑛)} of (70), one has

𝑚 ≤ lim inf
𝑛→∞

𝑥 (𝑛) ≤ lim sup
𝑛→∞

𝑥 (𝑛) ≤ 𝑀, (71)

where 𝑀 = (exp{𝛼
1
𝑟
𝑢

1
− 1}/𝛼

1
𝑎
𝑙

1
)
1/𝛼
1 and 𝑚 =

(𝑟
𝑙

1
/𝑎
𝑢

1
)
1/𝛼
1exp{𝑟𝑙

1
− 𝑎
𝑢

1
𝑀
𝛼
1}.

Now, we state the main result of this section.

Theorem 12. Assume that (𝐻
1
), (𝐻
2
), (𝐻
5
), and 𝑟

𝑙

1
> 0 hold;

assume further that

𝑎
𝑢

1

𝑎
𝑙

1

exp (𝛼
1
𝑟
𝑢

1
− 1) < 2; (𝐻

6
)

then for any positive solution (𝑥
1
(𝑛), 𝑥
2
(𝑛)) of system (14) and

any positive solution {𝑥(𝑛)} of system (70), one has

lim
𝑛→∞

(𝑥
1
(𝑛) − 𝑥 (𝑛)) = 0,

lim
𝑛→∞

𝑥
2
(𝑛) = 0.

(72)

Proof. Since (𝐻
1
), (𝐻
2
), and (𝐻

5
) hold, it follows from

Theorem 12 that

lim
𝑛→∞

𝑥
2
(𝑛) = 0. (73)

To prove lim
𝑛→∞

(𝑥
1
(𝑛) − 𝑥(𝑛)) = 0, let

𝑥
1
(𝑛) = 𝑥 (𝑛) exp (𝑦 (𝑛)) . (74)

It follows from the first equation of system (14) and (74) that

𝑦 (𝑛 + 1) = 𝑦 (𝑛) − 𝑎
1
(𝑛) 𝑥
𝛼
1 (𝑛) (exp (𝛼

1
𝑦 (𝑛)) − 1)

− 𝑏
1
(𝑛) 𝑥
𝛼
2

2
(𝑛) − 𝑐

1
(𝑛) 𝑥
𝛼
1

1
(𝑛) 𝑥
𝛼
2

2
(𝑛) .

(75)

Using the Mean ValueTheorem, we get

exp (𝛼
1
𝑦 (𝑛)) − 1 = 𝛼

1
exp (𝜃 (𝑛)) 𝑦 (𝑛) ,

𝜃 (𝑛) ∈ (0, 𝛼
1
𝑦 (𝑛)) .

(76)

Then the first equation of system (14) is equivalent to

𝑦 (𝑛 + 1) = (1 − 𝛼
1
𝑎
1
(𝑛) 𝑥
𝛼
1 (𝑛) exp (𝜃 (𝑛))) 𝑦 (𝑛)

− (𝑏
1
(𝑛) + 𝑐

1
(𝑛) 𝑥
𝛼
1

1
(𝑛)) 𝑥

𝛼
2

2
(𝑛) ,

(77)

where 𝜃(𝑛) ∈ (0, 𝛼
1
𝑦(𝑛)).

To complete the proof, it suffices to show that

lim
𝑛→∞

𝑦 (𝑛) = 0. (78)

We first assume that

𝜆 = max {1 − 𝛼
1
𝑎
𝑢

1
𝑀
𝛼
1

1

 ,

1 − 𝛼
1
𝑎
𝑙

1
𝑚
𝛼
1

} < 1, (79)

and then we can choose positive constant 𝜀 > 0 small enough
such that
𝜆
𝜀

= max {1 − 𝛼
1
𝑎
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

,

1 − 𝛼
1
𝑎
𝑙

1
(𝑚 − 𝜀)

𝛼
1

}

< 1.

(80)

For above 𝜀, according to Lemmas 10 and 11 and (73), there
exists an integer 𝑛

0
∈ 𝑍 such that

𝑚 − 𝜀 ≤ 𝑥 (𝑛) ,

𝑥
1
(𝑛) ≤ 𝑀

1
+ 𝜀,

𝑥
2
(𝑛) ≤ 𝜀,

for 𝑛 ≥ 𝑛
0
.

(81)

It follows from (81) that

𝑏
1
(𝑛) + 𝑐

1
(𝑛) 𝑥
𝛼
1

1
(𝑛) ≤ 𝑏

𝑢

1
+ 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1
def
= 𝑀
𝜀
,

for 𝑛 ≥ 𝑛
0
.

(82)

Note that 𝜃(𝑛) ∈ (0, 𝛼
1
𝑦(𝑛)) implies that 𝛼

1
𝑥
𝛼
1(𝑛) exp(𝜃(𝑛))

lies between 𝛼
1
𝑥
𝛼
1(𝑛) and 𝛼

1
𝑥
𝛼
1

1
(𝑛). From (77) and (80)–(82),

we get
𝑦 (𝑛 + 1)



≤ max {1 − 𝛼
1
𝑎
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

,

1 − 𝛼
1
𝑎
𝑙

1
(𝑚 − 𝜀)

𝛼
1

}

⋅
𝑦 (𝑛)

 + (𝑏
𝑢

1
+ 𝑐
𝑢

1
(𝑀
1
+ 𝜀)
𝛼
1

) 𝜀
𝛼
2 = 𝜆
𝜀

𝑦 (𝑛)


+ 𝑀
𝜀
𝜀
𝛼
2 , for 𝑛 ≥ 𝑛

0
.

(83)

This implies that

𝑦 (𝑛)
 ≤ 𝜆
𝑛−𝑛
0

𝜀

𝑦 (𝑛
0
)
 +

1 − 𝜆
𝑛−𝑛
0

𝜀

1 − 𝜆
𝜀

𝑀
𝜀
𝜀
𝛼
2 ,

for 𝑛 ≥ 𝑛
0
.

(84)

Since 𝜆
𝜀
< 1 and 𝜀 is arbitrary small, we obtain lim

𝑛→∞
𝑦(𝑛) =

0; it means that (78) holds when 𝜆 < 1.
Note that

1 − 𝛼
1
𝑎
𝑢

1
𝑀
𝛼
1

1
≤ 1 − 𝛼

1
𝑎
𝑙

1
𝑚
𝛼
1 < 1, (85)

and thus, 𝜆 < 1 is equivalent to

1 − 𝛼
1
𝑎
𝑢

1
𝑀
𝛼
1

1
> −1, (86)

or

𝛼
1
𝑎
𝑢

1
𝑀
𝛼
1

1
=

𝑎
𝑢

1

𝑎
𝑙

1

exp (𝛼
1
𝑟
𝑢

1
− 1) < 2. (87)

Now, we can conclude that (78) is satisfied as (𝐻
6
) holds,

and so lim
𝑛→∞

(𝑥
1
(𝑛) − 𝑥(𝑛)) = 0. This completes the proof

of Theorem 12.
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As a direct corollary ofTheorems 9 and 12, for system (2),
we have the following result.

Corollary 13. Assume that (𝐻
1
), (𝐻
2
), (𝐻
5
), and 𝑟

𝑙

1
> 0 hold;

assume further that

𝑎
𝑢

1

𝑎
𝑙

1

exp (𝑟
𝑢

1
− 1) < 2; (88)

then for any positive solution (𝑥
1
(𝑛), 𝑥
2
(𝑛)) of system (2) and

any positive solution {𝑥(𝑛)} of

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp {𝑟

1
(𝑛) − 𝑎

1
(𝑛) 𝑥
1
(𝑛)} , (89)

one has

lim
𝑛→∞

(𝑥
1
(𝑛) − 𝑥 (𝑛)) = 0,

lim
𝑛→∞

𝑥
2
(𝑛) = 0.

(90)

5. Examples

The following examples show the feasibility of our main
results.

Example 14. Now let us consider Example 1; in this case, one
can easily check that

lim inf
𝑛→∞

𝑛+𝜔−1

∑

𝑠=𝑛

𝑟
𝑖
(𝑠) > 0,

lim sup
𝑛→∞

∑
𝑛+𝜔−1

𝑠=𝑛
𝑟
2
(𝑠)

∑
𝑛+𝜔−1

𝑠=𝑛
𝑟
1
(s)

= 1,

𝑎
2
(𝑛)

𝑎
1
(𝑛)

=
𝑏
2
(𝑛)

𝑏
1
(𝑛)

=
𝑐
2
(𝑛)

𝑐
1
(𝑛)

= 2;

(91)

hence

lim sup
𝑛→∞

∑
𝑛+𝜔−1

𝑠=𝑛
𝑟
2
(𝑠)

∑
𝑛+𝜔−1

𝑠=𝑛
𝑟
1
(𝑠)

< 2

= lim inf
𝑛→∞

{
𝑎
2
(𝑛)

𝑎
1
(𝑛)

,
𝑏
2
(𝑛)

𝑏
1
(𝑛)

,
𝑐
2
(𝑛)

𝑐
1
(𝑛)

} .

(92)

Also

𝑎
𝑢

1

𝑎
𝑙

1

exp (𝛼
1
𝑟
𝑢

1
− 1) =

1.3

0.7
exp (0.9 − 1) ≈ 1.680 < 2. (93)

Equations (91)–(93) show that all the conditions of Corol-
lary 13 hold; then species 𝑥

2
will be driven to extinction while

species𝑥
1
will be globally attractive with any positive solution

of the following discrete equation:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛)

⋅ exp [0.6 + 0.3 sin (𝑛) − (1 + 0.3 sin (𝑛)) 𝑥
1
(𝑛)] .

(94)

Example 15. Consider the following system:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp [0.6 − (1.5 + 0.2 sin (𝑛)) 𝑥

2

1
(𝑛)

− (1 + 0.5 sin (𝑛)) 𝑥
1/2

2
(𝑛)

− (1.1 + sin (𝑛)) 𝑥
2

1
(𝑛) 𝑥
1/2

2
(𝑛)] ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp [0.3 − (1.4 + 0.5 sin (𝑛)) 𝑥

2

1
(𝑛)

− (1.3 + 0.5 sin (𝑛)) 𝑥
1/2

2
(𝑛) − 1.2𝑥

2

1
(𝑛) 𝑥
1/2

2
(𝑛)] .

(95)

In this case, corresponding to system (2), 𝑟
1
(𝑛) = 0.6, 𝑟

2
(𝑛) =

0.3, 𝑎
1
(𝑛) = 1.5 + 0.2 sin(𝑛), 𝑏

1
(𝑛) = 1 + 0.5 sin(𝑛), 𝑐

1
(𝑛) =

1.1 + sin(𝑛), 𝑎
2
(𝑛) = 1.4 + 0.5 sin(𝑛), 𝑏

2
(𝑛) = 1.3 + 0.5 sin(𝑛),

𝑐
2
(𝑛) = 1.2, 𝛼

1
= 2, and 𝛼

2
= 1/2. By simple computation,

one can see that

lim inf
𝑛→∞

𝑛+𝜔−1

∑

𝑠=𝑛

𝑟
𝑖
(𝑠) > 0,

lim sup
𝑛→∞

∑
𝑛+𝜔−1

𝑠=𝑛
𝑟
2
(𝑠)

∑
𝑛+𝜔−1

𝑠=𝑛
𝑟
1
(𝑠)

=
1

2
,

(96)

𝑎
2
(𝑛)

𝑎
1
(𝑛)

≥
0.9

1.7
,

𝑏
2
(𝑛)

𝑏
1
(𝑛)

≥
0.8

1.5
,

𝑐
2
(𝑛)

𝑐
1
(𝑛)

≥
1.2

2.1
,

(97)

lim sup
𝑛→∞

∑
𝑛+𝜔−1

𝑠=𝑛
𝑟
2
(𝑠)

∑
𝑛+𝜔−1

𝑠=𝑛
𝑟
1
(𝑠)

<
0.9

1.7

≤ lim inf
𝑛→∞

{
𝑎
2
(𝑛)

𝑎
1
(𝑛)

,
𝑏
2
(𝑛)

𝑏
1
(𝑛)

,
𝑐
2
(𝑛)

𝑐
1
(𝑛)

} ,

(98)

𝑎
𝑢

1

𝑎
𝑙

1

exp (𝛼
1
𝑟
𝑢

1
− 1) ≤

1.7

1.3
exp (2 × 0.6 − 1) ≈ 1.5972

< 2.

(99)

Equations (97) and (99) show that all the conditions of
Theorem 12 hold; thus species 𝑥

2
is driven to extinction while

species 𝑥
1
is asymptotic to any positive solution of

𝑥 (𝑛 + 1)

= 𝑥 (𝑛) exp (0.6 − (1.5 + 0.2 sin (𝑛)) 𝑥
2

(𝑛)) .

(100)

Figure 2 shows the dynamic behaviors of system (95).

6. Conclusion

In this paper, we consider a nonlinear discrete two species
competition system with the effect of toxic substances. In
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Figure 2: Dynamic behaviors of system (95) with initial values
(𝑥
1
(0), 𝑥
2
(0)) = (0.14, 0.19), (0.27, 0.69), and (0.8, 0.39), respec-

tively.

Theorem 9, by constructing a suitable Lyapunov-type func-
tion, we obtain a set of sufficient conditions which ensure
species 𝑥

2
will be driven to extinction. Our results improve

and generalize Theorem 2.1 of [2] andTheorem 1.1 of [3].
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