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The actual structural systems have many failure modes. Due to the same random sources owned by the performance functions of
these failuremodes, there usually exist some nonlinear correlations between the various failuremodes. How to handle the nonlinear
correlations is one of the main scientific problems in the field of structural system reliability. In this paper, for the two-component
systems and multiple-component systems with multiple failure modes, the mixed copula models for time-independent reliability
analysis of series systems, parallel systems, series-parallel systems, and parallel-series systems are presented.These obtained mixed
copulamodels, considering the nonlinear correlation between failuremodes, are obtainedwith the chosen optimal copula functions
with the Bayesian selection criteria and Monte Carlo Sampling (MCS) method. And a numerical example is provided to illustrate
the feasibility and application of the built mixed models for structural system reliability.

1. Introduction

Today’s structural systems are becoming more complex and
more sophisticated. Therefore, the evaluation of structural
system reliability is becoming harder. This means that the
derivations based on classical assumptions are no longer
satisfactory for the analysis of systems in terms of reliability.
The evaluation of today’s real life systems needsmore detailed
and complicated statistical analysis. Dependence between the
components is one of the intractable realistic assumptions
that need to be carefully considered [1–4].

Especially for the actual bridge system, there exist many
failure modes such as flexural failure and shearing failure.
As the limit state functions (performance function) of these
failure modes may have the same random sources, it is not
mutually exclusive yet among failure modes [5–7]. Naturally,
how to model the correlation among failure modes in aspect
of the reliability analysis of structural systems is one of
the most significant topics. The classic Pearson correlation
coefficient is mainly used for characterizing the correlation
among failure modes of structural system before; however, it

has a few disadvantages.The copulas, unlike the Pearson cor-
relation coefficient only applied for describing linear correla-
tion, offer a flexible tool for deriving nonlinear dependence,
especially tail dependence among failure modes. The aim of
this study is to introduce the copula function as a useful
tool for modeling the dependence among failure modes of
bridge system. More recently, the copula theory has been
primarily used in mechanical engineering [8] and hydraulic
engineering [9] but little used in bridge engineering.

In this paper, firstly, several commonly used elliptical
copulas andArchimedean copulas were introduced, and their
application in the correlation analysis was also described
in detail. And then based on the introduced copulas, with
the aid of copula Bayesian selection criteria [7, 10, 11], a
flexible mixed copula model is constructed, by means of
linear weighted model, to model the nonlinear dependence
among failure modes. For the two-component systems and
multiple-component systemswithmultiple failuremodes, the
performance function value of failure modes is chosen as
the copula functions’ analytical variable to construct mixed
copula model. With Monte Carlo Sampling method, the
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unknown parameters of copula functions can be approx-
imately determined; therefore, the mixed copula function,
considering the correlation between failure modes, is built.
And then use the built mixed copula model to solve the
structural system’s reliability. Finally, a numerical example is
provided to illustrate the feasibility and application of the
built mixed copula models.

2. Mixed Copula Models

The mixed copula models are commonly built through
different combinations of several copula functions, which
respectively possess various characteristics in aspect of the
dependence modeling. For the complex and ever-changing
correlations among random variables, they are not adequate
formodeling the dependence bymeans of only a single copula
function. Therefore, it is necessary to build a flexible mixed
copulamodel to describe the complex dependence structures.
Moreover, it is essential to select several appropriate copula
functions from the existing copulas before building themixed
copula model. The Bayesian selection criteria are just chosen
for constructing the mixed copula model, as this method is
independent of the parameter estimation andmay be applied
to all known copula classes [7, 10].

2.1. Basic Theory about Copula Functions. Sklar’s theory
[12] clearly indicated that, given random variables X =
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2
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According to (1), the joint probability density function of
the random variableX = (𝑋
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where 𝑝
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) is the marginal probability density function

(PDF) and 𝑐(u) is the joint PDF of the copula function
denoted as follows:
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Equation (4) reveals how to construct the copula function
of a multivariate distribution with given marginal distribu-
tions. It follows from the probability integral transform that
the random variables 𝑈
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According to (1)–(5), the copula function organically
combines each marginal distribution function with the mul-
tivariate joint distribution functions; therefore, it not only
considers the dependence among random variables but also
simplifies the probability modeling process for multivariate
random variables.

2.2. Bayesian Selection Criteria of Copula Functions. Huard
et al. [10] proposed the Bayesian copula selection method
applied to the bivariate copula functions. Bayesian copula
selection method was deduced by the Bayesian hypothesis
testing to choose the best copula. However, we apply this
method to choose not just the best one but also the better
copulas as the candidate copulas for constructing the mixed
copula model.

For the Bayesian copula selection criteria, it is essential
to propose the optical copula function selection criteria
described by

𝐶opt = arg
𝐶
𝑙

max𝑃 (H
𝑡
| 𝐷, 𝐼) , (6)
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copula family, and𝑃(𝐷 | 𝐼) is the normalization constant.The
rank correlation coefficient Kendall’s 𝜏, denoted by 𝜏 = 𝑔
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Figure 1: PDF and contour plots of Gaussian copula function.

where 𝑃(𝐷 | H
𝑡
, 𝜏, 𝐼) is the likelihood with respect to 𝜏,

because of the 𝑛 mutually independent pairs, and is also
described as the copula density:
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Substituting (9) into (8), we obtain
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where 𝑃(𝐷 | 𝐼) is the normalization constant and 𝑃(H
𝑡
|

𝜏, 𝐼)𝑃(𝜏 | 𝐼) = 1/𝜆(Λ), where 𝜆(Λ) is denoted as the Lebesgue
measure of Λ = [−1, 1] in this paper; therefore, (10) can be
also expressed as follows:
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Obviously, the optimal copula function selection criteria
can be described as the computation of the highest weight𝑊

𝑙
:
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In especial, the “right” copulas include not just the best
copula with the highest weight but also the better copula with
higher weight for the mixed copula modeling in this paper.

Two particular classes of copulas that proved to be useful
in dependence modeling are the elliptical and Archimedean
classes [7, 13]. The four copulas (one of the elliptical copulas,
Gaussian copula, and three of the Archimedean copulas,
Gumbel copula, Clayton copula, and Frank copula) are
employed as the candidates of the Bayesian copula selection
criteria. Finally, the chosen ones are used for constructing the
mixed copula model. Among the chosen copulas, Gaussian
copulas and Frank copulas are able to capture symmetric

dependence structures among random variables. Different
from them, Gumbel copulas and Clayton copulas exhibit
asymmetric dependence and Gumbel copulas are especially
employed for describing upper tail dependence structures,
while Clayton copulas are employed for that of the lower tail.
And, then, the probability density function graphs and their
contour plots are depicted as in Figures 1–4.

2.3. Modeling Method of Mixed Copula Models. There exist
complex nonlinear correlations among failure modes; there-
fore, just one copula is not enough to characterize depen-
dence structures among failure modes. With the aid of
a weighted combination of the selected copula functions,
a mixed copula is approximately constructed in order to
describe the complex dependence structures among failure
modes [7, 14]; namely,
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1
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2
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𝑁
= 1.

The copula function and Monte Carlo Simulation (MCS)
method are contributed to the mixed copula model analysis.
The specific steps can be stated as follows.

2.3.1. Monte Carlo Sampling (MCS). According to the dis-
tribution types of random variables for the performance
functions of failure modes, the samples for the random
variables can be obtained with MCS method. After sub-
stituting the samples into the corresponding performance
functions, we can get the random sequence {𝑔

𝑗
}
𝑖
, 𝑖 =

1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑁, for each of the performance
functions and obtain the sequences {𝐹

𝑗
}
𝑖
= 𝐹({𝑔

𝑗
}
𝑖
), 𝑖 =

1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑁, of the corresponding empirical
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Figure 2: PDF and contour plots of Gumbel copula function.
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Figure 3: PDF and contour plots of Clayton copula function.
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Figure 4: PDF and contour plots of Frank copula function.
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Table 1: Basic cases of the parameters of copula functions.

Copula 𝜏 = 𝑔(𝜃) 𝜏 ∈ Ω 𝜃 ∈ Ω

Gaussian 2

𝜋

arcsin 𝜃 [−1, 1] [−1, 1]

Gumbel 1 − 𝜃

−1
[0, 1] [1, +∞)

Clayton 1 −

2

2 + 𝜃

(0, 1] (0, +∞)

Frank 1 −

4

𝜃

(1 −

1

𝜃

∫

𝜃

0

𝑡

𝑒

𝑡
− 1

𝑑𝑡) [−1, 0) ∪ (0, 1] (−∞, 0) ∪ (0, +∞)

distribution function by mean of Matlab software, where 𝑔 is
the performance function and F is the empirical distribution
function.

2.3.2. Copula Function Selection. With the scatter plot of
samples, we can judge approximate distribution features of
the samples. Furthermore, it is extremely vital to determine
which classes of copula functions to choose as the candidate
copulas with Bayesian copula selection criteria. In this paper,
the copula classes we chose are Gaussian copulas, Gumbel

copulas, and Clayton copulas as well as Frank copulas, whose
parameter domain along with the definition and the domain
of Kendall’s 𝜏 are listed in Table 1. The next is to build the
mixed copula function through the selected copulas and (13).

2.3.3. Parameter Estimation for the Mixed Copula. Applying
the least residual error quadratic summethodOLS, one of the
curve fitting criteria, we can obtain parameters of the mixed
copula function. And the formula of the OLS is represented
as follows:

𝐹OLS = √

1
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, (14)

where 𝐹(⋅) is the joint empirical distribution function of the
empirical distribution function sequences for each perfor-
mance function and 𝐶((𝐹

1
)
𝑖
, (𝐹
2
)
𝑖
, . . . , (𝐹

𝑁
)
𝑖
) is the mixed

copula function value. The unknown parameter value for the
mixed copula function can be obtained by the optimization
computation with the rule of OLS, while the optimized
parameters must be determined to make sure that the value
of 𝐹OLS is the minimum.

2.3.4. Goodness-of-Fit Estimation for the Mixed Copula.
ThroughMCSmethod, the values of joint empirical distribu-
tion functions and the corresponding mixed copula function
are obtained, and, then, the scatter plot between them is
drawn. Finally, the goodness of fit for the mixed copula can
be determined through the scatter plot.

3. Mixed Copula Model Expressions
about Joint Failure Probability
of Structural System

3.1. Mixed Copula Model Expression about Joint Failure
Probability of Two-Component Series System. For the two-
component series systemwhich is shown in Figure 5, suppose
that the performance function of the component failuremode
is

𝑔
𝑖
(X) = 𝑔

𝑖
(X
1
, 𝑋
2
, . . . , 𝑋

𝑛
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With (5), as a check, the probability that both failure
modes occur is denoted as
𝑃 (𝑔
1
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2
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) .
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𝐹g(0, 0) = 𝐶(𝐹
𝑔
1

(0), 𝐹
𝑔
2

(0)) is stated in the fundamental
theorem of Sklar. Therefore, the failure probability of two-
component series system (at least one failuremode of the two
components occurred) can be solved as

𝑝
𝑓
= 𝑃 (𝑔

1
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2
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where 𝑝
𝑓
𝑔1

, 𝑝
𝑓
𝑔2

, respectively, denote the failure probability
of the two failure modes and 𝐶(⋅) is two-component series
system copula function.

3.2. Mixed Copula Model Expression about Joint Failure
Probability of Two-Component Parallel System. For the two-
component parallel system which is shown in Figure 6,
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1 2

Figure 5: Two-component series system.

1 2

Figure 6: Two-component parallel system.

suppose that the performance function of the component
failure mode is

𝑔
𝑖
(X) = 𝑔

𝑖
(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) , 𝑖 = 1, 2. (18)

With (5) and (16), the failure probability of two-
component parallel system (two failure modes of the two
components meantime occurred) can be obtained:

𝑝
𝑓
= 𝑃 (𝑔

1
(X) ≤ 0 ∩ 𝑔

2
(X) ≤ 0) = 𝐶 (𝑝

𝑓
𝑔1

, 𝑝
𝑓
𝑔2

) , (19)

where 𝑝
𝑓
𝑔1

, 𝑝
𝑓
𝑔2

, respectively, denote the failure probability
of the two failure modes and 𝐶(⋅) is two-component parallel
system copula function.

3.3.MixedCopulaModel Expression about Joint Failure Proba-
bility of Multiple-Component Series System. For the multiple-
component series systemwhich is shown in Figure 7, suppose
that the performance function of the component failuremode
is

𝑔
𝑖
(X) = 𝑔

𝑖
(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) , 𝑖 = 1, 2, . . . , 𝑁. (20)

With (5), as a check, the probability that all the failure
modes meantime occur is denoted as

𝑃 (𝑔
1
(X) ≤ 0, 𝑔

2
(X) ≤ 0, . . . , 𝑔

𝑁
(X) ≤ 0)

= 𝑃 (𝐹
𝑔
1

(𝑔
1
(X)) ≤ 𝐹

𝑔
1
(0) , 𝐹

𝑔
2

(𝑔
2
(X))

≤ 𝐹
𝑔
2
(0) , . . . , 𝐹

𝑔
𝑁

(𝑔
𝑁
(X)) ≤ 𝐹

𝑔
𝑁
(0)) = 𝑃 (𝑈

1

≤ 𝐹
𝑔
1
(0) , 𝑈

2
≤ 𝐹
𝑔
2
(0) , . . . , 𝑈

𝑁
≤ 𝐹
𝑔
𝑁
(0))

= 𝐶 (𝐹
𝑔
1
(0) , 𝐹

𝑔
2
(0) , . . . , 𝐹

𝑔
𝑁
(0))

= 𝐶 (𝑝
𝑓
𝑔1

, 𝑝
𝑓
𝑔2

, . . . , 𝑝
𝑓
𝑔𝑁

) .

(21)

𝐹g(0, 0, . . . , 0) = 𝐶(𝐹
𝑔
1

(0), 𝐹
𝑔
2

(0), . . . , 𝐹
𝑔
𝑁

(0)) is stated
in the fundamental theorem of Sklar. Therefore, the failure
probability of multiple-component series system (at least one

1 2 i N
· · ·· · ·

Figure 7: Multiple-component series system.

failure mode of the multiple components occurred) can be
solved as
𝑝
𝑓
= 𝑃 (𝑔

1
(X) ≤ 0 ∪ 𝑔

2
(X) ≤ 0 ∪ ⋅ ⋅ ⋅ ∪ 𝑔

𝑁
(X) ≤ 0)

=

𝑁

∑

𝑖=1

𝑃 (𝑔
𝑖
(X) ≤ 0) − ∑

𝑖
1
<𝑖
2

𝑃 (𝑔
𝑖
1
(X) ≤ 0, 𝑔

𝑖
2
(X)

≤ 0) + ⋅ ⋅ ⋅ + (−1)

𝑛+1
∑

𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑛

𝑃 (𝑔
𝑖
1
(X) ≤ 0, 𝑔

𝑖
2
(X)

≤ 0, . . . , 𝑔
𝑖
𝑛
(X) ≤ 0) + ⋅ ⋅ ⋅ + (−1)

𝑁+1
𝑃 (𝑔
1
(X) ≤ 0,

𝑔
2
(X) ≤ 0, . . . , 𝑔

𝑁
(X) ≤ 0) =

𝑛

∑

𝑖=1

𝑝
𝑓
𝑔𝑖

− ∑

𝑖
1
<𝑖
2

𝐶(𝑝
𝑓
𝑔𝑖1

, 𝑝
𝑓
𝑔𝑖2

) + ⋅ ⋅ ⋅ + (−1)

𝑛+1

⋅ ∑

𝑖
1
<i
2
<⋅⋅⋅<𝑖
𝑛

𝐶(𝑝
𝑓
𝑔𝑖1

, 𝑝
𝑓
𝑔𝑖2

, . . . , 𝑝
𝑓
𝑔𝑖𝑛

) + ⋅ ⋅ ⋅

+ (−1)

𝑁+1
𝐶(𝑝
𝑓
𝑔1

, 𝑝
𝑓
𝑔2

, . . . , 𝑝
𝑓
𝑔𝑁

) ,

(22)

where 𝑝
𝑓
𝑔1

, 𝑝
𝑓
𝑔2

, . . . , 𝑝
𝑓
𝑔𝑁

, respectively, denote the failure
probability of the multiple failure modes and𝐶(⋅) is multiple-
component series system copula function.

3.4. Mixed Copula Model Expression about Joint Failure
Probability of Multiple-Component Parallel System. For the
multiple-component parallel system which is shown in
Figure 8, suppose that the performance function of the
component failure mode is

𝑔
𝑖
(X) = 𝑔

𝑖
(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) , 𝑖 = 1, 2, . . . , 𝑁. (23)

With (5), the failure probability of two-component par-
allel system (all the failure modes of all the components
meantime occurred) can be obtained:

𝑝
𝑓
= 𝑃 (𝑔

1
(X) ≤ 0, 𝑔

2
(X) ≤ 0, . . . , 𝑔

𝑁
(X) ≤ 0)

= 𝑃 (𝐹
𝑔
1

(𝑔
1
(X)) ≤ 𝐹

𝑔
1
(0) , 𝐹

𝑔
2

(𝑔
2
(X))

≤ 𝐹
𝑔
2
(0) , . . . , 𝐹

𝑔
𝑁

(𝑔
𝑁
(X)) ≤ 𝐹

𝑔
𝑁
(0)) = 𝑃 (𝑈

1

≤ 𝐹
𝑔
1
(0) , 𝑈

2
≤ 𝐹
𝑔
2
(0) , . . . , 𝑈

𝑁
≤ 𝐹
𝑔
𝑁
(0))

= 𝐶 (𝐹
𝑔
1
(0) , 𝐹

𝑔
2
(0) , . . . , 𝐹

𝑔
𝑁
(0))

= 𝐶 (𝑝
𝑓
𝑔1

, 𝑝
𝑓
𝑔2

, . . . , 𝑝
𝑓
𝑔𝑁

) ,

(24)

where 𝑝
𝑓
𝑔1

, 𝑝
𝑓
𝑔2

, . . . , 𝑝
𝑓
𝑔𝑁

, respectively, denote the failure
probability of the 𝑁 failure modes and 𝐶(⋅) is multiple-
component parallel system copula function.
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1 2 i N· · ·· · ·

Figure 8: Multiple-component parallel system.

1 2 N

· · ·

Figure 9: Series-parallel system.

3.5. Mixed Copula Model Expression about Joint Failure
Probability of Series-Parallel System. For series-parallel sys-
tem shown in Figure 9, in this paper, only the correlation
between internal components of each subparallel system is
considered,while the correlation between subparallel systems
is not considered and considered to bemutually independent.
Therefore, with (24), all the copula models of all the subpar-
allel systems’ failure probability can be obtained, and then,
with (25), the failure probability of the series-parallel system
can be solved:

𝑝
𝑓s-p

= 𝑃(

𝑁

⋃

𝑖=1

𝐹
𝑖
) = 𝑃(

𝑁

⋃

𝑖=1

𝑁
𝑖

⋂

𝑗

𝐹
𝑖𝑗
)

=

𝑁

∑

𝑖=1

𝑃 (𝐹
𝑖
) − ∑

𝑖
1
<𝑖
2

{𝑃 (𝐹
𝑖
1

) 𝑃 (𝐹
𝑖
2

)} + ⋅ ⋅ ⋅

+ (−1)

𝑛+1
∑

𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑛

{

{

{

𝑖
𝑛

∏

𝑘=𝑖
1

𝑃 (𝐹
𝑘
)

}

}

}

+ ⋅ ⋅ ⋅

+ (−1)

𝑁+1

𝑁

∏

𝑖=1

𝑃 (𝐹
𝑖
) ,

(25)

where 𝑁 is the total number of the subparallel systems; 𝑁
𝑖

is the total number of the components in the 𝑖th subparallel
system; 𝐹

𝑖
= ⋂

𝑁
𝑖

𝑗=1
𝐹
𝑖𝑗
is the failure probability of the 𝑖th

subparallel system;𝐹
𝑖𝑗
= (𝑔
𝑖𝑗
(X) ≤ 0) is the failure probability

of the 𝑗th component in the 𝑖th subparallel system; 𝑃(𝐹
𝑖
), 𝑖 =

1, 2, . . . , 𝑁, can be solved with (24), which are the failure
probability of the subparallel system considering correlation
between internal components of each subparallel system.

3.6. Mixed Copula Model Expression about Joint Failure Prob-
ability of Parallel-Series System. For parallel-series system
shown in Figure 10, in this paper, only the correlation
between internal components of each subseries system is
considered, while the correlation between subseries systems
is not considered and considered to bemutually independent.

1

2

N

...
...

...
...

Figure 10: Parallel-series system.

Therefore, with (22), all the copula models of all the subseries
systems’ failure probability can be obtained, and then, with
(26), the failure probability of the parallel-series system can
be solved as

𝑝
𝑓p-s

= 𝑃(

𝑁

⋂

𝑖=1

𝐹
𝑖
) =

𝑁

∏

𝑖=1

𝑃 (𝐹
𝑖
) =

𝑁

∏

𝑖=1

𝑃(

𝑁
𝑖

⋃

𝑗=1

𝐹
𝑖𝑗
) , (26)

where𝑁 is the total number of the subseries systems;𝑁
𝑖
is the

total number of the components in the 𝑖th subseries system;
𝐹
𝑖
= ⋂

𝑁
𝑖

𝑗=1
𝐹
𝑖𝑗
is the failure probability of the 𝑖th subseries

system; 𝐹
𝑖𝑗
= (𝑔
𝑖𝑗
(X) ≤ 0) is the failure probability of the 𝑗th

component in the 𝑖th subseries system; 𝑃(𝐹
𝑖
), 𝑖 = 1, 2, . . . , 𝑁,

can be solved with (22), which are the failure probability of
the subseries system considering correlation between internal
components of each subseries system.

In this paper, firstly with First-Order Reliability Method
(FORM), the structural reliability index and the correspond-
ing failure probability of each failure mode can be solved,
and then with the constructed mix copula functions, such
as (17), (19), (22), (24), (25), and (26), the failure probability
of structural system considering correlation between failure
modes can be obtained.

4. Numerical Example: System
Reliability Analysis of Simply Supported
Cored Slab Bridge

For the simply supported cored slab bridge shown in Fig-
ure 11, the total span is 13m, the computed span is 12.6m,
the clear width of bridge deck is 7m, the width of footway
on both sides of bridge deck is 1m, and the whole bridge
is composed of nine concrete cored slabs [15]. The design
reference period of this bridge is 100 years. And this bridge
has been served for 32 years. At the 32nd year, the resistance
of each girder follows normal distribution; the distribution
parameters are, respectively, 796.04 kN⋅m (mean value) and
91.783 kN⋅m (standard deviation).

Based on Figure 11 and reference [16], the failure criterion
of bridge system is as follows: if any two adjacent girders both
failed, then the whole bridge system failed. According to the
failure criterion, the bridge system is a series-parallel system,
which is shown in Figure 12.

The performance function of each girder’s failure mode is

𝑍
𝑖
= 𝑔 (𝑋

𝑖1
, 𝑋
𝑖2
, 𝑋
𝑖3
) = 𝑔 (𝑅

𝑖
, 𝐺
𝑖
, 𝑄
𝑖
) = 𝑅
𝑖
− 𝐺
𝑖
− 𝑄
𝑖
,

𝑖 = 1, 2, . . . , 9,

(27)
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Table 2: Distribution parameters of beams’ dead load effects in 32nd year.

Girder number 1 2 3 4 5 6 7 8 9
Mean value/kN⋅m 212.86 221.79 223.91 230.74 260.69 230.74 223.91 221.79 212.86
Standard deviation/kN⋅m 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68

Table 3: Distribution parameters of beams’ maximum live load effects in 32nd year.

Girder number 1 2 3 4 5 6 7 8 9
Mean value/kN⋅m 85.42 96.42 116.8 144.4 180.9 144.4 116.8 96.42 85.42
Standard deviation/kN⋅m 12.71 14.35 17.38 21.49 26.92 21.49 17.38 14.35 12.71

1# 2# 3# 4# 5# 6# 7# 8# 9#

900

Figure 11: Cross section of bridge (unit: cm).

1#

2# 3# 4# 5#

2# 3# 4# 8#

9#

· · ·

Figure 12: Series-parallel system.

where 𝑅
𝑖
is the resistance of the 𝑖th girder, 𝐺

𝑖
is the dead load

effect of the 𝑖th girder, and 𝑄
𝑖
is the live load effect of the 𝑖th

girder. At the 32nd year, the distribution parameters about
dead load effects are listed in Table 2, where the standard
deviation is not changed, because, for load effect, the variation
of variables is very small. And the distribution parameters
about vehicle load effects are listed in Table 3, which occur
due to symmetrical variable load and is not applicated to the
unsymmetrical variable load.

Based on the reliability analysis method of two-
component parallel system considering the correlation
between failures modes described in Section 3.2, the
reliability analysis processes of bridge system are as follows.

Because the bridge system is symmetrical, the subpar-
allel systems (1#-2#, 2#-3#, 3#-4#, and 4#-5#) are used to
analyze the reliability and failure probability of the bridge
system.

Based on Tables 2 and 3 and (25), the scatter plot between
two random sampling sequences of the corresponding limit
state functions for the two failure modes of each subparallel
system (1#-2#, 2#-3#, 3#-4#, and 4#-5#) can be obtained.
Then, according to the characteristics of the obtained scatter
plots, the candidate copula functions, which can approxi-
mately describe distribution features of the samples, can be
selected, and then with Bayesian selection criteria described
in Section 2.2, the suitable copula functions, from the selected
candidate copula functions, can be obtained which can be
used to build the mixed copula model. The parameters of
the built mixed copula function for each subparallel system
are listed in Table 4. Finally, the mixed copula modes, for

Table 4: Parameters of each of the mixed copulas for four subsys-
tems.

𝑎 𝑏 1 − 𝑎 − 𝑏 𝜌 𝛼 𝜃

1#-2# 0.7438 0.1958 0.0604 −0.1868 2.4872 4.4278
2#-3# 0.8521 0.1479 0 0.1014 2.4207 4.4078
3#-4# 0.9381 0.0619 0 0.1502 2.4611 4.3984
4#-5# 0.7690 0.2310 0 −0.3490 2.4814 4.4192

each subparallel system, are built. Further, PDF plots and
contour plots for themixed copulas, the scatter plots between
empirical distributions and mixed copula functions, and
scatter plots for two limit state functions are presented,
respectively, in Figures 13–16.

With FORM, the corresponding reliability indices to each
girder’s failure mode are, respectively,

𝛽
1
= 5.3429,

𝛽
2
= 5.1159,

𝛽
3
= 4.8484,

𝛽
4
= 4.4417,

𝛽
5
= 3.6869.

(28)

Then, with the equation 𝑝
𝑓
= Φ(−𝛽), the corresponding

failure probability to each girder’s failure mode is, respec-
tively,

𝑝
𝑓
𝑔1

= 4.57 × 10

−8
,

𝑝
𝑓
𝑔2

= 1.56 × 10

−7
,

𝑝
𝑓
𝑔3

= 6.22 × 10

−7
,

𝑝
𝑓
𝑔4

= 4.46 × 10

−6
,

𝑝
𝑓
𝑔5

= 1.14 × 10

−4
.

(29)
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(d) Scatter plot for two limit state functions

Figure 13: The subsystem 1#-2#.

With (19) and Table 4, the following can be obtained:

𝑝
𝑓
12

= 𝐶 (𝑝
𝑓
1

, 𝑝
𝑓
2

) = 8.61 × 10

−11
,

𝑝
𝑓
23

= 𝐶 (𝑝
𝑓
2

, 𝑝
𝑓
3

) = 3.12 × 10

−10
,

𝑝
𝑓
34

= 𝐶 (𝑝
𝑓
3

, 𝑝
𝑓
4

) = 1.32 × 10

−9
,

𝑝
𝑓
45

= 𝐶 (𝑝
𝑓
4

, 𝑝
𝑓
5

) = 1.31 × 10

−7
,

(30)

where 𝑝
𝑓
12

is the failure probability when girder 1# and
girder 2# meantime failed, 𝑝

𝑓
23

is the failure probability when
girder 2# and girder 3# meantime failed, 𝑝

𝑓
34

is the failure
probability when girder 3# and girder 4# meantime failed,
and 𝑝

𝑓
45

is the failure probability when girder 4# and girder
5# meantime failed.

Suppose that failure modes between subsystems are
mutually independent, and then the failure probability of
structural system is approximately

𝑝
𝑓
= (−1)

2

8

∑

𝑗=𝑖+1,𝑖=1

𝑝
𝑓
𝑖𝑗

+ (−1)

3

7

∑

𝑡=𝑘+1,𝑗=𝑖+1,𝑘>𝑖,𝑖=1

𝑝
𝑓
𝑖𝑗

𝑝
𝑓
𝑘𝑡

+ ⋅ ⋅ ⋅ + (−1)

9
(𝑝
𝑓
12

𝑝
𝑓
23

𝑝
𝑓
34

𝑝
𝑓
45

𝑝
𝑓
56

𝑝
𝑓
67

𝑝
𝑓
78

𝑝
𝑓
89

)

≈

8

∑

𝑗=𝑖+1,𝑖=1

𝑝
𝑓
𝑖𝑗

−

7

∑

𝑡=𝑘+1,𝑗=𝑖+1,𝑘>𝑖,𝑖=1

𝑝
𝑓
𝑖𝑗

𝑝
𝑓
𝑘𝑡

= 2 (𝑝
𝑓
12

+ 𝑝
𝑓
23

+ 𝑝
𝑓
34

+ 𝑝
𝑓
45

) − 4 (𝑝
𝑓
12

𝑝
𝑓
23

+ 𝑝
𝑓
12

𝑝
𝑓
34

+ 𝑝
𝑓
12

𝑝
𝑓
45

+ 𝑝
𝑓
23

𝑝
𝑓
34

+ 𝑝
𝑓
23

𝑝
𝑓
45

+ 𝑝
𝑓
34

𝑝
𝑓
45

) − 𝑝

2

𝑓
12

− 𝑝

2

𝑓
23

− 𝑝

2

𝑓
34

− 𝑝

2

𝑓
45

= 2.65 × 10

−7
,

(31)
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(d) Scatter plot for two limit state functions

Figure 14: The subsystem 2#-3#.

where, because the structural system is symmetric, the failure
probability of the subsystems at symmetric positions is the
same. Namely, 𝑝

𝑓
12

= 𝑝
𝑓
89

, 𝑝
𝑓
23

= 𝑝
𝑓
78

, . . . , 𝑝
𝑓
45

=

𝑝
𝑓
56

.
For each subparallel system, the failure probability with-

out considering the correlation between the two components
is

ℎ
𝑓
12

= 𝑝
𝑓
1

𝑝
𝑓
2

= 7.13 × 10

−15
,

ℎ
𝑓
23

= 𝑝
𝑓
2

𝑝
𝑓
3

= 9.70 × 10

−14
,

ℎ
𝑓
34

= 𝑝
𝑓
3

𝑝
𝑓
4

= 2.77 × 10

−12
,

ℎ
𝑓
45

= 𝑝
𝑓
4

𝑝
𝑓
5

= 5.08 × 10

−10
.

(32)

Suppose that failure modes between subsystems are
mutually independent, and the failure modes between the

two components of each subsystem are also mutually inde-
pendent; then, the failure probability of structural system [17]
is approximately

𝑝
𝑓
= (−1)

2

8

∑

𝑗=𝑖+1,𝑖=1

ℎ
𝑓
𝑖𝑗

+ (−1)

3

7

∑

𝑡=𝑘+1,𝑗=𝑖+1,𝑘>𝑖,𝑖=1

ℎ
𝑓
𝑖𝑗

ℎ
𝑓
𝑘𝑡

+ ⋅ ⋅ ⋅ + (−1)

9
(ℎ
𝑓
12

ℎ
𝑓
23

ℎ
𝑓
34

ℎ
𝑓
45

ℎ
𝑓
56

ℎ
𝑓
67

ℎ
𝑓
78

ℎ
𝑓
89

)

≈

8

∑

𝑗=𝑖+1,𝑖=1

ℎ
𝑓
𝑖𝑗

−

7

∑

𝑡=𝑘+1,𝑗=𝑖+1,𝑘>𝑖,𝑖=1

ℎ
𝑓
𝑖𝑗

ℎ
𝑓
𝑘𝑡

= 2 (ℎ
𝑓
12

+ ℎ
𝑓
23

+ ℎ
𝑓
34

+ ℎ
𝑓
45

) − 4 (ℎ
𝑓
12

ℎ
𝑓
23

+ ℎ
𝑓
12

ℎ
𝑓
34

+ ℎ
𝑓
12

ℎ
𝑓
45

+ ℎ
𝑓
23

ℎ
𝑓
34

+ ℎ
𝑓
23

ℎ
𝑓
45

+ ℎ
𝑓
34

ℎ
𝑓
45

) − ℎ

2

𝑓
12

− ℎ

2

𝑓
23

− ℎ

2

𝑓
34

− ℎ

2

𝑓
45

= 1.02 × 10

−9
.

(33)

From the above solved system’s failure probability shown
in (31) and (33), it can be seen that the failure probability of the
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Figure 15: The subsystem 3#-4#.

series-parallel system considering the correlation between
two adjacent girders is larger than the failure probability
without considering the correlation between two adjacent
girders, which showed that the series-parallel system con-
sidering the correlation between two adjacent girders more
easily failed. Further, it is illustrated that considering the
correlation between two adjacent girders of each subparallel
system is essential and applicable for solving the reliability of
the series-parallel system.

5. Conclusions

For the two-component systems and multiple-component
systems with multiple failure modes, this paper presents the
mixed copula models for reliability analysis of series sys-
tems, parallel systems, series-parallel systems, and parallel-
series systems. The mixed copula model is obtained with
the chosen optimal copula functions with the Bayesian
method. Through a numerical example, it is illustrated

that the calculated failure probability when considering
the correlation between failure modes is larger than that
without considering the correlation between failure modes.
It is verified that the solved failure probability is conser-
vative without considering the correlation between failure
modes.

This paper provided a new method for characterizing the
correlation between failure modes and solving the reliability
of the system considering correlation between failure modes.
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