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Based on the detrended fluctuation analysis (DFA) method, scaling behaviors of the daily outgoing longwave radiation (OLR) from
1979 to 2015 over the Tibetan Plateau (TP) and the Indian Monsoon Region (IMR) are analyzed. The results show that there is
long-term memory for the OLR time series over the TP and IMR. The long-range memory behaviors of OLR over TP are stronger
than those over IMR. The averaged values of the scaling exponents over TP and IMR are 0.71 and 0.64; the maximum values in the
two regions are 0.81 and 0.75; the minimum values are 0.59 and 0.58. The maximum frequency counts for scaling exponents occur
in the range of 0.625 and 0.675 both in TP and in IMR. The spatial distribution of the scaling exponents of the OLR sequence is
closely related to the conditions of climatic high cloud cover in the two areas. The high cloud cover over TP is obviously less than
that of IMR. In addition, the scaling behaviors of OLR over TP and IMR are caused by the fractal characteristics of time series,

which is further proved by randomly disrupting the time series to remove trends and correlation.

1. Introduction

As is known to all, the change of a climate system has the self-
memory characteristic. This means that the past climate has
a long-term effect on the variational trend of the current and
future climate system. Long-range memory (LRM), which
is also called the long-range correlation (LRC) or long-term
persistence, has been found in many observations, such as
daily temperature records [1-6], daily precipitation records
[7, 8], relative homogeneity [9, 10], sea surface temperature
[11], ground surface temperature [8, 12], and geopotential
height [13]. LRM is characterized by a diverging integral time
scale and linked to the power-law behavior of the autocorre-
lation function [5]. In a complex climate system, a copious
amount of signals is nonstationary, whose mean, standard
deviation, and autocorrelation function change with time
[14-17]. Traditional methods such as the power spectrum
analysis or the correlation analysis are suitable for calculating

relevant characteristics of stationary signals. In order to
reliably analyze the long-range correlation of time series, it is
necessary to identify the trend components generated by the
inherent long-range fluctuation. If they are not filtered out,
in the long-range correlation analysis, there will be spurious
information caused by strong trend components. The
detrended fluctuation analysis (DFA) method is powerfully
used to reveal the extent of long-range correlations in time
series [18,19]. It can filter out the trend variation first and then
disclose the persistence characteristics of a time series. At
present, DFA has been widely used to analyze the LRMs in
many types of time series, especially for the basic meteoro-
logical elements such as daily temperature and precipitation.
Recently, the scaling behaviors of outgoing longwave radia-
tion (OLR) records in the tropic are discussed by Lei et al.
[20]. However, fewer efforts have been dedicated to studying
the scaling behaviors of OLR records over the TP and IMR.
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OLR is the energy radiating from the earth to exter-
nal space as infrared radiation. It has a close relationship
with earth-atmosphere radiation budget [21, 22]. It mainly
depends on the temperature profile (the cloud in the cloudy
sky or the underlying surfaces in the clear sky) [23, 24].
In view of relative homogeneity of the underlying surfaces
in low-latitude and midlatitude zones, the value of OLR is
mainly determined by the cloud, such as cloud top temper-
ature and cloudiness. The cloud top temperature hinges on
the strength of convection. The stronger the convection is, the
lower the cloud top temperature is. Therefore, OLR can reveal
the intensity of convective activity to some extent. There is a
close inverse correlation between OLR and precipitation in
tropical and subtropical areas. Precipitation of TP is mainly
affected by the Indian monsoon, while the heating of TP
has a strong effect on precipitation of IMR. In addition, the
domains of TP and IMR show different climatic character-
istics. Therefore, the research on scaling behaviors of OLR
over TP and IMR is helpful for us to understand the climate
dynamics. Also, the long-range correlation of the OLR pro-
vides theoretical support for precipitation prediction.

In this study, we investigate the long-range correlation
of the OLR from 1979 to 2015 over the Tibetan Plateau
(TP) and the Indian Monsoon Region (IMR) and compare
the differences between them. The results indicate that the
variation of OLR is not random but demonstrate obvious
LRC. This paper is organized as follows. In Section 2, the
details of the OLR time series are provided, and the DFA
method is briefly described. In Section 3, we detect the LRC
and analyze the spatial distributions of scaling exponents in
OLR. The discussions and conclusions follow in Section 4.

2. Datasets and Method

2.1. Datasets. The daily OLR time series between 1979 and
2015 are downloaded from the website of the National
Oceanic and Atmospheric Administration (https://www.esrl
.noaa.gov/psd/data/gridded/data.interp_OLR.html). The spa-
tial resolution of this dataset is 2.5°x 2.5° [25]. The cloud data
is obtained from the European Centre for Medium-Range
Weather Forecasts (http://apps.ecmwf.int/datasets/data/interim-
full-moda/levtype=sfc/).

2.2. Description of the DFA Method. The generalized DFA
method, which was introduced by Peng et al. [19], is a power-
ful technique to study LRCs in time series. It has been widely
accepted in the past years because of its capability to tackle
nonstationary signals [7, 26]. The calculation steps of DFA
are described below.

We first remove the annual cycle from the raw data R,
(daily mean OLR) by computing the anomaly series as
follows:

x; =R = (Ri) > €Y

where (R;), represents the climatological mean for the given
calendar dayd = 1,2,...,366 (when leap days are included).
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Then, we determine the cumulative deviation series as fol-
lows:

j
y()=YAx, (j=123,...,N), )
i=1

where Ax; = x; —x and X denotes the mean value of the series
x(i=1,2,3,...,N).

Next, we divide the series y(j) into m nonoverlapping
segments with equal length n, where m is the integer part of
N/n. In order to make full use of the remaining data left
over from the tail, the series y(j) is redivided from back to
front. Consequently, we get 2m segments. For a p-order DFA
process, a p-order polynomial is used to calculate the local
trend in each segment. A second-order DFA (DFA2) method,
which is the most commonly used order, is employed in this
work. In each segment v, we apply a least-squares fit to get the
local trend 7(j, v) and the trends of the profile are removed
by subtracting the local fits. The variance is determined as
follows:

F (n,v)

12 2

;; GGV =7Gv) . (v=12....m) 3)
- 2

%il(y(j,v)—j/'(j,v)), (v=m+1lm+2,...,2m).
i=

The detrended fluctuation function is obtained with the
arithmetic mean of the variance in all segments:

2m
F(n) = \]ﬁZ(FZ (n,v)). (4)
v=1

If the fluctuation function F(n) increases with window
length n in accordance with the power-law relation, F(n) ~
n”. When the scaling exponent a > 0.5, then the time series
show positive long-term correction. If the scaling exponent
a < 0.5, then the time series show long-term negative long-
term correlation. For scaling exponent o = 0.5, the time series
is random.

3. Result

Two grid points, (95°E, 35°N) and (97.5°E, 12.5°N), located in
TP and IMR, respectively, are chosen randomly to analyze the
scaling behaviors of OLR time series. The temporal evolution
of OLR anomaly and cumulative deviation during the period
from 1979 to 2015 is shown in Figurel. It is found that
both of the OLR anomaly records present irregular high-
frequency fluctuations in Figures 1(a) and 1(c). The original
cumulative deviation series are shown in Figures 1(b) and
1(d) with black lines, and the shuffled cumulative deviation
series are shown with red lines. For the grid point (95°E, 35°N)
of TP (Figure 1(b)), the original cumulative deviation series
of OLR deceases between 1979 and 2003 and then increases
after 2003. The minimum value appears around 2003. For the
grid point (97.5°E, 12.5°N) of IMR (Figure 1(d)), the original
cumulative deviation series of OLR has a strong peak. The
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FIGURE 1: The anomaly and cumulative deviation of OLR in TP (a, b) and IMR (¢, d). The black and red line in (b) and (d) represent the

original and shuftled time series, respectively.

maximum value occurs around 1998. There are remarkable
differences between the two grid points. For the randomly
shuffled cumulative deviation series of OLR, there are no
significant fluctuations in the two grid points, which means
that relevance in the times series is destroyed by the random
shuffle. In order to investigate the scaling behaviors of OLR
time series, different orders of DFA are used in the following
discussion. DFA1-DFA4 are used in the following discussion.
The double log plots of power-law relationship between the
detrended variability F(n) and the window scale n for the

two grid points are presented in Figure 2. It is shown that
the slope is approximately linear for the four different orders
of DFA, and therefore there are obviously similar scaling
behaviors by using the different orders of DFA for the two
grid points. DFAI can only eliminate the linear trends, while
DFA2-DFA4 can be used to remove the nonlinear trends in
the time series. In addition, the slope of DFA2 is the most
linear among DFA2-DFA4. Therefore, DFA2, which is able
to remove unexpected trends, is adopted to analyze LRC of
OLR. The black solid line represents the linear fits of OLR
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FIGURE 2: The double log plots of power-law relationship between the detrended variability F(#) and the time scale n for the two grid points
(95°E, 35°N) and (97.5°E, 12.5°N) using DFAI-DFA4. The black solid line represents linear fit. (a) is for the grid point (95°E, 35°N) and (b) is

for the grid point (975°E, 12.5°N).

sequence at the two grid points. The scaling exponent « at
the grid points (95°E, 35°N) and (97.5°E, 12.5°N) is equal
to 0.68 and 0.74, respectively. This means that there exist
positive long-range correlation behaviors. Figure 3 illustrates
the double log plots of the power-law relationship between
the detrended variability F(n) and the window scale n of
the random shuffle (randomly disrupting the daily OLR time
series). It shows that scaling exponent « is close to 0.5, thus
demonstrating white noise characteristics, which verifies that
the long-term persistence of OLR sequence is caused by the
fractal characteristics of the sequence itself.

In order to illustrate the LRC of the OLR sequence over
TP and IMR in an overall manner, the spatial distribution
of the scaling exponents is shown in Figure 4. It can be seen
that the scaling exponents of OLR present a decreasing trend
from west to east over TP. Among them, the scaling index of
OLR over the southwestern TP is as high as 0.76, indicating
strong long-term memory characteristic, while that of the
northeastern TP is less than 0.64, exhibiting weak long-term
memory characteristic. For IMR, it is presented that the scal-
ing exponents of OLR reach the minimum value of less than
0.58 in the Indian Ocean. In the land part of IMR, the scaling
exponents of OLR can reach as high as 0.66, even 0.70 in the
northwest. The above distribution features are closely related
to the conditions of climatic cloud cover in the two regions.
In a cloudy sky, OLR usually depends on the highest cloud
top temperature and cloudiness. The variation of cloud top
temperature is quick for its reliance on the generation, devel-
opment, and extinction of the cloud. Therefore, in the cloudy

sky, the LRC of OLR is weak. However, OLR mainly depends
on the brightness temperature of underlying surfaces in clear
sky and it changes slowly, which causes the LRC of OLR to be
strong. Figure 5 shows the spatial distribution of high cloud
over TP and IMR. The high cloud cover over TP is obviously
less than that of IMR, which is the reason why the LRC of
the OLR sequence over TP is stronger than that of IMR. For
the TP region, the cover of cloud increases from west to east,
which makes the LRM decrease from west to east over TP.
In the Indian Ocean region, there exists a strong convection,
which leads to larger high cloud cover. Besides, the LCR of
OLR is also affected by other factors such as the atmosphere
temperature profile and relative humidity. Therefore, the spa-
tial distribution of scaling exponents is not strictly consistent
with that of the cloud cover.

In order to further describe the differences between
the two regions, the frequency distribution of the scaling
exponents of OLR is given in Figure 6 and the statistical char-
acteristics are illustrated in Table 1. The maximum frequency
counts of scaling exponents occur in the range of 0.67 and
0.69 over both TP and IMR. In Table 1, the averaged values
of the scaling exponents of OLR over TP and IMR are 0.71
and 0.64, respectively; the maximum values of the scaling
exponents of OLR in the two regions are 0.81 and 0.75,
respectively; the minimum values of the scaling exponents of
OLR in the two regions are 0.59 and 0.58, respectively. In
general, there is a stronger long-term memory characteristic
over TP than that over IMR. The mean value of shuffled OLR
records is 0.50 for the two regions. The minimum values of
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FIGURE 3: The double log plots of the power-law relationship between the detrended variability F(n) and the time scale # for randomly shuffled
OLR of the two grid points (95°E, 35°N) and (97.5°E, 12.5°N). The black solid lines are linear fit. (a) is for the grid point (95°E, 35°N) and (b)
is for the grid point (97.5°E, 12.5°N).
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FIGURE 4: The geographical distribution of the scaling exponents of the daily OLR sequence over TP and IMR.

TaBLE 1: The main parameters of scaling exponents of the OLR sequence on TP and IMR.

DFA2 Minimum Maximum Average Standard deviation
TP 0.59 0.81 0.71 0.042
IMR 0.58 0.75 0.64 0.036
Shuffled_TP 0.46 0.58 0.50 0.016
Shuffled_IMR 0.48 0.56 0.50 0.012
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shuftled OLR records in the two regions are very close, and
so are their maximum values. In other words, there are no
observable differences between shuffled OLR records in the
two places, which further proves that LRC behaviors of OLR
in the two regions are caused by the fractal characteristics of
time series.

4. Conclusion and Discussion

In this paper, the DFA method is used to analyze the long-
term memory characteristic over TP and IMR. The two
grid points, (95°E, 35°N) and (97.5°E, 12.5°N), located in TP
and IMR, respectively, are chosen randomly to analyze the
scaling behaviors of OLR time series by using the different
orders of DFA. The results present the notion that the
slope is approximately linear for the four different orders of
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FIGURE 6: The frequency distribution of the scaling exponents of OLR over TP (a) and IMR (b).

DFA, which means that there exist obviously similar scaling
behaviors by using the different orders of DFA. Among them,
DFA2 can remove unexpected trends, and therefore it is used
to calculate LRC over the two regions. Generally, the scaling
exponents in IMR are smaller than those of TP, which
indicates stronger long-term memory characteristic for TP.
Meanwhile, the scaling exponents of OLR have a decreasing
trend from west to east over TP. The maximum frequency
counts of scaling exponents occur in the range of 0.67 and
0.69 both in TP and in IMR. The spatial distribution feature of
the scaling exponents of the OLR sequence in the two regions
is mainly affected by that of the cloud cover. The high cloud
cover over TP is obviously less than that of IMR. For TP
region, the cover of cloud increases from west to east, and
consequently the LRM becomes weaker from west to east
over TP. In the Indian Ocean region, there exists a strong
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convection, which leads to larger high cloud cover. The
scaling exponents of shuffled OLR records in the two places
are near 0.5, which illustrates that LRC behaviors of OLR in
the two regions are caused by the fractal characteristics of
time series.
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