Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 521386, 9 pages
http://dx.doi.org/10.1155/2014/521386

Research Article

Hindawi

Flexible Stock Allocation and Trim Loss Control for
Cutting Problem in the Industrial-Use Paper Production

Fu-Kwun Wang and Feng-Tai Liu

Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan

Correspondence should be addressed to Fu-Kwun Wang; fukwun@mail.ntust.edu.tw

Received 29 November 2013; Accepted 25 May 2014; Published 17 June 2014

Academic Editor: Hsiao-Fan Wang

Copyright © 2014 F-K. Wang and E-T. Liu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We consider a one-dimensional cutting stock problem (CSP) in which the stock widths are not used to fulfill the order but kept
for use in the future for the industrial-use paper production. We present a new model based on the flexible stock allocation and
trim loss control to determine the production quantity. We evaluate our approach using a real data and show that we are able to
solve industrial-size problems, while also addressing common cutting considerations such as aggregation of orders, multiple stock
widths, and cutting different patterns on the same machine. In addition, we compare our model with others, including trim loss
minimization problem (TLMP) and cutting stock problem (CSP). The results show that the proposed model outperforms the other

two models regarding total flexibility and trim loss ratio.

1. Introduction

A one-dimensional cutting stock problem (CSP) is one of
the famous combinatorial optimization problems, which has
many applications in industries, such as paper, wood, textiles,
steel, space, ship construction, and logistic transportation
[1-6]. Most studies focus on minimizing the trim loss that
is the amount of residual pieces of processed stock lengths.
A standard one-dimensional cutting stock problem (S1D-
CSP) as a kind of the above problems is known as an NP-
complete one [7]. Numerous studies have examined how to
tulfill orders and optimize production planning. Gilmore and
Gomory [8] presented a delayed pattern generation technique
for solving a one-dimensional cutting problem using linear
programming. Other methods, including pattern-oriented
approach, item-oriented approach, mixed approach and exact
approach, can be found in [9-27].

In the industrial-use paper industry, the production
quantity is usually greater than the customers” order. Using
the traditional CSP, the trim loss can be significant. Thus,
we need to consider usable leftovers to prevent the trim
loss generated after optimization. This issue becomes a one-
dimensional CSP with usable leftovers. Yanasse [28] reported
that the literature on usable leftovers is scarce and the

problem still lacks clear and appropriate definitions. Kos and
Duhovnik [29] proposed usable leftover material used in the
next cutting plan to reduce trim loss. Related studies can
be found in [6, 29-35]. Cherri et al. [31] presented several
modifications in some well-known heuristics to solve a one-
dimensional CSP with usable leftovers. Poldi and Arenales
[32] presented a study with the classical one-dimensional
integer CSP, which consists of cutting a set of available stock
lengths in order to produce smaller ordered items. Cui and
Yang [33] considered a one-dimensional CSP with useful
leftover in the cutting plan. Cherri et al. [35] proposed a
priority-in-use heuristic approach to solve a one-dimensional
CSP with usable leftovers. However, these models cannot
be directly used for solving the CSP in the industrial-use
production that each reel can only be produced a certain
number of rolls depending on its cutting machine. Wang and
Liu [36] presented a new decision model for reducing trim
loss and inventory in the paper industry.

In this study, we present a new model based on the
flexible stock allocation and trim loss control to determine
the production quantity. Our proposed model is a flexibility
maximization problem (FAP). Under a certain condition
of trim loss control, FAP can be confined to cutting stock
problem (CSP) or trim loss minimization problem (TLMP).



The remainder of this paper is organized as follows. In
Section 2, the definition of problem in the paper industry
is presented. A new model is developed in Section 3. In
Section 4, some examples illustrate the application of the
proposed model. Finally, conclusions are drawn in Section 5.

2. Problem Definition

The production of industrial-use paper starts from raw
material to reels and then from reels to the production
of rolls as finished goods. The entire operation mode is
cyclical production, which is the only method for achieving
production efficiency. Therefore, the leftover material is not
used in a follow-up production. For the production planning
(see Figure1), the customer’s paper requirements are obtained
and the marketing demand is predicted. Then, during the
combined production-marketing meeting, the number of
production days and the production quantity of paper types
are determined. The production quantity indicates the N
number of reels, and each reel can produce the NR number of
rolls that depends on the paper type. It should be noted that
the unit of the paper width is millimeter (mm).

To formulate the models of CSP, TLMP and FAP, see the
notations section are used.

The main research question is how to improve the stock
allocation and trim loss of a CSP with useful leftovers in the
paper industry. This problem can be studied for either one- or
multidimensional CSPs. In this study, one-dimensional CSP
with useful leftovers was used. We first provide two examples
to illustrate the differences between CSP, TLMP, and manual
adjustment (MA). In practice, MA is used in the industrial-
use paper industry in which the CSP and TLMP solutions are
candidates as manually selecting as MA solution. The CSP
and TLMP are usually solved through column generation
[8,9]. To obtain the solutions of CSP and TLMP, the computer
program was written in Lingo 11 Software [37].

The formulation of CSP is defined as follows:

t
(CSP) Minimize Z X, 1)
r=1
s.t.

)

m
L> Z a;.ow;, (width of reel constraint)

Il
—

t
Z a,x, > d;, (demand constraint) (3)

r=1

m
UB>L- Z a;,ow;, (trim loss constraint), (4)

i=1

where g;, and x, are decision variables and integer variables.
Minimizing the total number of patterns is the objective func-
tion (1) of the model. Constraint (2) guarantees the cutting
stocks regarding the reel width. Constraint (3) guarantees the
cutting stocks regarding the demand. In the industrial-use
paper production, there exists the maximum trim loss for
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each cutting, and then constraint (4) guarantees the waste of
each roll during the cutting process.

In order to reduce the trim loss, a modified model called
TLMP is given as follows:

t m
(TLMP) Minimize ) (L -y a,-row,-) X, (5)
r=1 i=1
s.t.
m (6)
L> Z a;,,ow;, (width of reel constraint)
i=1
t
Z a,x, >d;, (demand constraint) (7)
r=1

t
= xr .

SRQ = Z‘; (reel set constraint) (8)
NR

(trim loss constraint),

€

where g;, and x, are decision variables and integer variables.
Minimizing the total trim loss is the objective function
(5) of the model. Constraint (6) guarantees the cutting
stocks regarding the reel width. Constraint (7) guarantees
the cutting stocks regarding the demand. In industry paper
production, the maximum trim loss for each cutting and the
limit production volume are considered; then constraint (8)
guarantees the number of rolls for each reel, and constraint
(9) guarantees the waste of each roll during the cutting
process.

For example 1, we assume that the reel width is 10 units,
NR is 3, UB is 3, the demand of order widths {3, 4} is {3, 3},
and the stock widths are {3,4,5}. In Figure 2, we provide
CSP, TLMP, and MA solutions. The trim loss using CSP is 5
units. And the trim loss using TLMP is zero. We found that
the stock width using CSP is obtained as {4} and the stock
widths using TLMP are {3} * 3. In order to obtain flexible
stock widths, using MA based on CSP and TMLP solutions,
the extending stock width is determined as {6}, and the stock
width is obtained as {3}. Thus, MA can provide more flexible
stock width {6}.

For example 2, we assume that the reel width is 10 units,
NR is 3, UB is 3, the demand of order widths {3, 5} is {1, 1},
and the stock widths are {3, 4, 5}. In Figure 3, we provide CSP,
TLMP, and MA solutions. The trim loss using CSP is 2 units.
And the trim loss using TLMP is zero. We found that the stock
width using CSP is zero, the unused rolls are 2 and 3, and the
stock widths using TLMP are {3} = 1, {4} * 1, and {5} * 3.
Using MA based on CSP and TMLP solutions, the extending
stock widths are determined as {10, 10} or {7, 10}, the stock
width is obtained as zero or {5}, and the trim loss is obtained
as 2 units or zero. Thus, MA can provide more flexible stock
widths {10, 10} or {7, 10}.

Based on the above discussions, we conclude that the
MA approach can provide more flexible stock widths in a
one-dimensional CSP with useful leftovers. This motivates

UB>L-) a,d,



Mathematical Problems in Engineering

Paper type priority by
production-marketing meeting

Order Stock

reel  ponis

Roll st |  Stock Stock

Paper type 1 Paper type 2 Paper type Z
R EE
Roll 1 Trim loss

O ¢<——— Number of reels

FIGURE 1: Production planning in the paper industry.
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FIGURE 2: (a) CSP solution, (b) TLMP solution, and (c) MA solution
for example 1.
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FIGURE 3: (a) CSP solution, (b) TLMP solution, and (c) MA solution
for example 2.

the development of a mathematical formulation for a one-
dimensional CSP with useful leftovers in the industrial-use
industry.

3. The Proposed Model

To provide more flexible leftovers, we propose the flexible
stock allocation approach. It should be noted that the concept
of extending stock widths is similar to the usable leftovers [31].
In FAP, we have stock items of width sw;, i = {1,...,m}, the
reel width is L, each paper width is based on a fixed number
called GAP to differentia, and the extending stock width can
be obtained from (sw,,, + GAP) to L. Thus, the extending stock
item of width is established as

ew, = {sw,, +(e—m)* GAP}, (10)

wheree = {m + 1,...,ex}, ex = m + (L — sw,,)/GAP, (L -
sw,,,)/GAP is integer, and m is the number of stock widths.
Using (10), we can combine sw; and ew, as production width
pw,. This new set of paper widths can provide more flexible
stock allocation for cutting plan.

In order to evaluate the benefit of the flexible stock allo-
cation, we define a flexible coefficient f; for each production
width pw, that is obtained as follows:

fi = {P | pwi > ) pw; y;,, UB > (pwk - priyiz>} :

i=1 i=1
(11)

where k = {1,2,...,m}, z = {1,2,..., p}, p is the number
of patterns, y;, is the number of widths 7 in pattern z, and
¥;, is a positive integer. For instance, we set UB = 999. Since
pw, {1000} has only one combination, the f, value is assigned
to one. Since pw, {1100} can be divided into two combinations
{1000, 1100}, the f, value is assigned to two. Furthermore,
pw,5{2200} can be divided into fourteen combinations
{{1000, 1000}, {1000, 1100}, {1000, 1200}, {1100, 1100}, 1300,
1400,1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200}; the f;;
value is assigned to fourteen. In addition, a flexible coeflicient
f for each extending width is obtained as follows:

fio = fm + (k = m), 12)

wherek={m+1,...,ex}ande={m+1,...,ex}.
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TABLE 1: Product information and data for ow;, d;, and sw;. TABLE 2: Product information and data for pwy, pq,, and f,.
i ow; d; SW; k PWk P9k Ji k PWk P9k i
1 X 0 1000 1 1000 0 1 17 #2600 0 23
2 X 0 1100 2 1100 2 18 #2700 0 24
3 1200 7 1200 3 1200 3 19 #2800 0 25
4 1300 22 1300 4 1300 22 4 20 #2900 0 26
5 X 0 1400 5 1400 0 5 21 #3000 0 27
6 1500 28 1500 6 1500 28 6 22 #3100 0 28
7 1600 58 1600 7 1600 58 7 23 #3200 0 29
8 1700 47 1700 8 1700 47 8 24 #3300 0 30
9 1800 43 1800 9 1800 43 9 25 #3400 0 31
10 1900 7 1900 10 1900 7 10 26 #3500 0 32
11 2000 20 2000 11 2000 20 11 27 #3600 0 33
12 2100 9 2100 12 2100 9 12 28 #3700 0 34
13 2200 30 2200 13 2200 30 14 29 #3800 0 35
14 2300 7 2300 14 2300 7 16 30 #3900 0 36
15 2400 12 2400 15 2400 12 19 31 #4000 0 37
16 2500 20 2500 16 2500 20 22 32 #4100 0 38
Note: X = not available. 33 #4200 0 39
34 #4300 0 40
We introduce a coefficient R for controlling the trim loss. 3 #4400 0 4l
Thus, the proposed formulation is as follows: 36 #4500 0 42
37 #4600 0 43
ex (L Note: # = extending stock width.
Maximize Z ( Apey X — qu>
k=t et TABLE 3: Optimal solutions using FAP and CSP methods.
t ex (13)
X fipwi + R). (L - ZakrPWk> X kK pw, pq fi cop FAP
r=1 k=1 Solution;, ~ Stock,  Solution;,  Stock;
st 1 1000 0 1 31 31 21 21
2 1100 2 0 0 0
ex 3 1200 7 3 0 12 5
Z a,pw, < L (width of reel constraint) (14) 4 1300 22 4 2 0 23 1
k=1 5 1400 0 5 0 0 10 10
¢ 6 1500 28 6 30 2 28 0
Pqx < Zak,x, (demand constraint) 15) 7 1600 58 7 58 0 58 0
! 8 1700 47 8 47 0 47 0
(3o x,) 9 1800 43 9 43 0 43 0
SRQ = TNR (reel set constraint) (16) 10 1900 710 7 0 7 0
o 11 2000 20 11 20 0 20 0
L- Z a,pw < UB (trim loss constraint),  (17) 1221009 12 o 0 J 0
=1 13 2200 30 14 30 0 30 0
14 2300 7 16 7 0 7 0
where a;, and x, are decision variables and integer variables. 15 2400 12 19 12 0 12 0
Maximizing the total flexibility is the objective function (13) 16 2500 20 22 20 0 20 0
of the. model that is .the summatior} of total produc.t%on 2 #3000 0 27 0 0 1 1
coefficient and total trim loss coefficient. The composition
of each production coeflicient includes nonorder quantity, 37 #4600 0 43 ! ! !
production width, and flexible coefficient, and the trim loss TLR (%) 3.3 14
coeflicient includes the coefficient R and the total trim loss. TF 86 160

Constraint (14) guarantees the cutting stocks regarding the
reel width. Constraint (15) guarantees the cutting stocks
regarding the demand. Constraint (16) guarantees the num-
ber of rolls for each reel. Constraint (17) guarantees the waste
of each roll during the cutting process.

Note: rolls = 135, R = 0, and stock;, = solution; — pqy.

When R = 0, the objective function (13) becomes to be
a maximize function of 1< (Y'_, a,x, — pqy) fipw; that is,
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TABLE 4: Optimal solutions using FAP and TLMP method.

TLMP FAP
ko pwe pa fi . .
Solution,  Stock,  Solution,  Stock,
1 1000 0 1 39 39 37 37
2 1100 2 2 1
3 1200 3 2 8 1
4 1300 22 4 22 0 23 1
5 1400 0 5 9 9 6 6
6 1500 28 6 28 0 28 0
7 1600 58 7 58 0 58 0
8§ 1700 47 8 47 0 47 0
9 1800 43 9 43 0 43 0
10 1900 7 10 7 0 7 0
11 2000 20 11 20 0 20 0
12 2100 9 12 9 0 9 0
13 2200 30 14 30 0 30 0
14 2300 7 16 7 0 7 0
15 2400 12 19 12 0 15 3
16 2500 20 22 20 0 20 0
TLR (%) 0.42 0.42
TF 94 133

Note: rolls = 135, R = =1000, and stock;, = solution; — pq.

it does not consider trim loss. If the production capacity fails
to satisfy (15) during the problem-solving process, a full roll
is generated. Subsequently, because the flexibility of f,pw,,
is greater than any of the leniency and flexibility coeflicient
combinations, the full roll is substituted by pw,,.. In addition,
the optimal CSP solution also generates a full roll and the full
roll is substituted by pw,,; thus, the FAP results approximate
the CSP target function; that is, Minimize Z£:1 x,. Therefore,
the difference between FAP(R = 0) and the g, of CSP can
be compared.

When R = —co, Y5, (3!, a.x, — pqy) fipWi can be
neglected and the objective function (13) approaches Maxi-
mize RY'_ (L- Y%, a,pw;)x,. In addition, R approximates
the TLMP target function; that is, Minimize Z;zl(L -
Y| G, PWi)x,. Therefore, the difference between FAP(R =
—00) and the g, of TLMP can be compared.

In summary, when R = 0, flexible stock becomes the
optimal condition and trim loss is maximized. Conversely,
when R = —o00, flexible stock becomes the least favorable
condition and trim loss is minimized. Therefore, the control
of variable R is a flexible stock and trim loss strategy that
decision makers adopt during the production process.

4. Ilustrative Examples

We consider a real case from an industrial-use paper produc-
tion and five simulated datasets to illustrate the application of
our proposed method. We set the current scheduling quantity
as SRQ reels, and each reel can produce NR number of rolls.
The cutting machine width limit is L, and the maximum trim

loss is UB. These parameters are defined as NR = 3, L =
4600 mm, SRQ = 45 reels = 135 rolls, and UB = 999 mm.

To obtain the solutions of CSP, TLMP, and FAP, the
computer program is divided into the engine and the user
interface. The engine interface was written in Lingo 11
Software [37]. The user interface in Visual Basic 5 enables the
navigation of data flow from various input sources, such as a
common company database and a random number dataset.

4.1. A Real Case from an Industrial-Use Paper Production.
According to the FAP model in Section 3, the details are as
follows.

Step 1. Define ow;, d;, and sw;, fori = 1,2,..., 16 (see Table1).

Step 2. Using (10) to obtain the extending widths, since
GAP = 100 and m = 16, we can obtain that e =
{17,18,...,37} and ew, = {2600, 2700, .. .,4600}.

Step 3. Aggregate d; to pq,, sw; to pwy, and ew, to pw,, for
i=1,2,...,16and k= 1,2,...,37.

Step 4. Use (11)-(12) to compute the flexible coefficient f; for
pw, (see Table 2).

Using FAP to perform optimization, R must be set to 0,
thereby allowing FAP results to approximate those of CSP. In
this case, we obtained the production capacities of FAP and
CSP, stock, trim loss ratio (TLR), and total flexible coefficient
(TF), where TLR = [Y!_ (L - ¥, @ pwi)x, 1/ (LY, x,) X
100% and TF = Y% | pwy f-

The primary reason for comparing CSP was to determine
whether FAP effectively reduced TLR and whether the
flexible stock of FAP is superior to that of CSP (see Table 3).
The TLRs for CSP and FAP were 3.3 and 1.4, respectively;
the flexible stocks for CSP, FAP, and extending stock were
{{1000, 31}, {1500, 2}, {#4600, 1}},{{1000, 21}, {1200, 5},{1300,
1}, {1400, 10}, {#3000, 1}, {#4600, 1}}, and {{#3000, 1}, {#4600,
1}}, respectively. Thus, the results suggest that FAP
outperforms CSP in reducing TLR and that the flexible
stock and TF of FAP are superior to that of CSP.

To compare FAP to TLMP, the flexible variable R of FAP
was set to —1000, which denotes minimal TLR. In this case, we
obtained the production capacities of FAP and TLMP, stock,
TLR, and TF(see Table 4).

The primary reason for comparing TLMP was to
determine whether the TLR of FAP is similar to that of TLMP
or not and whether the flexible stock of FAP is superior to that
of TLMP or not (see Table 4). The TLRs for TLMP and FAP
were 0.42 and 0.42, respectively; the flexible stocks for TLMP
and FAP were {{1000, 39}, {1100, 2}, {1200, 2}, {1400, 9}}, and
{{1000, 37},{1100, 1}, {1200, 1}, {1300, 1}, {1400, 6}, {2400, 3}},
respectively. Notably, the flexible stock of FAP {2400, 3} was
considerably more lenient. Therefore, based on the results,
the TLR of FAP was identical to that of TLMP, and the
flexible stock and TF of FAP were superior to those of TLMP.

Moreover, we employed sensitivity analysis to observe
the influence that R has on TLR and TE When R =
1,0,-1,...,—00, and R is an integer, the results as shown in
Table 5 are obtained.
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TABLE 5: The sensitivity analysis of coefficient R for stock; using FAP.
R
k P¥ fi 1 0 -1~-2 -3 ~-8 -9~ -86 -87 ~ -533 -534 ~ —co
1 1000 1 11 21 22 28 36 37 37
2 1100 2 0 0 1 1 1 1 1
3 1200 3 5 5 4 1 1 1 1
4 1300 4 1 1 1 1 1 1 1
5 1400 5 10 10 10 10 6 6 6
6 1500 6 0 0 0 0 0 0 0
7 1600 7 0 0 0 0 0 0 0
8 1700 8 0 0 0 0 0 0 0
9 1800 9 0 0 0 0 0 0 0
10 1900 10 0 0 0 0 0 0 0
11 2000 11 0 0 0 0 0 0 0
12 2100 12 0 0 0 0 0 0 0
13 2200 14 0 0 0 0 0 0 0
14 2300 16 0 0 0 0 0 0 0
15 2400 19 0 0 0 0 0 1 3
16 2500 22 0 0 0 0 0 0 0
21 #3000 27 1 1 1 1 1 0 0
37 #4600 43 1 1 1 1 1 1 0
TLR (%) 4.2 1.4 1.3 0.9 0.52 0.45 0.42
TF 150 160 160 157 145 138 133
Note: the number of rolls = 135.
TABLE 6: The range and midpoint of R.
Range of R 0 -1~-2 -3~-8 -9~ -86 —-87 ~ —533 —534 ~ —00
Midpoint 0 -5 —47 =310 -1000

TABLE 7: Information of pq, for simulated examples.

TaBLE 8: The results of TF and TLR for CSP, TLMP, and FAP.

Case Case
k W, Method Measure
PV fi 1 2 3 4 1 2 3 4 5

1 1000 1 46 2 6 37 Csp TF 94 98 10 43 0
2 1100 2 3 15 2 47 41 TLR (%) 0 11 1.6 0.5 1.8
3 1200 3 33 11 31 5 33 TF 49 19 6 10 9

TLMP
4 1300 4 22 21 22 42 27 TLR (%) 0 015 12 013 12
> 1400 > 3 12 20 36 ! FAP TF 109 115 25 65 26
6 1500 6 46 25 6 31 2 (R=0) TLR (%) 0 1 16 016 14
7 1600 7 22 26 21 38 12

FAP TF 109 19 6 20 9
8 1700 8 3 21 o 6 4 (R =-1000) TLR (% 0 015 12 013 12
9 1800 9 30 25 31 32 29 (%) ’ ’ ’ ’
10 1900 10 38 14 44 26 48 Rolls 144 141 183 162 162
1 2000 11 1 20 12 48 22
12 2100 12 23 42 37 42 16

trim loss was equivalent to the flexible coeflicient of {1000},
13 2200 14 12 20 48 1 48 . .
" 5300 6 . 3 3 5 9 causing the stock capacity of {1000} to decrease. Thus, when

0 < R < 1is defined, we can directly use R = 0 for solution
15 2400 19 27 12 41 28 30 identification.
16 2500 22 14 38 41 13 27

According to Table 5, when R = 1, TLR increased and
{1000, 21} changed to {1000, 11}. This was primarily because

When R < 0, we observed that the TF gradually reduced
from 160 to 133 and the TLR reduced from 1.4 to 0.42.
These results suggest that, when R has a value less than 0,
the TF decreases and the TLR declines. Regarding flexible
stock, we found that, when R ranged between -1 and -2,
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TABLE 9: Stock information for CSP, TLMP, and FAP.

Case Method Solution
CSP {1100, 1}{1500, 1}{#4600, 2}
TLMP {1000, 3}{1100, 2}{2200, 3}
1 FAP (R =0) (#2600, 1}{#4600, 2}

FAP (R = -1000) (#2600, 1}{#4600, 2}
CSP {1000, 1}{2000, 1}{#4600, 2}

TLMP {1000, 17}{1100, 1}
2 FAP (R=0) {#3200, 1}{#4600, 2}
FAP (R = —1000) {1000, 17}{1100, 1}
CSP {1300, 1}{1500, 1}
TLMP {1000, 6}
3 FAP (R =0) {#2800, 1}
FAP (R = —1000) {1000, 6}
CSP {#4600, 1}
TLMP {1000, 6}{1300, 1}

4 FAP (R=0) {2500, 1}{#4600, 1}
FAP (R = —1000) {1000, 4}{1100, 1}{2200, 1}
CSP NA
TLMP {1000, 3}{1500, 1}
5 FAP (R=0) {#2900, 1}

FAP (R = -1000)
Note: {paper width, stock quantity}.

{1000, 3}{1500, 1}

the production capacity of {1000} was 22; subsequently, as
R decreased to between —3 and -8 and —534 and —oo, the
production capacity of {1000} increased to 28 and to 37,
respectively. These results suggest that, as R decreases, the
allocation of stock gradually coagulates at a lower leniency,
negating the effects of extended stock. The decrease in TF
from 160 to 133 implies that the degree of permitted flexibility
for adjusting stock had already diminished. Therefore, we
suggest that R be maintained within a range between —co and
0.

Because the trim loss value at each interval of R is a fixed
value, we selected the medians of each interval and tabulated
them into Table 6, which enabled us to select the desired
results. Consequently, the number of medians can be defined
by decision makers based on actual conditions.

4.2. Simulated Examples. To verify the superiority of the
flexible stock and trim loss produced by using FAP over
those produced using CSP and TLMP, we selected 5 Cases
for comparison, and randomly obtained the pq, (where k =
1,2,...,16), which was achieved by using the RANDBE-
TWEEN function in Microsoft Office Excel 2007. The range
of this function was set between 0,1,2,...,50 (see Table 7).
The optimization calculations were then performed for FAP,
CSP, and TLMP.

We compared FAP(R = 0), FAP(R = —1000), CSP, and
TLMP, and the results were tabulated in Table 8. Because
using FAP necessitates the consideration of the flexible
coefficients, FAP(R = 0) should effectively reduce TLR when
an excessively large CSP’s TLR value is produced. Cases 2, 4,
and 5 verified that FAP reduced CSP’s TLR. FAP(R = —1000)

and TLMP were then examined to determine whether FAP’s
TLR presented similarities with TLMP’s TLR. Consequently,
the TLR values observed in all the 5 Cases were consistent.

Subsequently, we endeavored to determine whether FAP
could effectively increase the flexibility of stock adjustment
(see Table 9). The FAP(R = 0) for Cases 1 and 3 indicated
that the stock leniency demonstrated a merging action. In
addition, the extended stock was used in all of the case
samples. Furthermore, uncut rolls {#4600} were presented in
Cases 1, 2, 4, and 5. Because R = 0 is the lowest production
capacity model, this model is equivalent to CSP. The FAP(R =
—1000) for Cases 2, 3, and 5 was similar. However, FAP(R =
—-1000) presented increased stock adjustment flexibility and
extended stock usage in Cases 1 and 4. Thus, FAP(R = 0) can
effectively reduce CSP’s TLR and increase stock adjustment
flexibility when TLR is at a minimum level. The TLR in
FAP(R = -1000) was equivalent to that of TLMP, which
increased stock adjustment flexibility.

A sensitivity analysis was employed to determine the
performance of FAP in the 5 Cases and the influence of R
on TLR and TE. Consequently, R was set at 1,0, -1,...,—00,
where R was an integer. The results are tabulated in Table 10.

The medians tabulated in Table 6 were used for data
reconstruction and the results are presented in Table 1.
Subsequently, we collected the R values at each interval for
Cases 1, 3, 4, and 5. For Case 2, we were unable to collect
the R values at intervals of —55--79, —80--124, and —125-
—156. Decision makers can determine whether they wish to
incorporate the medians at these intervals or not; however,
this method of incorporating medians can be used to control
the majority of TLR changes.

5. Conclusion

The results of the case study analysis indicate that FAP(R = 0)
was similar to CSP in that both methods could be used to
determine the minimal production capacity and the maximal,
flexible adjusted stock. Because of the unique production
characteristics of industrial-use paper, using the CSP method
may produce full rolls and, thus, cannot obtain optimized
trim loss problems. Similar to the CSP method, FAP(R =
—-1000) generates stock that cannot be flexibly adjusted,
despite possessing minimal trim loss. Furthermore, CSP and
TLMP failed to control the changes of TLR; therefore, FAP
can utilize R to control and maintain TLR in a range between
CSP and TLMP’TLR. This approach eliminates the trim
loss problem exhibited in CSP and the adjustability problem
exhibited in TLMP and allows decision makers to effectively
control stock and trim loss according to actual situations.

Future research may consider solving extending stock
in stock allocation. In addition, the cost effects during the
production process should be addressed.

Notations

i Theindex number (i = 1,2,...,m) and m
is the number of stock/order widths

sw;: A stock width withi=1,2,...,m

ow;: An order width withi =1,2,...,m
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TaBLE 10: The sensitivity analysis of coeflicient R for all cases using FAP.
Case Measure R
0~ o0
) TLR (%) 0
TF 109
0~ -36 -37 ~ =54 -55~-79 -80 ~ -124 -125 ~ 156 -157 ~ o0
) TLR (%) 1 0.94 0.76 0.29 0.22 0.15
TF 115 112 91 46 39 19
0~-19 -20 ~ -0
3 TLR (%) 1.6 1.2
TF 25 6
0~ -999 -1000 ~ —c0
4 TLR (%) 0.16 0.13
TF 65 20
0~-11 -12 ~ =70 =71 ~ —00
s TLR (%) 14 13 12
TF 26 25 9

TaBLE 11: The results of fixed values of R for all cases using FAP.

Case Measure R
0 -1 =5 —47 -310 -1000
1 TLR (%) 0 0 0 0 0 0
TF 109 109 109 109 109 109
2 TLR (%) 1 1 1 0.94 0.15 0.15
TF 115 115 115 112 19 19
3 TLR (%) 1.6 1.6 1.6 1.2 1.2 1.2
TF 25 25 25 6 6 6
4 TLR (%) 0.16 0.16 0.16 0.16 0.16 0.13
TF 65 65 65 65 65 20
s TLR (%) 14 14 14 13 1.2 12
TF 26 26 26 25 9 9
d;:  Demand for ow; withi=1,2,...,m

L: Reel width

NR: The number of rolls for a reel

GAP: The difference between two paper widths

ew,: An extending production width, where e is
the index number
(e=m+1,m+2,...,ex)and
ex =m+ (L —sw,,)/GAP

pw;: A production width, where k is the index
number (k= 1,2,...,ex)

pq;:  Quantity for the production width,
k=1,2,...,ex

fi:  Flexible coefficient for the production

width pw,, withk = 1,2,...,ex
R:  Flexible coefficient for trim loss
SRQ: Production scheduling of reel quantity
UB: Upper bound for trim loss

ay,: The number of widths k in pattern »

X,

The number of patterns r, where r is the
index number (r = 1,2,...,t) and t is the
number of patterns.
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