
Research Article
A Game Theory Approach to Fair and Efficient Resource
Allocation in Cloud Computing

Xin Xu and Huiqun Yu

Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

Correspondence should be addressed to Huiqun Yu; yhq@ecust.edu.cn

Received 5 November 2013; Revised 14 January 2014; Accepted 14 January 2014; Published 24 April 2014

Academic Editor: Balaji Raghavan

Copyright © 2014 X. Xu and H. Yu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

On-demand resource management is a key characteristic of cloud computing. Cloud providers should support the computational
resource sharing in a fair way to ensure that no user gets much better resources than others. Another goal is to improve the resource
utilization byminimizing the resource fragmentation whenmapping virtual machines to physical servers.The focus of this paper is
the proposal of a game theoretic resources allocation algorithm that considers the fairness among users and the resources utilization
for both. The experiments with an FUGA implementation on an 8-node server cluster show the optimality of this algorithm in
keeping fairness by comparing with the evaluation of the Hadoop scheduler. The simulations based on Google workload trace
demonstrate that the algorithm is able to reduce resource wastage and achieve a better resource utilization rate than other allocation
mechanisms.

1. Introduction

Cloud computing is a new paradigm that provides computa-
tional resources as a highly scalable service in a pay-as-you-
go model and implements high performance computing in
a distributed way [1]. Virtualization technologies in clouds
enable the on-demand resource allocation by creating differ-
ent types of VMs on physical servers [2]. A set of possible
VM types are typically defined by cloud providers and each
VM type consists of different quantities of resources (CPU,
memory, disk storage, etc.). It is up to cloud providers tomake
intelligent decisions on how to allocate the heterogeneous
resources of physical servers to those required VMs.

First of all, the fairness problem is considered in resource
allocation, which means no one is allocated much bet-
ter resources than others. In multiresource environment,
resources of various types, such as CPU, memory, and disk
storage, are required by users with different demands. In this
scenario, fair allocation aims to equalize the largest resource
fraction of total availability allocated to each user [3].

The other goal of resource allocation is to guarantee
the computational resources to be fully utilized. Due to the
variety of resource requirements with different VM types, lots
of resource fragments in physical servers could be generated

during the VM deployment. Therefore, an efficient resource
allocation method should minimize the amount of resources
fragments.

Motivated by these goals, the allocation problem consid-
ered in our work is based on two key principles. One is that
multiple types of resources should be shared among users
in fair way. The other is that complementary types of VMs
are packed on physical servers in order to better utilize the
underlying resources.

This paper proposes a resource allocation algorithm
based on game theory for multiresource environment. The
problem is modeled as a finite extensive game. Each physical
server providing resources is treated as a game player and
knows the utility information of other players. To achieve a
fair allocation among users while keeping a high resource
utilization level, we design a fairness-utilization tradeoff
utility function. A measurement is established for fairness
based on the dominant resource fairness (DRF) mechanism
[3]. We also focus on two key issues for improving resource
utilization, that is, (1) trying to maximize the minimum
consumption among these multiple resources, (2) lowering
the uneven consumption of different resources.

In summary, the main contributions of this paper are as
follows.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 915878, 14 pages
http://dx.doi.org/10.1155/2014/915878

2 Mathematical Problems in Engineering

(i) A cloud resource management system is designed to
provide on-demand resources in time.

(ii) The multiresource allocation problem on virtual
machine level is modeled as a finite extensive game
with perfect information and the utility function is
designed by trading off fairness and resource utiliza-
tion.

(iii) A game theoretic resource allocation algorithm is pro-
posed to get an optimal resource allocation decision,
which guarantees fairness of multiple resources shar-
ing among separated users and reduces the resource
fragments to increase the efficiency.

This paper is organized as follows. In Section 2, the
background and related work are presented. In Section 3, we
present the architecture of the cloud resource management
system and the mathematical model of resource allocation.
Section 4 proposes a game theoretic resource allocation algo-
rithm FUGA. The performance evaluation of the proposed
algorithm is analyzed in Section 5. Section 6 is the conclu-
sion.

2. Related Work

Resource management is a significant issue in cloud comput-
ing, as the on-demand resources offering manner. There are
various studies on resource management in cloud computing
[4–8].

2.1. Game Theoretic Resources Management in Cloud.
Recently, game theory has been applied to solve resource
allocation problems in cloud computing. Ye and Chen study
noncooperative games for the load balancing and virtual
machine placement problem [9]. They focus on the existence
of Nash equilibrium and care little about the solution for an
optimal allocation strategy. Hassan et al. propose a method
for the distributed resource allocation problem in federated
cloud which studies both noncooperative and cooperative
games [10]. They show that the cooperative allocation
game has a stronger motivation for providers to contribute
resources. But their work models the resources as a single
type, while our work considers the allocation problem in
multiresource environment.

2.2. Fair Resources Allocation. The coordination of resource
sharing is also one underlying challenge for resource alloca-
tion in clouds. Many works have studied the fair allocation
so far, for instance, fair scheduler for Hadoop, which divides
resources as fixed-size partitions, or slots [11]. Another pop-
ular fair policy is the max-min fairness, which tries to maxi-
mize theminimum resource each user received.Waldspurger
enhances this approach by providing a weighted max-min
fairness model to support some policies which consider
different factors, like priority, reservation, and deadline [12].
Some approaches have recently been proposed to quantify
fairness [13]. However, most of them just investigate the
fairness of single type resource allocation problem.

The fair allocation problem formultiple types of resources
allocation has been studied by Ghodsi et al. [3]. They present

a dominant resource fairness approach, which addresses the
problem by computing the dominant share of each user.
Parkes et al. [14] extend the DRF approach by leveraging a
technical framework and study the indivisibilities allocation.
They prove that the mechanism satisfies three properties of
fairness. Their work still has some drawbacks as they do not
take the resource wastage into consideration.

Our work makes use of DRF approach to measure the
fairness of resource allocation, as well as exploiting a way to
improve the resource utilization for greater optimization.

2.3. Efficient Resource Allocation. For a cloud with a large
amount of heterogeneous physical servers in data center,
how to achieve efficient resource consumption is another
interesting direction of resource allocation [15, 16].

Steinder et al. investigate the resource allocation for a het-
erogeneousmix of workloads and present a system tomanage
data center to increase the resource consumption of servers
[17]. Di andWangmaximize resource utilization and optimal
execution efficiency by proposing a novel scheme DOPS
[18]. Cardosa et al. study the efficiency resource allocation
of MapReduce clouds [19]. They propose a spatiotemporal
tradeoff technique to scale MapReduce clusters dynami-
cally to improve energy consumption while simultaneously
improving performance. Jord et al. [20] show a resource-
aware multiple job scheduling technique for MapReduce that
improves resource utilization while meeting completion time
goals. Sandholm and Lai [21] present a resource allocation
system that uses user-assigned priorities to offer different
service levels and adjusts resource allocations dynamically to
fit the requirements.

In contrast to these studies, our work tries to place virtual
machines on proper physical servers to minimize resource
fragments and achieve the spatial efficiency.

Although some existing researches study on the tradeoff
between fairness and efficiency [22], few of them consider
the case for multiple types of resources allocation in cloud.
Joe-wong et al. develop a framework to address the fairness-
efficiency tradeoff with multiple resources [23]. The limita-
tion of this approach is that they should characterize the
parameters to ensure the fairness properties satisfied.

The resource allocation mechanism devised in our work
exploits incorporation of multiresource nature of virtual
machine so as to avoid wastage, while also incentivizing users
to share resources in fair way.

3. Resource Management System Modeling

Each cloud provider has a large scaled and distributed data
center with heterogeneous physical servers and provides the
numerous computational resources as a pay-per-use business
models. Infrastructure-as-a-Service providers let users apply
for virtual machines and charge them for the occupied time.
A VM is created by Xen, VMware, or hypervisor on a
physical server. Cloud users deploy their high-performance
applications on a cluster of VMs to accomplish their missions
(web services or MapReduce jobs), which are called jobs in
our work. Cloud providers typically offer a group of possible

Mathematical Problems in Engineering 3

VM types to simplify selection for users, and each type is
defined by specifying the number of CPU cores, the memory
size, the storage size, and the quantities of other resources.

Since the VMs required by different users are heterogene-
ity and vary in time, providers have to adjust their resource
allocation decisions dynamically. To this end, a resource
management system for cloud is designed first.

3.1. Resource Management System. We are interested in pro-
viding a fair and effective resource allocation mechanism on
a distributed and complex cloud system; thus, a resource
management system is necessary to centralized control and
coordinate the physical resources.

Figure 1 illustrates the architecture of the cloud resource
management system proposed in this work. This resource
management system has four components which include the
register center (RC), cloud environment monitor (CEM),
infrastructure management (IM), and control center (CC).
The four mentioned components are described as follows.

(i) RC: every physical server in cloud data center should
register its information to RC for connection and
management.

(ii) CEM: this component retrieves information like host
names, IP addresses about physical servers, monitors
their statuses (starting, running, shutdown) and the
consumption of CPU, memory, and disk storage.

(iii) IM: it is responsible for deploying and managing
the virtualized infrastructures, such as creating and
releasing virtual machines.

(iv) CC: it is the computing center to provide the most
appropriate decision about resource allocating.

CEM is monitoring the statuses and resource consump-
tions for physical servers registered in RC. Once a new
physical server started to join the cloud, the information like
MAC address, IP address will be registered to RC. When
a user sends a service request to cloud, the requirements
of resources in this request will be received by CC. CC
makes an intelligent resource allocation decision based on
the information collected by CEM.The allocation decision is
executed by IM to manage the physical servers and place the
virtual machines.

This paper proposes an adaptive resource allocation
mechanism in cloud environment, which is the problem of
mapping a limited quantity of resources to independent users
to finish their jobs. In our resource management system, the
allocation of resources is in a time-slotted paradigm. The
dynamically arriving user requests of current time slot are
recorded and will be served for resource allocation at the
start of next time slot. Each start of a time slot is called a
decision moment. If a user request cannot be served by the
idle resources in current time slot, it will be deferred to the
next time-slot or trigger the management of physical servers,
which is not considered in our work.

3.2. Mathematical Model. Suppose there are 𝑝 physical
servers available in a cloud cluster and each is denoted as

𝑚, where 1 ≤ 𝑚 ≤ 𝑝. Consider 𝑘 kinds of resources
in our work and the available resources of each physical

server 𝑚 can be described as a capacity vector 󳨀⇀𝐶
(𝑚)

=

(𝐶
(𝑚)
1 , 𝐶
(𝑚)
2 , . . . , 𝐶

(𝑚)

𝑗
, . . . 𝐶

(𝑚)

𝑘
), which is monitored by CEM.

Each kind of resource is denoted as 𝑗. For example, (4,8,40)
illustrates that a physical server has 4 CPUs, 8GB memory,
and 40GB disk storage available.

The job submitted by user 𝑖 is denoted as 𝐽𝑖, where 𝑖 ∈
{1, 2, . . . , 𝑠}. A variety of VM types are predefined by the
cloud provider and a type is encoded by the vector 󳨀⇀𝑟𝑖 =
(𝑟𝑖1, 𝑟𝑖2, . . . , 𝑟𝑖𝑗, . . . 𝑟𝑖𝑘). Each job applies for a cluster of VMs
with the same type to be fully executed. In general, the
performance will be improved when the number of VMs
assigned to this job increases. However, the cost of cloud
provider will also increase to createmore VMs.Therefore, the
cloud provider shouldmake decisions on the number of VMs
assigned to each job.

In Figure 2, we consider two physical servers with capac-
ity vectors (4, 8, 40), (4, 6, 50). Three users apply for three
types of VMs which can be described as (2, 4, 20), (1, 1,
10), and (2, 2, 10). Resources like CPU, memory, storage of
a physical server will be occupied when a virtual machine
created on this server. At each decision moment, resource
management system checks the capacity states of all physical
servers in data center and analyzes all the user requests to
generate the resource requirement matrix.

Definition 1 (resource requirement matrix). Resource
requests submitted by different users can be defined as a
matrix. Let 𝑅 be an 𝑠 × 𝑘 dimensional matrix whose rows
specify the VM type each user needs, while columns describe
the amount of different resources (as shown in Figure 2):

𝑅 = (

󳨀⇀
𝑟1
󳨀⇀
𝑟2
...
󳨀⇀
𝑟𝑠

) =(

𝑟11 𝑟12 ⋅ ⋅ ⋅ 𝑟1𝑘
𝑟21 𝑟22 ⋅ ⋅ ⋅ 𝑟2𝑘
...

... d
...

𝑟𝑠1 𝑟𝑠2 ⋅ ⋅ ⋅ 𝑟𝑠𝑘

). (1)

The goal of the resource allocation problem, given the
resource requirement matrix and the capacity sets of physical
servers, is to determine a reasonable mapping from resources
to cloud users. In other words, different kinds of resources
each physical server has should be fair and effectively dis-
tributed to all users to create their required VMs.

Definition 2 (allocation decision). For the physical server𝑚,
a possible resource allocation state can be described as an
allocation matrix 𝐴(𝑚):

𝐴
(𝑚)

=(

(

󳨀⇀
𝑎
(𝑚)

1

󳨀⇀
𝑎
(𝑚)

2
...

󳨀⇀
𝑎
(𝑚)

𝑠

)

)

=(

𝑎
(𝑚)
11 𝑎

(𝑚)
12 ⋅ ⋅ ⋅ 𝑎

(𝑚)

1𝑘

𝑎
(𝑚)
21 𝑎

(𝑚)
22 ⋅ ⋅ ⋅ 𝑎

(𝑚)

2𝑘
...

... d
...

𝑎
(𝑚)
𝑠1 𝑎

(𝑚)
𝑠2 ⋅ ⋅ ⋅ 𝑎

(𝑚)

𝑠𝑘

), (2)

where 𝑎(𝑚)
𝑖𝑗

denotes the amount of resource 𝑗 on physical
server𝑚 allocated to user 𝑖.

4 Mathematical Problems in Engineering

Available
space of
PM list

Cloud users

Applications APP APP APP APP APP APP

Resource management system

Server
level

agreement

CC
CEM1

VM usage list

RC

Virtual machines

Physical machines

IM

Figure 1: A framework of cloud resource management system.

An allocation decision 𝐴 is a collection of a possible allo-
cation status of every physical server based on the resource
requirement matrix:

𝐴 = {𝐴
(1)
, 𝐴
(2)
, . . . , 𝐴

(𝑚)
, . . . 𝐴

(𝑝)
} . (3)

Figure 2 gives an example of allocation decision. If the
Physical Server 1 creates one type-󳨀⇀𝑟1 VMandone type-󳨀⇀𝑟2 VM,
then the allocation matrix is shown as 𝐴(1). Each of the two
physical servers in Figure 2 has its own allocation matrix and
consists of an allocation decision 𝐴 = {𝐴

(1)
, 𝐴
(2)
}.

Furthermore, the total number of resource 𝑗 allocated to
user 𝑖 is denoted by 𝜑𝑖𝑗 = ∑𝑚 𝑎

(𝑚)

𝑖𝑗
. The parameters and their

description are summarized in Notation section.

4. Game Theoretic Resource Allocation

Each user in a cloud asks for a type of VM to run its job. The
execution of a job involves multidimensional resources, and
the resource requirements differ from job to job. For example,
a data mining job needs high capacity of disk to store a large
number of data while a calculating jobmight needmore CPU
than disk to get a result.

In order to support elastic multiresource consumption,
we propose a fairness-utilization tradeoff game algorithm

(FUGA), which makes an optimal tradeoff between fairness
and efficiency.

4.1. Fair Allocation. In this paper, the fair allocation prob-
lem is considered for multiples types of resources. For
a single type of resources, fair allocation means each
user has equal share of resources. However, in multire-
source environment, since users have heterogeneous require-
ments for different types of resources, resources should
be assigned to users in proportion to their requirements.
Each user has a maximum share fraction of total capac-
ity among different resources which is called dominant
share. The major goal of fair allocation considered in
our work is to equalize the dominant share of each
user.

Three widely used properties should be satisfied to
achieve fair allocation [3].

Definition 3 (sharing incentive). Sharing incentivemeans the
amount of resource each user should receive is at least as
much as simply splitting the total resources equally.

Definition 4 (envy-freeness). Envy-freeness is the property
that no user prefers to the allocation of another user.

Mathematical Problems in Engineering 5

User 1 r1 = (2, 4, 20) User 2 User 3 r3 = (2, 2, 10)

C(1) = (4, 8, 40)

Resource
requirement

matrix

CPU Memory Storage

Physical resources

Physical Server1 Physical Server2

CPU Memory Storage

=
2 4 20
1 1 10
0 0 0

A(1)

=
0 0 0
2 2 20
2 2 10

A(2) ()

()
R =

2 4 20
1 1 10
2 2 10
()

C(2) = (4, 6, 50)

r2 = (1, 1, 10)

Figure 2: An example of cloud resource allocation.

Definition 5 (Pareto efficient). It should be impossible to
increase the resource amount of a user without decreasing the
allocation of another user.

The fairness of multiple resources sharing is measured by
extending the dominant resource fairness (DRF) mechanism
that Ghodsi et al. put forward at 2011. In words, to mathemat-
ically gauge the fairness of a resource allocation mechanism,
the DRF is set to be the benchmark of fair allocation. Each
allocation decision may have a deviation contrast to the fair
allocation, called fairness variance.

Given a resource requirement matrix 𝑅 and the sum-
mation of the total resources for all physical servers 𝐶 =

(∑𝑚 𝐶
(𝑚)
1 , ∑𝑚 𝐶

(𝑚)
2 , . . . , ∑𝑚 𝐶

(𝑚)

𝑗
, . . . , ∑𝑚 𝐶

(𝑚)

𝑘
), the first step

is to normalize the requirement matrix. The normalized
matrix is denoted as Ψ:

Ψ = (

𝜓11 𝜓12 ⋅ ⋅ ⋅ 𝜓1𝑘
𝜓21 𝜓22 ⋅ ⋅ ⋅ 𝜓2𝑘
...

... d
...

𝜓𝑠1 𝜓𝑠2 ⋅ ⋅ ⋅ 𝜓𝑠𝑘

) =

(
(
(
(
(
(

(

𝑟11

𝐶1

𝑟12

𝐶2
⋅ ⋅ ⋅

𝑟1𝑘

𝐶𝑘
𝑟21

𝐶1

𝑟22

𝐶2
⋅ ⋅ ⋅

𝑟2𝑘

𝐶𝑘

...
... d

...

𝑟𝑠1

𝐶1

𝑟𝑠2

𝐶2
⋅ ⋅ ⋅

𝑟𝑠𝑘

𝐶𝑘

)
)
)
)
)
)

)

.

(4)

Secondly, as mentioned before, the dominant share of a
user is the largest fraction of any kinds of resources allocated
to that user. Let 𝑑𝑖𝑗 = 𝜓𝑖𝑗/(max𝑗𝜓𝑖𝑗) be the normalized
demands, and 𝜆 = 1/(max𝑗∑𝑖 𝑑𝑖𝑗) is the dominant share.

Consider the example in Figure 2, the total amount of
available resources on the two physical servers is 𝐶 = (𝐶(1)1 +

𝐶
(2)
1 , 𝐶
(1)
2 + 𝐶

(2)
2 , 𝐶
(1)
3 + 𝐶

(2)
3) = (8, 14, 90). The resource

requirement matrix 𝑅 is (2 4 201 1 10
2 2 10

). The normalized matrix is

deduced as Ψ = (
1/4 2/7 2/9
1/8 1/14 1/9
1/4 1/7 1/9

), and then the normalized
demands are𝑑11 = 7/8,𝑑12 = 1,𝑑13 = 7/9,𝑑21 = 1,𝑑22 = 4/7,
𝑑23 = 8/9, 𝑑31 = 1, and 𝑑32 = 4/7, 𝑑33 = 4/9. The dominant
share is 𝜆 = 1/(7/8 + 1 + 1) = 8/23.

Fairness variance is defined to measure the fairness of a
resource allocation. Let 𝑥𝑖𝑗 denote the amount of resource
𝑗 allocated to user 𝑖 in a real allocation. Fairness variance
can be calculated mathematically as follows, and 𝛼 ∈ 𝑅 is a
parameter:

V (𝐴) = (∑
𝑖

∑

𝑗

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥𝑖𝑗

𝐶𝑗
− 𝜆 ⋅ 𝑑𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

𝛼−1

)

1/𝛼

. (5)

4.2. Resource Utilization. We next turn our attention to the
resource utilization problem. During the running time, the
resources of physical severs may not be fully used. Consider
the example in Figure 2, once the Physical Server 1 creates

6 Mathematical Problems in Engineering

one type-󳨀⇀𝑟1 VM and two type-󳨀⇀𝑟2 VMs, 2G memory will
be left over as a resource fragment. Given the set of VMs
alongwith their resource configurations, how to find themost
efficient way to pack these VMs on the physical servers so
as to minimize the spatial wastage of resources is considered
here.

In multiresource environment, to improve the resource
utilization, resource consumption on each resource dimen-
sion should be concerned. To address this challenge, our
approach improves the resource utilization rate of physical
servers based on two considerations. Firstly, the max-min
approach, which means we should maximize the minimum
consumption among the multiple resources of each physical
server, is applied here. Secondly, the utilization of a physical
server can be optimized by minimizing the uneven con-
sumption in the face of multidimensional resources, since
most of the resource fragments are caused by the unequal
multiresource requirements [24].

As said earlier, it is critical to consider the bottle-
neck resources consumption among the multiple types of

resources. Let us denote the vector 󳨀⇀Π
(𝑚)

𝑖 = (𝜋
(𝑚)
1 , 𝜋
(𝑚)
2 , . . . ,

𝜋
(𝑚)

𝑗
, . . . , 𝜋

(𝑚)

𝑘
) to represent the initial resource space of a

physical server when no VM is created on it. Then the
minimum resource utilization function of physical server 𝑚
can be expressed as

𝑢
(𝑚)

min = min𝑗 {𝑢
(𝑚)

𝑗 } = min𝑗
{

{

{

1 −
𝐶
(𝑚)

𝑗
− ∑𝑖 𝑥

(𝑚)

𝑖𝑗

𝜋
(𝑚)

𝑗

}

}

}

. (6)

𝑥
(𝑚)

𝑖𝑗
is the amount of resource 𝑗 allocated to user 𝑖 on

physical server𝑚.
More formally, skewness is introduced to quantify the

unevenness for the utilization of different resources. The
reduction of skewness can be positive to combine multiple
types of resources better and improve the utilization:

ske (𝑚) = √
𝑘

∑

𝑗=1

(
𝑢
(𝑚)

𝑗

𝑢(𝑚)
− 1)

2

, (7)

where 𝑢𝑚𝑗 is the utilization of resource 𝑗 and 𝑢𝑚 is the average
utilization of all resources for physical server𝑚.

In order to achieve a high utilization of computing
resources, the cloud provider tries to coplace VMs on avail-
able machines such that the resource requirements on one
server are complementary to each other. This VM placement
problem can be reduced to a multidimensional bin packing
problem. Several heuristic algorithms such as Best-Fit, First-
Fit, or Random-Fit are typically used to address it. In our
work, a precombination approach introduced in Section 4.3
is proposed to optimal the virtual placement problem.

4.3. The Fairness-Utilization Tradeoff Game Algorithm. In
this section, a game theory approach to resource allocation
is presented, aiming at keeping a fair allocation as well as
reducing the amount of resource fragments.The gamemodel

for resource allocation problem is described first, followed by
the proposal of the FUGA algorithm.

(1) Resource Allocation Game.Game theory is a mathematical
study of strategy which attempts to determine the interac-
tions among all game players to ensure the best outcomes
for themselves [25–28]. A game consists of three factors, that
is, a set of players, all the possible strategies each player will
choose, and the specified utilities of players associated with
the strategy performed by every player. At each step, players
choose one of their strategies and get a utility in return. Each
player of a game tries to maximize its own utility by choosing
the most profitable strategy against other players’ choices.
Nash equilibrium is a central notion of game theory which
means in this situation no player can get more utilities by
changing its strategy.

A specification of a game is an extensive game which
provides the sequencing of all players’ possible strategies and
their decision points. A finite extensive game with perfect
information has a finite set of players, and each player knows
the information of other players’ strategies and all possible
utilities. A subgame perfect Nash equilibrium (SPNE) is
a solution such that players’ strategies constitute a Nash
equilibrium in every subgame of an original game.

In our work, the resource allocation problem is modeled
as a finite extensive game with perfect information. Physical
servers with idle resources are modeled as the selfish players
and each player has a limited number of possible allocation
matrices.

The following symbols are introduced to define the
resource allocation game.

Definition 6. A resource allocation game is represented as a
four-tuple vector 𝐺 = (𝑃, 𝑅, 𝐴, 𝑈).

(i) 𝑃 is the players in the allocation game.
(ii) 𝑅 refers to the resource requirement matrix of users.
(iii) 𝐴 are the sets of players’ strategies.
(iv) 𝑈 is the utility function of game players.

At decision moment, CC gets the resources consumption
information of each physical server in data center fromCEM.
𝑃 is represented for the set of physical servers with idle
resources and each server is associated with a capacity vector.
All the users’ requests for cloud resources CC receives during
last time-slot are analyzed and transformed to the resource
requirement matrix 𝑅.

For a physical server, there are a variety of possible
combinations to be fulfilled by different types of VMswithout
exceeding the capacity. A combination of physical server
𝑚 can be denoted as a com𝑥(𝑚) = ⟨𝑐𝑥1, 𝑐𝑥2, . . . , 𝑐𝑥𝑠⟩. For
instance, the cloud users ask for three VM types 󳨀⇀𝑟1 ,

󳨀⇀
𝑟2 , and

󳨀⇀
𝑟3 corresponding to vectors (2, 4, 20), (1, 1, 10), and (2, 2, 10)
in Figure 2, and physical sever 1 has (4, 8, 40) capacity of spare
resources. ⟨1, 1, 0⟩ means one VM of type 󳨀⇀𝑟1 and one VM of
type 󳨀⇀𝑟2 can be created on physical server𝑚.

In this resource allocation game, the physical servers
with idle resources are game players, and they are individual

Mathematical Problems in Engineering 7

rationality to maximize their own utilities. Based on the
discussions in previous, the design of the utility function
has a crucial impact on players’ choices and the result of
the game. In our allocation model, one global objective
of this allocation game is to share resources impartiality.
Furthermore, based on the efficient principle each individual
player tries to minimize their resource wastage, that is, they
prefer to choose those combinations with high utilization. To
exploit fair resource sharing and also take the maximization
of resource utilization rate into account, a fairness-utilization
tradeoff utility function is designed as follows:

𝑈
(𝑚)
(𝐴) = sgn (1 − 𝛼) ⋅ V (𝐴) − ske (𝑚) . (8)

𝛼 is a coefficient to affect the weights of fairness and
utilization. V(𝐴) is the fairness variance (defined in formula
(5)) and ske(𝑚) is the skewness which reflects the unevenness
for the utilization of different resources (defined in formula
(7)). The less fairness variance an allocation decision 𝐴 gets,
the more utilities players gain. Similarly, each physical server
prefers to choose the combination with less skewness to
optimal its own utility.

Each player of this game aims to choose a strategy to
maximize its own utility so that the goal of a resource allo-
cation game would be naturally considered as the following
optimization problem:

Maximize 𝑈
(𝑚)
(𝐴)

Subject to ∑

𝑖

∑
𝑚

𝑎
(𝑚)

𝑖𝑗 ≤ 𝐶𝑗

𝑎
(𝑚)

𝑖𝑗 ≥ 0.

(9)

𝐴
∗

= {𝐴
(1)∗

, 𝐴
(2)∗

, . . . , 𝐴
(𝑚)∗

, . . . 𝐴
(𝑝)∗

} is the Nash
equilibriumof a resource allocation gamewhichmeans for all
𝑚, 𝑈(𝐴1, 𝐴2, . . . , 𝐴𝑚

∗

, . . . , 𝐴
𝑝
) > 𝑈(𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑚
󸀠

, . . . , 𝐴
𝑝
).

(2) The FUGA Algorithm and Its Properties. The FUGA
algorithm is presented to result in an optimal allocation
decision for this resource allocation game.

Step 1. Firstly, to achieve a high level resource utilization rate
by reducing the resource fragments generated in the virtual
machine placement process, a precombination approach is
proposed to provide a set of possible strategies for each game
player. A precombination phase is defined in this approach to
compute any possible coordinate placement combinations for
each physical server. For example, to place these three types
of VMs together on the Physical Server 1 in Figure 2 without
exceeding the capacity, all the possible combinations are
⟨2, 0, 0⟩, ⟨1, 2, 0⟩, ⟨1, 1, 0⟩, ⟨1, 0, 1⟩, ⟨0, 2, 1⟩, ⟨0, 1, 1⟩, ⟨0, 4, 0⟩,
⟨0, 3, 0⟩, ⟨0, 2, 0⟩, ⟨0, 1, 0⟩, ⟨0, 0, 2⟩, and ⟨0, 0, 1⟩.

Step 2. To facilitate efficient selection of resource allocation,
the minimum resource utilization of each combination is
calculated by making use of formula (6). Some of the
combinations may result in efficient resource consumption
across all physical resources, while many others will leave
much wasted space. For each physical server, we rank the

combinations by their minimum resource utilization (the
maximum resource consumption threshold of a physical
node is also predefined to reject those overload combina-
tions). The minimum resource utilization of a combination
is

𝑢
(𝑚)

min (com𝑥 (𝑚)) = min𝑗
{

{

{

1 −
𝐶
(𝑚)

𝑗
− ∑𝑖 (𝑐𝑥𝑖 ⋅ 𝑟𝑖𝑗)

𝜋
(𝑚)

𝑗

}

}

}

.

(10)

We describe the ranked combinations mathematically as
an order 𝑂(𝑚) for physical server 𝑚. For 𝑥, 𝑦 ∈ 𝑁, for all
com𝑥(𝑚), com𝑦(𝑚) ∈ 𝑂

(𝑚), if 𝑥 < 𝑦, 𝑢(𝑚)min(com𝑥(𝑚)) ≥

𝑢
(𝑚)
min(com𝑦(𝑚)). For the two combinations with equal value

ofminimum resource utilization, the order between them can
be ranked randomly.

Since each physical server with sufficient idle space has
a set of possible combinations calculated in advance and
ordered by resource utilization, only the top of 𝜂 combi-
nations is chosen as the game strategy set of this player.
Considering the performance of computing, the value of 𝜂
will decrease along of the number of game players increasing.
Then the utilization of 𝜂th combination in order 𝑂(𝑚) is
denoted as

min (𝑂(𝑚)) = mincom {𝑢
(𝑚)

min (com (𝑚))} = 𝑢
(𝑚)

min (com𝜂 (𝑚)) .
(11)

If 𝜂 is set to be 3 for the example of Figure 2 and the
initial resources space of the Physical Server 1 is (6, 16, 100),
then the 𝑂(1) is {⟨2, 0, 0⟩, ⟨1, 2, 0⟩, ⟨1, 0, 1⟩}. Similarly, the
𝑂
(2) is {⟨1, 2, 0⟩, ⟨1, 0, 1⟩, ⟨0, 0, 2⟩}, where the initial resources

space of the Physical Server 2 is (8, 20, 120). Moreover,
the minimum resource utilizations of the two servers are
min(𝑂(1)) = 0.875, min(𝑂(2)) = 0.75.

Step 3. Each game player has a set of possible combinations
to choose now. Once all players picked up one of their
combinations, the allocation matrix 𝐴(𝑚) could be rewritten
as

𝐴
(𝑚)

= com(𝑚)𝑇 ⋅ 𝑅 = (𝑐(𝑚)𝑖 ⋅ 𝑟𝑖𝑗)𝑠×𝑘
. (12)

For an allocation 𝐴, we add up the amount of resources
for each user𝑗 and denote the total as

𝜑 = ∑
𝑚

𝐴
(𝑚)

= ((∑
𝑚

𝑐
(𝑚)

𝑖) ⋅ 𝑟𝑖𝑗)

𝑠×𝑘

. (13)

Therefore, to determine the optimal resource allocation
decision, the utility function that derives from the fairness

8 Mathematical Problems in Engineering

Player 2

Player 1 Player 1
a c

d

f

d d

b

ff

e

(−1.64 −1.52)

e e

(−1.39 −1.45)

(−1.14 −1.25)

(−1.81 −1.56)

(−1.27 −1.2)

(−1.57 −1.57)

(−1.45 −1.32)

(−0.97 −1.02)

(−1.48 −1.58)

, ,

,

,

, ,

,,,

Figure 3: The extension-form game tree.

variance function and skewness in formula (8) can be
transformed to

𝑈
(𝑚)
(𝐴) = sgn (1 − 𝛼) ⋅ V (𝐴) − ske (𝑚)

= sgn (1 − 𝛼)(∑
𝑖

∑

𝑗

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑𝑖𝑗

𝐶𝑗
− 𝜆 ⋅ 𝑑𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

𝛼−1

)

1/𝛼

− √
𝑘

∑

𝑗=1

(
𝑢
(𝑚)

𝑗

𝑢(𝑚)
− 1)

2

(𝛼 > 1) .

(14)

Supposing the Physical Server 1 and Physical Server 2
both choose their second combination, then

𝜑 = ((1, 2, 0)
𝑇
+ (1, 0, 1)

𝑇
) ⋅ 𝑅 = (

4 8 40

2 2 20

2 2 10

) . (15)

Assuming that 𝛼 = 2, we calculate the utility of each
physical server and get results 𝑈(1) = −1.2, 𝑈(2) = −1.27.

The resource allocation game is modeled as the inter-
action of physical servers to make choices with perfect
information. Each extensive game can be represented as an
extension-form game tree. Physical servers take actions in
the ascending order of min(𝑂(𝑚)) and a game tree for this
extensive game is completed based on the utility function. In
the case we considered in Figure 2, the Physical Server 1 and
Physical Server 2 are two game players. Physical server 1 has
three strategies ⟨2, 0, 0⟩, ⟨1, 2, 0⟩, and ⟨1, 0, 1⟩ represented as
𝑑, 𝑒, and 𝑓, while the Physical Server 2 has three strategies
⟨1, 2, 0⟩, ⟨1, 0, 1⟩, and ⟨0, 0, 2⟩ represented as 𝑎, 𝑏, and 𝑐. The
Physical Server 2 takes action first, followed by the Physical
Server 1, based on the ascending order of min(𝑂(𝑚)). The
value pairs indicate the utilities of the Physical Server 2 and

Physical Server 1 corresponding to the strategy each one
choose. Figure 3 shows the extension-form game tree.

Step 4. Backward induction is a quite straightforward solu-
tion to find an SPNE for these extensive-form games with
perfect information [29]. It is a recursive mathematical
construction for players to take rational behavior in a finite
extensive game with perfect information [30, 31].

In Figure 3, let us start from the bottom of the extensive-
form game tree. Consider the subgame of player 1; suppose
player 2 chooses the strategy 𝑎; the strategy 𝑓 is better than
others for player 1 to get a higher utility. Analogously, player
1 will choose strategy 𝑒 when player 2 chooses the strategy 𝑏
or strategy 𝑐. Player 1 knows this, so it will choose strategy 𝑐
to maximize its own utility. 𝑇 is procedure which produces a
SPNE is called backward induction. Thus, we get the SPNE
strategy (𝑐, 𝑒) which means player 2 will choose its third
combination and player 1 picks up its second one.

The pseudocode implementation of FUGA is given in
Algorithm 1. The backward induction approach is used to
carry out the optimal placement of the VMs considering a
tradeoff between the fairness and utilization. This algorithm
starts from last two servers, getting the Nash equilibrium
for the subgame. Following the descending order of this
game tree, in each turn we take a new physical server into
considering and recalculate the utilities of the new subgame.
According to this, for each considered physical server, the
most suitable combination ofVMswith the highest utilitywill
be placed on it.

Theorem 7. FUGA has at least one pure strategy Nash
equilibrium.

Proof. According to the Zermelo’s theorem, a finite gamewith
perfect information has a pure strategyNash equilibrium, and
for a finite extensive game with perfect information, there

Mathematical Problems in Engineering 9

Input: {󳨀⇀𝐶
(𝑚)

}, 𝑅

Output: A∗
(1) Initialization: combinLists, selectedServerList, 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 [𝑝 + 1]
(2) Step 1.: Pre-combination Phase
(3) // Each physical server with idle resources is a game player
(4) 𝑃 ← {1, . . . , 𝑚, . . . , 𝑝}

(5) for each physical server𝑚 do
(6) List any possible coordinate placement combinations of this server to be fulfilled by different

types of VMs without exceeding the capacity in the 𝑐𝑜𝑚𝑏𝑖𝑛𝐿𝑖𝑠𝑡𝑚
(7) combinLists.add(𝑐𝑜𝑚𝑏𝑖𝑛𝐿𝑖𝑠𝑡𝑚)
(8) end for
(9) Step 2.: Strategies Set for Each Player
(10) for each physical server𝑚 do
(11) Pick up top 𝜂 of combinations 𝑂(𝑚) = {com1, com2, . . . , com𝜂} and calculate min(𝑂(𝑚))
(12) // each 𝑐𝑜𝑚𝑥(𝑚) can be represented as an allocation matrix 𝐴(𝑚)𝑥
(13) end for
(14) Step 3.: Generate the Extension-form Game Tree
(15) The orginal array [min (𝑂(1)) , . . . ,min (𝑂(𝑝))] is rearranged in a non-decreasing order with

indices [𝑖1, . . . , 𝑖𝑝] such that min(𝑂(𝑖1)) ≤ ⋅ ⋅ ⋅ ≤ min(𝑂(𝑖𝑝))
(16) The game players take action as the order of [𝑖1, . . . , 𝑖𝑝]
(17) Step 4.: Find the SPNE for a game G
(18) for each strategy 𝐴(𝑖𝑝−1)𝑥 , 𝐴

(𝑖
𝑝
)

𝑦 of physical server 𝑖𝑝−1, 𝑖𝑝 do
(19) Calculate the utility pair (𝑈(𝑖𝑝−1) [𝑥] [𝑦] , 𝑈(𝑖𝑝) [𝑥] [𝑦])
(20) end for
(21) max[𝑥] ← argmax𝑦𝑈

(𝑖
𝑝
)
[𝑥] [𝑦]

(22) 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 [𝑖𝑝−1] ← argMax𝑥𝑈
(𝑖
𝑝−1
)
[𝑥] [max [𝑥]]

(23) 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 [𝑖𝑝−1] ← argMax𝑥 (max [𝑥])
(24) Add 𝑖𝑝−1, 𝑖𝑝 to the selectedServerList
(25) for each physical serverm from 𝑖𝑝−1 to 1 do
(26) Add up the total amount of resources 𝜑 for physical servers in selectedServerList
(27) for each strategy 𝐴(𝑚)𝑥 of physical serverm do
(28) Calculate the ske(𝑚) if 𝐴(𝑚)𝑥 is chosen
(29) Add up the total allocated resource 𝜑 = 𝐴𝑚 + 𝜑
(30) Calculate the V (𝐴)
(31) utilityCalculation(ske (𝑚) , V (𝐴))
(32) end for
(33) 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛[𝑚] ← argMax𝑥 (𝑈

(𝑚)
[𝑥])

(34) Add serverm to selectedServerList
(35) end for
(36) The best strategy of each playerm in 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 [𝑚] can be represented as an allocation

matrix 𝐴(𝑚), and 𝐴∗ = {𝐴(1), . . . , 𝐴(𝑚), . . . , 𝐴(𝑝)}

Algorithm 1: The FUGA algorithm.

always exists an SPNE. If no player has the same utilities at
any two terminal nodes of subgames, then a unique SPNE can
be derived from backward induction.

Now we prove that FUGA satisfies the three required
properties for fair allocation described in the previous sec-
tion.

Theorem 8. FUGA is sharing incentive.

Proof. An allocation algorithm satisfies sharing incentives if
𝑈𝑖(𝐴
(𝑚)∗

) ≥ 𝑈𝑖(⟨𝐶
(𝑚)
1 /𝑠, 𝐶

(𝑚)
2 /𝑠, . . . , 𝐶

(𝑚)

𝑘
/𝑠⟩) for all 𝑖. Taking

the game theory perspective, a Nash equilibrium allocation
𝐴
∗ maximizes the utility of each game player 𝑚. In other

words, the utility of Nash equilibrium strategy is better than
any other strategies; that is, 𝑈(𝑚)(𝐴(𝑚)

∗
) ≥ 𝑈

(𝑚)
(𝐴
(𝑚)
). For

each independent user 𝑖, once the optimal strategy of each
player is found out, the utility function𝑈𝑖(𝐴

∗
) can be derived

as the sumof utilities for those physical servers which provide
resources for user 𝑖.

Thus, 𝑈𝑖(𝐴
∗
) ≥ 𝑈𝑖(𝐴), ⟨𝐶

(𝑚)
1 /𝑠, 𝐶

(𝑚)
2 /𝑠, . . . , 𝐶

(𝑚)

𝑘
/𝑠⟩ ∈ 𝐴

so that 𝑈𝑖(𝐴
∗
) ≥ 𝑈𝑖(⟨𝐶

(𝑚)
1 /𝑠, 𝐶

(𝑚)
2 /𝑠, . . . , 𝐶

(𝑚)

𝑘
/𝑠⟩).

Theorem 9. FUGA satisfies envy-freeness property.

10 Mathematical Problems in Engineering

Proof. An allocation algorithm is envy free if 𝑈𝑖(𝐴
∗

𝑖

) ≥

𝑈𝑖(𝐴 𝑖󸀠) for all 𝑖, where 𝑖 and 𝑖
󸀠 are different users. For a strategy

profile, its Nash equilibrium means that no player wants to
deviate to another strategy. As proven above,𝑈𝑖(𝐴

∗
) ≥ 𝑈𝑖(𝐴).

Therefore, the envy-freeness property is satisfied.

Theorem 10. FUGA is Pareto efficient.

Proof. Assume user 𝑖 can increase its resource share without
decreasing profits of anyone else. When 𝛼 > 1, higher utility
represents that the optimal allocation is much closer to the
resource demands of user. If we add some resource for user 𝑖
on physical server 𝑚, it is clear that the new allocation has a
larger fairness variance. Obviously, the utility of game player
𝑚 decreased, such that the utility of other user who share the
resources onphysical server𝑚will also decrease.Thus,FUGA
satisfies the Pareto efficient property.

5. Performance Evaluation and Comparison

This section presents a comprehensive evaluation of the
resource allocation algorithm proposed in the previous sec-
tion. The evaluation of fairness is done through a prototype
implementation of our FUGA algorithm running on an 8-
node cluster first. And then the conduct of Google Trace-
driven simulations shows that FUGA is efficient in improving
the resource utilization by contrast with the First-Fit Algo-
rithm and the management mechanism of Google cluster.

5.1. Experimental Environment. The experiments to evaluate
the performance of fair allocation were done on a small
scale cluster with 8 physical nodes which consist of a Dell
PowerEdge R910 with two CPUs (Xeon E7-4820 2GHz
8cores), 32GB memory, and 300GB disk storage, three Dell
Optiplex9010 with one CPU (i7-3770 3.40GHz 4cores), 8 GB
memory, and 500GB disk storage, and four Dell Optiplex745
with two CPUs (6600 2.4GHz 2cores), 4GB memory, and
200GB disk storage. Three kinds of resource considered in
this experiment include CPU, memory, and disk storage.
The simulations were run on a Dell Optiplex9010 with JDK
1.7. To reduce the complexity of simulations, the following
assumptions are made: (1) two kinds of resources (i.e., CPU
andmemory) are considered in our simulations. (2) Each job
request submitted by a user indicates the predictedmaximum
consumption of different resources and will be handled by a
cluster of VMs with the same type. (3) The total amount of
resources provided for each time slot is previously estimated
by cloud provider.

Table 1 shows the five types of VMs with the configura-
tions of different resources considered in our evaluation and
the operating systems are Ubuntu-12.04.

5.2. FUGA versus Hadoop Fair Scheduler. This group of
experiments aims to show how FUGA dynamically shares
resources more close to users’ requirements in contrast to the
Hadoop fair scheduler.

Hadoop is one of the most popular frameworks for
storage and large scale data processing.Hadoop fair scheduler

Table 1: The VM types.

VM type Resource
CPU core Memory Disk

Tiny 1 1024MB 5GB
Small 1 3072MB 15GB
Medium 2 6144MB 30GB
Large 4 12288MB 60GB
X large 8 24576MB 60GB

groups jobs into different pools and each pool chooses its jobs
based on FIFO or fair sharing [11].The fair sharing algorithm
of Hadoop fair scheduler can be described as follows. When
a job arrives, it will be assigned to the pool which has the
fewest running jobs to keep an equal number of jobs for all
pools.Hadoop framework partitions the resources of physical
servers into a number of computation units named slot. The
slots which consist of fixed amount of different resources can
be treated as single resource type. The assignment of slots is
also based on the fair sharing principle so that to get an equal
share of resources among jobs.

Three services belonging to three users were deployed
on a cluster of VMs created on this 8-node cluster. Each
service can be divided into a series of MapReduce jobs and
has different resource requirements in different phases. The
8-node cluster is initially empty with full capacities. FUGA
analyzes the requirements in time and provides optimal
resource allocation decisions to create a VM cluster at each
decision moment. As a comparison, these three services
were also deployed on the Hadoop cluster running on the
initialized 8-node. Figures 4(a), 4(b), and 4(c) show the CPU,
memory, and disk requirements of each service during a ten-
minute interval. The number of combinations each player
choose is set to 5 and 𝛼 = 2. Each experiment ran for ten
times.

Figure 5 shows the dominant share for Hadoop scheduler
and FUGA. As Figure 5(a) shows, FUGA average performs
only 13% deviation to equalize the dominant share of three
users and can achieve as much as 41% better than what
Hadoop scheduler showed in Figure 5(b). It also shows that
FUGA satisfies the properties of sharing incentive, envy-
freeness, and Pareto efficient.

In contrast to Hadoop fair scheduler, FUGA is aware of
the heterogeneity requirements for multiresource environ-
ment and significantly more approach to the demands of
users on each resource dimension.

5.3. FUGA versus First Fit Algorithm. This section high-
lights the performance of FUGA on improving the resource
utilization rate by analyzing the proportions of allocated
resources. The higher proportion an allocation achieves, the
less resource are waste. Simulations were conducted using
the Google workload trace as the input. This trace collects
the data (job workloads, server capacities, execution time,
resource utilization, etc.) of Google cluster from about 12,500
machines over the 29 day period.

As 𝛼 increases, the percent of fairness from FUGA drops.
Thus, we set 𝛼 = 5 to make the impact of fairness variance

Mathematical Problems in Engineering 11

0

1

2

3

4

5

6

0 100 200 300 400 500 600

CP
U

t (s)

User 1
User 2
User 3

(a) Requirements for CPU

0

3

6

9

12

15

×103

M
em

or
y

(M
B)

0 100 200 300 400 500 600

t (s)

User 1
User 2
User 3

(b) Requirements for memory

0

10

20

30

40

50

60

D
isk

 (G
B)

0 100 200 300 400 500 600

t (s)

User 1
User 2
User 3

(c) Requirements for disk storage

Figure 4: Resource consumption for the three services.

and care more about resource efficiency less. The first fit
algorithmwidely used for VM placement problem in cloud is
implemented as a benchmark in our simulation framework.
The scale of heterogeneous physical servers is varied from
50 to 700 to observe the proportions of allocated resources
for the first fit algorithm [32, 33] and FUGA. By observing
Figure 6, for the first fit algorithm, the proportions of CPU,
and memory change unregularly as the increasing trend of
physical servers. However, FUGA keeps the proportion of
allocated CPU fixed to a value of approximately 0.7 where the
amount of physical servers reaches 450 and can even allocate
10% more CPU than what the first fit algorithm showed
in Figure 6(a). Analogously, the proportion of allocated
memory is fixed to about 0.6 where the amount of physical
servers reaches 500 shown in Figure 6(b).

As to the large scale environment, it is clear that the
less resource fragments produced during the allocation, the
higher resource utilization rate we get. Since FUGA can

achieve a better performance for proportions of allocated
resources if the physical servers scale up to a large number
so that to bring a higher utilization rate than the first fit
algorithm.

Overall, the results in Figure 6 show that in large
scale environment FUGA successfully achieve more efficient
resource allocation in contrast to the first fit algorithms.
FUGA enables efficient resource utilization of physical
resources by considering the differences of requirements
among individual resource dimensions and reducing the
wastage of resource.

5.4. FUGA versus Google Cluster. To study the performance
of efficient allocation by evaluating the resource utilization
rate, the total number of physical servers is fixed to 300 in this
group of Google trace-driven simulations.The parameter 𝜂 is
set to be 10 and 𝛼 is 2.

12 Mathematical Problems in Engineering

0 100 200 300 400 500 600

t (s)

0

0.2

0.4

0.6

0.8

1

𝜆

User 1
User 2
User 3

(a) The dominant share for Hadoop scheduler

0 100 200 300 400 500 600

t (s)

0

0.2

0.4

0.6

0.8

1

𝜆

User 1
User 2
User 3

(b) The dominant share for FUGA

Figure 5: Dominant share for Hadoop scheduler and FUGA.

50 150 250 350 450 550 650
0

0.2

0.4

0.6

0.8

1

FUGA
First fit

p

(a) Allocated CPU proportions

50 150 250 350 450 550 650
0

0.2

0.4

0.6

0.8

1

FUGA
First fit

p

(b) Allocated memory proportions

Figure 6: Allocated resource proportions for first fit and FUGA.

The Google trace provides the information of users’
requirements and the actual allocated resources of running
tasks in Google cluster [34]. To collect the utilization for CPU
and memory, each simulation was divided into every day
periods and ran for ten times to take the average value.

Figure 7 shows the utilization simulated in our frame-
work over the 29-day period. In Figure 7(a), overall allocated
CPU does not exceed about 75% of the resource capacity.
However, FUGA shows that the CPU utilization is over
75% at more than half of the time and sometimes exceeds
85%. Total memory requirements shown in Figure 7(b) are
almost account for 50%, and the actual allocated memory
in our algorithm is about 10% more than in Google cluster
for average, although sometimes it is lower than in Google
cluster.

In contrast to the utilization of Google cluster, our algo-
rithm provides more efficient resource allocation decisions.

It is not only because FUGA leads to less resource fragments
during the allocation as discussed in last section. FUGA
also tries to minimize the uneven utilizations for multiple
resource dimensions while making the decision on resource
allocation.

6. Conclusion

In this paper, we have investigated the resource allocation
problem in cloud computing. We consider multiple types of
resources like CPU, memory, and storage on virtual machine
level to propose an allocation algorithm called FUGA. The
algorithm supports not only fair resource allocation for
users, but also efficient resource utilization for each physical
server. The resource allocation problem is modeled as a
finite extensive gamewith perfect information and the FUGA
algorithm results in a Nash equilibrium decision.

Mathematical Problems in Engineering 13

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0

0.5

1

t (day)

U
til

iz
at

io
n

Allocated in Google
Allocated in our work
Request

(a) CPU utilization

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

t (day)

0

0.5

1

U
til

iz
at

io
n

Allocated in Google
Allocated in our work
Request

(b) Memory utilization

Figure 7: Resource utilization in Google and FUGA.

Some experiments and simulations are conducted to
evaluate the performance of FUGA by comparing to other
related works. The results show that the proposed FUGA can
achieve better performance in fair allocation than Hadoop
scheduler. FUGA can also guarantee more efficient resource
allocation rather than the first fit algorithm and the allocation
mechanism in Google cluster by setting the proper parame-
ters for the fairness and utilization tradeoff.

Future work could usefully study the fairness-utilization
tradeoff when jobs have machine preferences. Another direc-
tion involves considering the allocation problem under the
job priority situation. Moreover, we plan to investigate how
to use this game theoretic resource allocation into a federated
environment with multiple resource providers.

Notations

{𝑖 | 1, 2, ..., 𝑠}: Cloud users
{𝑗 | 1, 2, ..., 𝑘}: Different kinds of computing resources

(CPU, memory, storage, etc.)
{𝑚 | 1, 2, ..., 𝑝}: Physical servers with idle resources
𝐶
(𝑚): Resource capacity vector of physical server

𝑚
󳨀⇀
𝑟𝑖 : The VM type required by user 𝑖
com: Possible VM combinations of a physical

server
𝑅: Resource requirement matrix of all users
𝑎
(𝑚)

𝑖𝑗
: The amount of resource 𝑗 on physical

server𝑚 allocated to user 𝑖
𝜑𝑖𝑗: Total amount of resource 𝑗 allocated to

user 𝑖
𝐴: Resource allocation decision
V: Fairness variance for an allocation

decision
𝜂: The number of possible strategies for each

player
ske: Unevenness for the utilization of resources

Π: The initial resource space of a physical
server

𝑢
(𝑚): Resource utilization for physical server𝑚
𝑈: The utility function of resource allocation

game.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partially supported by the NSF of China
under Grants no. 61173048 and no. 61300041 and Specialized
Research Fund for the Doctoral Program of Higher Educa-
tion of China under Grant no. 20130074110015.

References

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: vision, hype,
and reality for delivering computing as the 5th utility,” Future
Generation Computer Systems, vol. 25, no. 6, pp. 599–616, 2009.

[2] S. Son, G. Jung, and S. C. Jun, “An SLA-based cloud computing
that facilitates resource allocation in the distributed data centers
of a cloud provider,” Journal of Supercomputing, vol. 64, no. 2,
pp. 606–637, 2013.

[3] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica, “Dominant resource fairness: fair allocation of
multiple resource types,” in Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation,
p. 24, Boston, Mass, USA, 2011.

[4] S. Caton and O. Rana, “Towards autonomic management for
cloud services based upon volunteered resources,” Concurrency
and Computation: Practice & Experience, vol. 24, no. 9, pp. 992–
1014, 2012.

14 Mathematical Problems in Engineering

[5] J. Espadas, A. Molina, G. Jiménez, M. Molina, R. Ramı́rez, and
D. Concha, “A tenant-based resource allocation model for scal-
ing Software-as-a-Service applications over cloud computing
infrastructures,” Future Generation Computer Systems, vol. 29,
no. 1, pp. 273–286, 2013.

[6] J. O.Gutierrez-Garcia andK.M. Sim, “GA-based cloud resource
estimation for agent-based execution of bag-of-tasks applica-
tions,” Information Systems Frontiers, vol. 14, no. 4, pp. 925–951,
2012.

[7] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning
modeling for virtualized multi-tier applications in cloud data
center,” in Proceedings of the 3rd IEEE International Conference
on Cloud Computing (CLOUD ’10), pp. 370–377, July 2010.

[8] D. C. Vanderster, N. J. Dimopoulos, R. Parra-Hernandez, and
R. J. Sobie, “Resource allocation on computational grids using
a utility model and the knapsack problem,” Future Generation
Computer Systems, vol. 25, no. 1, pp. 35–50, 2009.

[9] D. Ye and J. Chen, “Non-cooperative games on multidimen-
sional resource allocation,” Future Generation Computer Sys-
tems, vol. 29, no. 6, pp. 1345–1352, 2013.

[10] M. Hassan, B. Song, and E. N. Huh, “Game-based distributed
resource allocation in horizontal dynamic cloud federation plat-
form,” in Algorithms and Architectures for Parallel Processing, Y.
Xiang, A. Cuzzocrea, M. Hobbs, andW. Zhou, Eds., vol. 7016 of
Lecture Notes in Computer Science, pp. 194–205, Springer, 2011.

[11] “Scheduling in Hadoop,” 2012, http://www.cloudera.com/blog/
tag/scheduling.

[12] C. A. Waldspurger, Lottery and Stride Scheduling: Flexible
Proportional-Share Resource Management, Massachusetts Insti-
tute of Technology, 1995.

[13] T. Lan, D. Kao, M. Chiang, and A. Sabharwal, “An axiomatic
theory of fairness in network resource allocation,” in Proceed-
ings of the Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE INFOCOM ’10), pp. 1–9,March
2010.

[14] D. C. Parkes, A. D. Procaccia, and N. Shah, “Beyond dominant
resource fairness: extensions, limitations, and indivisibilities,”
in Proceedings of the 13th ACM Conference on Electronic Com-
merce, pp. 808–825, Valencia, Spain, 2012.

[15] X. Wang, X. Liu, L. Fan, and X. Jia, “A decentralized virtual
machine migration approach of data centers for cloud comput-
ing,”Mathematical Problems in Engineering, vol. 2013, Article ID
878542, 10 pages, 2013.

[16] D. C. Erdil, “Autonomic cloud resource sharing for intercloud
federations,” Future Generation Computer Systems, vol. 29, no.
7, pp. 1700–1708, 2013.

[17] M. Steinder, I. Whalley, D. Carrera, I. Gaweda, and D. Chess,
“Server virtualization in autonomic management of heteroge-
neous workloads,” in Proceedings of the 10th IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM ’07),
pp. 139–148, May 2007.

[18] S. Di and C. L. Wang, “Dynamic optimization of multiattribute
resource allocation in self-organizing clouds,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 24, no. 3, pp. 464–
478, 2013.

[19] M. Cardosa, A. Singh, H. Pucha, and A. Chandra, “Exploiting
spatio-temporal tradeoffs for energy-aware MapReduce in the
cloud,” IEEETransactions onComputers, vol. 61, no. 12, pp. 1737–
1751, 2012.

[20] P. Jord, C. Castillo, D. Carrera, Y. Becerra, I. Whalley et al.,
“Resource-aware adaptive scheduling for mapreduce clusters,”

in Proceedings of the 12th ACM/IFIP/USENIX International
Conference on Middleware, pp. 187–207, Lisbon, Portugal, 2011.

[21] T. Sandholm and K. Lai, “MapReduce optimization using
regulated dynamic prioritization,” in Proceedings of the 11th
International Joint Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’09), pp. 299–310, Seattle,
Wash, USA, June 2009.

[22] M. Zukerman, L. Tan, H. Wang, and I. Ouveysi, “Efficiency-
fairness tradeoff in telecommunications networks,” IEEE Com-
munications Letters, vol. 9, no. 7, pp. 643–645, 2005.

[23] C. Joe-Wong, S. Sen, L. Tian, and C. Mung, “Multi-resource
allocation: fairness-efficiency tradeoffs in a unifying frame-
work,” in Proceedings of the Annual Joint Conference of the IEEE
Computer and Communications Societies (IEEE INFOCOM ’12),
pp. 1206–1214, 2012.

[24] Z. Xiao, W. J. Song, and Q. Chen, “Dynamic resource allocation
using virtual machines for cloud computing environment,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24,
no. 6, pp. 1107–1117, 2013.

[25] N. Nisan, Algorithmic Game Theory, Cambridge University
Press, 2007.

[26] M. J. Osborne, An Introduction to Game Theory, vol. 3, Oxford
University Press, New York, NY, USA, 2004.

[27] Y. Shoham, “Computer science and game theory,” Communica-
tions of the ACM, vol. 51, no. 8, pp. 75–79, 2008.

[28] L. Guijarro, V. Pla, J. R. Vidal, and J. Martinez-Bauset, “Entry,
competition, and regulation in cognitive radio scenarios: a sim-
ple game theorymodel,”Mathematical Problems in Engineering,
vol. 2012, Article ID 620972, 13 pages, 2012.

[29] A. Iqbal and A. H. Toor, “Quantum mechanics gives stability
to a Nash equilibrium,” Physical Review A, vol. 65, Article ID
022306, 5 pages, 2002.

[30] P. J. Reny, “Backward induction, normal form perfection and
explicable equilibria,” Econometrica, vol. 60, no. 3, pp. 627–649,
1992.

[31] F. Schuhmacher, “Proper rationalizability and backward induc-
tion,” International Journal of Game Theory, vol. 28, no. 4, pp.
599–615, 1999.

[32] H. Xu and B. C. Li, “Anchor: a versatile and efficient framework
for resource management in the cloud,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 6, pp. 1066–1076,
2013.

[33] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D.
Pendarakis, “Efficient resource provisioning in compute clouds
via VM multiplexing,” in Proceedings of the 7th International
Conference On Autonomic Computing, pp. 11–20, June 2010.

[34] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch, “Heterogeneity and dynamicity of clouds at scale:
google trace analysis,” inProceedings of the 3rd ACMSymposium
on Cloud Computing, pp. 1–13, San Jose, Calif, USA, 2012.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

