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We construct dyon solutions on coincident𝐷4-branes, obtained by applying𝑇-duality transformations to type I 𝑆𝑂(32) superstring
theory in 10 dimensions. These solutions, which are exact, are obtained from an action comprising the non-Abelian Dirac-Born-
Infeld action and a Wess-Zumino-like action. When one spatial dimension of the 𝐷4-branes is taken to be vanishingly small, the
dyons are analogous to the ’t Hooft/Polyakov monopole residing in a 3 + 1-dimensional spacetime, where the component of the
Yang-Mills potential transforming as a Lorentz scalar is reinterpreted as a Higgs boson transforming in the adjoint representation
of the gauge group. Applying a 𝑇-duality transformation to the vanishingly small spatial dimension, we obtain a collection of 𝐷3-
branes, not all of which are coincident. Two of the 𝐷3-branes, distinct from the others, acquire intrinsic, finite curvature and are
connected by a wormhole. The dyons possess electric and magnetic charges whose values on each 𝐷3-brane are the negative of
one another. The gravitational effects, which arise after the 𝑇-duality transformation, occur despite the fact that the action of the
system does not explicitly include the gravitational interaction.These solutions provide a simple example of the subtle relationship
between the Yang-Mills and gravitational interactions, that is, gauge/gravity duality.

1. Introduction

Theoretically appealing but experimentally elusive, the mag-
netic monopole has captured the interest of the physics
community for more than eight decades. The magnetic
monopole (an isolated north or south magnetic pole) is
conspicuously absent from the Maxwell theory of elec-
tromagnetism. In 1931, Dirac showed that the magnetic
monopole can be consistently incorporated into the Maxwell
theory with virtually no modification to the theory [1]. In
addition, Dirac demonstrated that the existence of a single
magnetic monopole necessitates not only that electric charge
be quantized but also that the electric andmagnetic couplings
be inversely proportional to each other, the first suggestion
of the so-called weak/strong duality. Subsequently, ’t Hooft
[2] and Alexander Polyakov showed that, within the context
of the spontaneously broken Yang-Mills gauge theory 𝑆𝑂(3),
topological magnetic monopole solutions of finite mass must
necessarily exist. Furthermore, these solutions possess an
internal structure and also exhibit the same weak/strong

duality discovered by Dirac. Consequently, Montonen and
Olive conjectured that there exists an exact weak/strong
electromagnetic duality for the spontaneously broken 𝑆𝑂(3)
gauge theory [3]. More recently, this conjecture has become
credible within the broader context of𝑁 = 2 or𝑁 = 4 Super-
Yang-Mills theories. Despite the lack of experimental evi-
dence for the existence ofmagneticmonopoles, physicists still
remain optimistic of their existence. Indeed, Guth proposed
the inflationarymodel of the universe, in part, to explain why
magnetic monopoles have escaped discovery [4].

The focus of our investigation is electrically charged
magnetic monopole (dyon) solutions within the context of
superstring theory. In Section 2, we construct dyon solutions
which are exact and closed to first order in the string theory
length scale. We, first, begin with a type I 𝑆𝑂(32) string
theory in ten dimensions, six of the spatial dimensions
being compact but arbitrarily large. We, then, apply the
group of 𝑇-duality transformations to five of the compact
spatial dimensions to obtain 16𝐷4-branes, some of which are
coincident.The five𝑇-dualized dimensions of each𝐷4-brane
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constitute the internal dimensions of a 4 + 1-dimensional
spacetime. Making an appropriate ansatz, we obtain dyon
solutions residing on the 𝐷4-branes. The solutions are based
on an action which includes coupling of the 𝐷4-branes to
NS-NS closed strings, the non-Abelian Dirac-Born-Infeld
action, and coupling to 𝑅-𝑅 closed strings, a Wess-Zumino-
like action. We next apply a 𝑇-duality transformation to the
𝐷4-branes, resulting in a collection of 𝐷3-branes, some of
which are coincident and two of which are connected by
a wormhole. Finally, we interpret the dyon solutions in the
context of gauge/gravity duality.

Because of the differences in the literature among the
systems of units, sign conventions, and so forth, we present
in Appendix A the conventions chosen by us so that direct
comparisons can be made between our results and those of
other authors.

2. Dyons and Dimensional Reduction of
Type I 𝑆𝑂(32) Theory

In this section, we construct dyon solutions based on super-
string theory. We begin with type I 𝑆𝑂(32) superstring
theory in ten dimensions [5], six of the spatial dimensions
of which are compact. Next, we apply the group of 𝑇-duality
transformations to five of the compact dimensions letting the
size, 𝑅, of the dimensions become vanishingly small; that is,
𝑅 → 0. These five dimensions are the internal dimensions
of spacetime. Strictly speaking, spacetime consists of 16
𝐷4-branes, bounded by 25 orientifold hyperplanes. Each
of the 𝐷4-branes comprises four spatial dimensions, three
unbounded and one compact. In what follows, we assume
that none of the 𝐷-branes are close to the orientifold hyper-
surfaces. Thus, the theory describing the closed strings in the
vicinity of any of the 𝐷4-branes is type II oriented, rather
than type II unoriented. In this particular case, since we have
applied the 𝑇-duality transformation to an odd number of
dimensions, the closed string theory is the type IIa oriented
theory. Furthermore, each end of an open string must be
attached to a 𝐷4-brane, which may be the same 𝐷4-brane
or two different 𝐷4-branes. If we assume that the number
of coincident 𝐷4-branes is 𝑛 (2 ≤ 𝑛 ≤ 16), then a 𝑈(𝑛)
gauge group is associatedwith the open strings attached to the
coincident 𝐷4-branes. Given these prerequisite conditions,
we now construct dyon solutions which reside on these
coincident 𝐷4-branes. These solutions are derived from the
𝐷-brane action comprising two parts, the Dirac-Born-Infeld
action, 𝑆DBI, which couples NS-NS closed strings to the 𝐷4-
brane and the Wess-Zumino-like action, 𝑆WZ, which couples
𝑅-𝑅 closed strings to the𝐷4-brane.

2.1. Dyon Solutions on 𝐷4-Branes. The dyon solutions are
obtained from the equations of motion derived from the
action, 𝑆, which describes the coupling of closed string fields
to a general𝐷𝑝-brane (which in our case is𝑝 = 4).The action
is [6]

𝑆 = 𝑆DBI + 𝑆WZ, (1)

where

𝑆DBI = −𝜏𝑝 ∫
M𝑝+1

STr {𝑒−Φ [(−1)

⋅ det (𝐺
𝐴𝐵
+ 𝐵

𝐴𝐵
+ 2𝜋𝛼

󸀠
𝐹
𝐴𝐵
)]

1/2

} ,

(2)

𝑆WZ = 𝜇𝑝 ∫
M𝑝+1

[

[

∑

𝑝
󸀠

𝐶
(𝑝
󸀠
+1)
]

]

∧ Tr 𝑒2𝜋𝛼
󸀠
𝐹+𝐵
. (3)

Here, 𝜏
𝑝
is the physical tension of the 𝐷𝑝-brane, and 𝜇

𝑝

is its R-R charge (see Appendix B for a discussion of the
relationships among the various string parameters).

The dyon solutions are based on the following ansatz.The
dilaton background,Φ, is constant:

Φ = Φ
0
. (4)

And background field 𝐵 vanishes:

𝐵
𝐴𝐵
= 0 (𝐴, 𝐵 = 0 ⋅ ⋅ ⋅ 4) . (5)

The metric 𝐺 is given by

𝐺
𝐴𝐵
= 𝐺

𝐴𝐵
𝐼
𝑛
, (6)

where, for our purposes, 𝐺
𝐴𝐵

is restricted so that 𝐺
00
= −1

and 𝐺
44=1

.
For 𝑝 = 4, we can reexpress the determinant in (2) as

det (𝐺
𝐴𝐵
+ 2𝜋𝛼

󸀠
𝐹
𝐴𝐵
) = det (𝐺

𝐴𝐵
)[

[

𝐼
𝑛
+
2𝜋𝛼

󸀠

2!
𝐹
𝐴𝐵
𝐹
𝐴𝐵

−

(2𝜋𝛼
󸀠
)
2

(5 − 4)!
(3

2
⋅ 1

2
)
∗
(𝐹 ∧ 𝐹)

𝐸

∗
(𝐹 ∧ 𝐹)

𝐸
]

]

,

(7)

where

∗
(𝐹 ∧ 𝐹)

𝐸
=

√
󵄨󵄨󵄨󵄨󵄨
det (𝐺

𝐴𝐵
)
󵄨󵄨󵄨󵄨󵄨

4!
𝐹
𝐴𝐵
𝐹
𝐶𝐷
𝜖
𝐴𝐵𝐶𝐷𝐸

.
(8)

See Appendix C, (C.21), for further details.
The term 𝐼

𝑛
is the 𝑛-dimensional identity matrix. The

value of 𝑛 is the dimension of the group𝑈(𝑛) associated with
the gauge fields residing on the𝐷4-branes. All𝑅-𝑅 potentials
vanish, except for the one-form potential 𝐶

(1)
, which is a

constant background field,

𝐶
(1)
= 𝐶

4
𝑑𝑥

4
, (9)

for some constant value 𝐶
4
. The gauge field, 𝐹, is obtained

from the gauge potential 𝐴 (𝐴 = 𝐴
𝐸
𝑑𝑥

𝐸
), where

𝐴
𝜇
= 𝐴

𝜇
(𝑥

𝑖
) , (𝜇 = 0 ⋅ ⋅ ⋅ 3; 𝑖 = 1 ⋅ ⋅ ⋅ 3) ,

𝐴
4
= 𝐴

4
(𝑥

𝑖
) .

(10)



Advances in High Energy Physics 3

Note that the gauge potentials are static; that is, they do not
depend on time, 𝑥0, and also do not depend on the spatial
coordinate 𝑥4. The gauge field 𝐹(𝐹 = 𝐹

𝐴𝐵
𝑑𝑥

𝐴
∧ 𝑑𝑥

𝐵
), a Lie

algebra-valued two-form, is given by

𝐹 = 𝑑𝐴 − 𝑖𝐴 ∧ 𝐴. (11)

(See Appendix A.) The components of the potentials 𝐴
0
and

𝐴
4
are constrained in accordance with the condition

𝐴
0
∧ 𝐴

4
= 0 (12)

so that 𝐹
04
= 0. To facilitate its interpretation, we express

𝐹
𝐴𝐵

as a five-dimensional matrix which is explicitly par-
titioned into electric and magnetic fields which reside in
four-dimensional spacetime and an additional component
of the magnetic field which resides in the additional space
dimension; that is,

𝐹
𝐴𝐵
=
(
(

(

0 𝐸
1

𝐸
2

𝐸
3

0

−𝐸
1

0 𝐵
3

−𝐵
2

−D
1
𝐴
4

−𝐸
2

−𝐵
3

0 𝐵
1

−D
2
𝐴
4

−𝐸
3

𝐵
2

−𝐵
1

0 −D
3
𝐴
4

0 D
1
𝐴
4
D

2
𝐴
4
D

3
𝐴
4

0

)
)

)

. (13)

We are seeking dyon solutions. Therefore, with foresight, we
make the following assumptions:

𝐸
𝑖
≡ 𝐹

𝑎

0𝑖
𝑇
𝑎
= 𝐹

(𝑖)

0𝑖
𝑇
(𝑖)
,

𝐵
𝑖
≡
1

2
𝜖
𝑗𝑘

𝑖
𝐹
𝑎

𝑗𝑘
𝑇
𝑎
=
1

2
𝜖
𝑗𝑘

𝑖
𝐹
(𝑖)

𝑗𝑘
𝑇
(𝑖)
,

D
𝑖
𝐴
4
≡ (𝜕

𝑖
𝐴
4
− 𝑖𝐴

𝑖
∧ 𝐴

4
)
𝑎

𝑇
𝑎
= 𝐹

𝑎

4𝑖
𝑇
𝑎
= 𝐹

(𝑖)

4𝑖
𝑇
(𝑖)
.

(14)

The parenthetical index (𝑖) indicates that there is no sum-
mation of that index; however, if an expression contains two
indices 𝑖 without parentheses, then summation of these two
indices is implied. Furthermore, each matrix element in (13)
includes a generator of 𝑈(𝑛); for example, 𝐸

𝑖
= 𝐸

(𝑖)

𝑖
𝑇
(𝑖)
.

Because we are seeking dyon solutions, we may assume
without loss of generality that each 𝑇

(𝑖)
is a generator in the

fundamental representation of a local𝑈(1)×𝑆𝑈(2) subgroup
of 𝑆𝑈(𝑛) (see (44a), (44b), (44c), and (44d)).

The action, (2), can bemore straightforwardly interpreted
from the perspective of four-dimensional spacetime. Since
the action does not depend on the coordinate 𝑥4, we can
trivially eliminate 𝑥4 from the action by integrating the 𝑥4
coordinate. As a result of the integration, the tension of the
𝐷4-brane, 𝜏

4
, and the Yang-Mills coupling constant, 𝑔

𝐷4
, are

replaced by those of the 𝐷3-brane, 𝜏
3
and 𝑔

𝐷3
(see (B.3) and

(B.5)). Let the size, 𝑅
4
, of the 𝑥4-dimension become vanish-

ingly small; that is, 𝑅
4
→ 0. Then, the field 𝐴

4
becomes a

Lorentz scalar transforming as the adjoint representation of
the gauge group, and (14) gives the covariant derivative of
𝐴
4
. From the perspective of four spacetime dimensions, 𝐴

4

assumes the role of a Higgs boson transforming as the adjoint
representation of the gauge group.

Substituting (4)–(6) and (13) into (1) and then integrating
the 𝑥4 coordinate, we obtain

𝑆DBI = ∫𝑑
3+1
𝜉LDBI, (15)

where

LDBI

= −
1

(2𝜋𝛼󸀠)
2

𝑔
2

𝐷3

STr [{󵄨󵄨󵄨󵄨󵄨det (𝐺𝐴𝐵
+ 2𝜋𝛼

󸀠
𝐹
𝐴𝐵
)
󵄨󵄨󵄨󵄨󵄨

1/2

}]

= −

√
󵄨󵄨󵄨󵄨󵄨
det (𝐺

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨

(2𝜋𝛼󸀠)
2

𝑔
2

𝐷3

STr {L󸀠
} .

(16)

The functionL󸀠 is defined as

L
󸀠
= {𝐼

𝑛
− (2𝜋𝛼

󸀠
)
2

(𝐸 ⋅ 𝐸 − 𝐵 ⋅ 𝐵 −D𝐴
4
⋅D𝐴

4
)

+ (2𝜋𝛼
󸀠
)
4

(𝐵 ⋅D𝐴
4
)
2

− (2𝜋𝛼
󸀠
)
4

(𝐸 ⋅ 𝐵)
2

− (2𝜋𝛼
󸀠
)
4

(𝐸 ×D𝐴
4
) ⋅ (𝐸 ×D𝐴

4
)}

1/2

.

(17)

We have used the fact that√|det(𝐺
𝑖𝑗
)| = √|det(𝐺

𝐴𝐵
)|. In (16),

the ordering of the generators of the algebra, 𝑇
𝑎
, corresponds

with the order of the fields as they appear in the equation; for
example,

{𝐵 ⋅D𝐴
4
}
2

= {𝐵 ⋅D𝐴
4
} {𝐵 ⋅D𝐴

4
}

= {𝐺
𝑖𝑗
𝐵
(𝑖)

𝑖
𝑇
(𝑖)
(D

𝑗
𝐴
4
)
(𝑗)

𝑇
(𝑗)
}

⋅ {𝐺
𝑖𝑗
𝐵
(𝑖)

𝑖
𝑇
(𝑖)
(D

𝑗
𝐴
4
)
(𝑗)

𝑇
(𝑗)
} .

(18)

Note that “STr” indicates that the trace is calculated symmet-
rically; that is, the trace is symmetrized with respect to all
gauge indices [6, 7]. The implication is that the evaluation of
the trace requires that after the expansion of (16) in powers
of the field strengths, all orderings of the field strengths
are included with equal weight; that is, products of 𝑇

𝑎

are replaced by their symmetrized sum, before the trace is
evaluated. This is discussed in detail in [6, 7].

In (16), the dot product and cross product of two 3-
vectors, for example, 𝐸 and D𝐴

4
, are defined as 𝐸 ⋅ D𝐴

4
=

𝐺
𝑖𝑗
𝐸
𝑖
D

𝑗
𝐴
4
and (𝐸 ×D𝐴

4
)
𝑖
= 𝜀

𝑗𝑘

𝑖
𝐸
𝑗
D

𝑘
𝐴
4
.

In obtaining (16), we have reexpressed the dilatonΦ, on a
𝐷4-brane, in terms of the dilaton Φ󸀠, on a 𝐷3-brane, both
of which are related by a 𝑇-duality transformation in the
𝑥
4-dimension. Specifically, Φ and Φ󸀠 are related by 𝑒Φ

󸀠

=

𝛼
󸀠1/2
𝑒
Φ
/𝑅

4
. The constant dilaton background 𝜙

0
has been

incorporated into the physical tension 𝜏
𝑝
(see Appendix B).

Substituting (5), (9), (6), and (13) into (3), we obtain

𝑆WZ =
𝜇
4

2!
∫
M5

𝐶
(1)
∧ Tr {2𝜋𝛼󸀠𝐹 ∧ 2𝜋𝛼󸀠𝐹} . (19)
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Integrating the 𝑥4 coordinate in (19), we obtain

𝑆WZ = ∫𝑑
3+1
𝜉LWZ, (20)

where

LWZ =
𝜃

4𝜋2
Tr {𝐹 ∧ 𝐹} = √󵄨󵄨󵄨󵄨󵄨det (𝐺𝑖𝑗

)
󵄨󵄨󵄨󵄨󵄨

𝜃

4𝜋2
Tr {𝐸 ⋅ 𝐵}

= √
󵄨󵄨󵄨󵄨󵄨
det (𝐺

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨

𝜃

4𝜋2
𝐸
𝑖(𝑖)
𝐵
(𝑖)

𝑖
STr {𝑇

(𝑖)
𝑇
(𝑖)
}

= √
󵄨󵄨󵄨󵄨󵄨
det (𝐺

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨

𝜃

8𝜋2
𝐸
𝑖(𝑖)
𝐵
(𝑖)

𝑖
,

(21)

where 𝐸𝑖(𝑖) = 𝐹0𝑖(𝑖)𝑇
(𝑖)
. Here,

𝜃 ≡
𝐶
4

2!

2𝜋𝑅
4

𝛼󸀠1/2
. (22)

In obtaining (21), we have explicitly evaluated 𝜇
4
using (B.4).

Equation (21) is associated with the Witten effect. Witten
has demonstrated that adding term (21) to the Lagrangian
of Yang-Mills theory does not alter the classical equations
of motion but does alter the electric charge quantization
condition in the magnetic monopole sector of the theory
[5, 8, 9]. In summary, the action, 𝑆, for the𝐷4-brane is given
by

𝑆 = ∫𝑑
3+1
𝜉L, (23)

where

L =LDBI +LWZ. (24)

The equations of motion which are obtained from (23) are

D
𝜇
𝑃
𝜇]
= 0, (25)

where

𝑃
𝑎

𝜇] =
𝜕L

𝜕𝐹𝜇]𝑎
. (26)

In addition, the fields 𝐹𝑎
𝜇] satisfy the Bianchi identity

D
[𝛼
𝐹
𝑎

𝛽𝛾]
= 0. (27)

To facilitate the ensuing analysis, we transform the
Lagrangian density,L, to the Hamiltonian density,H, using
the Legendre transformation

H = STr {𝑃
0
⋅ 𝐸 −L} , (28)

where

𝑃
(𝑖)

0𝑖
≡
𝜕L

𝜕𝐸𝑖(𝑖)

= −

√
󵄨󵄨󵄨󵄨󵄨
det (𝐺

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨

(2𝜋𝛼󸀠)
2

𝑔
2

𝐷3

STr{
𝑋
(𝑖)

𝑖

L󸀠
}

+ √
󵄨󵄨󵄨󵄨󵄨
det (𝐺

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨

𝜃

4𝜋2
𝐵
(𝑖)

𝑖
STr {𝑇

(𝑖)
𝑇
(𝑖)
} ,

(29)

where

𝑋
(𝑖)

𝑖
= 𝐸

𝑖
𝑇
(𝑖)
+ (𝐸 ⋅ 𝐵) 𝑇

(𝑖)
𝐵
𝑖

+ (D𝐴
4
× [𝐸 ×D𝐴

4
])
𝑖
𝑇
(𝑖)
.

(30)

After performing detailed calculations, we obtain

H =

√
󵄨󵄨󵄨󵄨󵄨
det (𝐺

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨

(2𝜋𝛼󸀠)
2

𝑔
2

𝐷3

STr {H󸀠
} , (31)

where

H
󸀠
= {𝐼

𝑛
+ (2𝜋𝛼

󸀠
)
2

(𝑃
0
⋅ 𝑃

0
+ 𝐵 ⋅ 𝐵 +D𝐴

4
⋅D𝐴

4
)

+ (2𝜋𝛼
󸀠
)
4

([𝐵 ⋅D𝐴
4
]
2

+ [𝑃
0
⋅D𝐴

4
]
2

+
[𝑃

0
× 𝐵]

2

+ [D𝐴
4
× (𝑃

0
× 𝐵)]

2

(2𝜋𝛼󸀠)
−2

𝐼
𝑛
+D𝐴

4
⋅D𝐴

4

)}

1/2

.

(32)

The electric field𝐸(𝑖)
𝑖
can be expressed as a function of𝑃(𝑖)

0𝑖
:

𝐸
(𝑖)

𝑖
=
𝜕H

𝜕𝑃
(𝑖)

0𝑖

=

√
󵄨󵄨󵄨󵄨󵄨
det (𝐺

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨

(2𝜋𝛼󸀠)
2

𝑔
2

𝐷3

STr{
𝑌
(𝑖)

𝑖

H󸀠
} . (33)

The term 𝑌
(𝑖)

𝑖
is given by

𝑌
(𝑖)

𝑖
= (2𝜋𝛼

󸀠
)
2

𝑃
0𝑖
𝑇
(𝑖)
+ (2𝜋𝛼

󸀠
)
4

⋅ [D
𝑖
𝐴
4
𝑇
(𝑖)
(𝑃

0
⋅D𝐴

4
)

+ (𝐵 × (𝑃
0
× 𝐵))

𝑖
𝑇
(𝑖)

−
(𝐵 ×D𝐴

4
)
𝑖
𝑇
(𝑖)
(𝑃

0
⋅ (𝐵 ×D𝐴

4
))

(2𝜋𝛼󸀠)
−2

𝐼
𝑛
+D𝐴

4
⋅D𝐴

4

] .

(34)

We seek dyon solutions which are BPS states, that is,
whose energy E (E = ∫𝑑

3
𝜉H) is a local minimum. First,

we reexpressH
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H =

√
󵄨󵄨󵄨󵄨󵄨
det (𝐺

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨

(2𝜋𝛼󸀠)
2

𝑔
2

𝐷3

STr[

[

{[𝐼
𝑛
+ (2𝜋𝛼

󸀠
)
2

(cos𝜙𝑃
0
⋅D𝐴

4
+ sin𝜙𝐵 ⋅D𝐴

4
)]

2

+ (2𝜋𝛼
󸀠
)
2

[(sin𝜙𝑃
0
⋅D𝐴

4
− cos𝜙𝐵 ⋅D𝐴

4
)
2

+ (𝑃
0
− cos𝜙D𝐴

4
)
2

+ (𝐵 − sin𝜙D𝐴
4
)
2

]

+ (2𝜋𝛼
󸀠
)
4 [𝑃0 × 𝐵]

2

+ [D𝐴
4
× (𝑃

0
× 𝐵)]

2

(2𝜋𝛼󸀠)
−2

𝐼
𝑛
+D𝐴

4
⋅D𝐴

4

}

1/2

]

]

.

(35)

The mixing angle, 𝜓, between the electric and magnetic
fields of the dyon is defined as

tan𝜓 =
𝑔
𝑚

𝑔
𝑒

. (36)

The quantities 𝑔
𝑚

and 𝑔
𝑒
are the electric and magnetic

charges, respectively, of the dyon.The energy,E, isminimized
by constraining the dyon solutions to satisfy

𝑃
0
= cos𝜓D𝐴

4
, (37a)

𝐵 = sin𝜓D𝐴
4
. (37b)

In (35), the second and third squared terms are zero as a
consequence of the constraint. Since 𝑃

0
∝ 𝐵, the fourth

squared term is also zero by virtue of

(𝑃
0
× 𝐵)

𝑘

=

𝑃
(𝑖)

0𝑖
𝐵
(𝑗)

0𝑗
− 𝑃

(𝑗)

0𝑗
𝐵
(𝑖)

0𝑖

2!
(𝑇

(𝑖)
𝑇
(𝑗)
𝜀
𝑘

𝑖𝑗
− 𝑖𝑓

(𝑘)

𝑖𝑗
𝑇
(𝑘)
) .

(38)

Thus,H simplifies so that the energy is

E =
1

(2𝜋𝛼󸀠)
2

𝑔
2

𝐷3

∫𝑑
3
𝜉√
󵄨󵄨󵄨󵄨󵄨
det (𝐺

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨
Tr [𝐼

𝑛

+ (2𝜋𝛼
󸀠
)
2

(cos𝜙𝑃
0
⋅D𝐴

4
+ sin𝜙𝐵 ⋅D𝐴

4
)] .

(39)

Substituting (37a) and (37b) into (32) through (34) and using
(39), we find

𝐸 = 𝑃
0
. (40)

In (39), there are two terms which contribute to the mass
of the system. The first term within the trace, that is, 𝐼

𝑛
,

corresponds to the volume of each coincident 𝐷4-brane (or
𝐷3-brane), which is infinite because the 𝐷-branes are not
compact. The second term, by virtue of the equations of
motion, (26), and the Bianchi identity, (27), can be expressed
as a divergence and is therefore a topological invariant. The
second term corresponds to the mass of the dyon and is
proportional to√𝑔2

𝑒
+ 𝑔2

𝑚
as discussed below.

The solutions to (25) and (27) can be straightforwardly
obtained from the dyon solutions derived in [10]. Adapting

the notation of [10] to the notation used here, we express
the vector potential 𝐴, (10), in the form (in accordance with
our conventions, the Yang-Mills coupling constant appears
explicitly in the Lagrangian (A.1). In [8, 10], the coupling
constant has been incorporated into the Yang-Mills fields.
Thus, to compare results here with those in the references,
the fields 𝐴 and related fields should be divided by 𝑔

𝐷3
)

𝐴 = 𝐴
𝜇
𝑑𝑥

𝜇
+ 𝐴

4
𝑑𝑥

4

= cos𝜓𝑆 (𝑟) 𝑔
𝐷3
V𝛼

1
𝑇
𝑟
𝑑𝑡

+𝑊 (𝑟) [𝑇
𝜃
sin (𝜃) 𝑛𝑑𝜙 − 𝑇

𝜙
𝑑𝜃]

+ 𝑔
𝐷3
V [𝛼

2
𝑇
⊥
+ 𝑄 (𝑟) 𝛼

1
𝑇
𝑟
] 𝑑𝑥

4
,

(41)

where V is an arbitrary constant. For the Lie group 𝑆𝑈(𝑛)

𝛼
1
= √

𝑛

2 (𝑛 − 1)
, (42a)

𝛼
2
= −√

𝑛 − 2

2 (𝑛 − 1)
. (42b)

Here, 𝑇
𝑖
(𝑖 = 𝑟, 𝜃, 𝜙) constitute a representation of

the 𝑆𝑈(2) subalgebra and 𝑇
⊥
commutes with each 𝑇

𝑖
. The

quantities 𝑟, 𝜃, 𝜙 are the spherical polar coordinates in three
dimensions. The elements 𝑇

𝑟
, 𝑇

𝜃
, 𝑇

𝜙
are related to 𝑇

𝑥
, 𝑇

𝑦
, 𝑇

𝑧
:

𝑇
𝑟
= 𝑇

𝑥
sin 𝜃 cos 𝑛

𝑚
𝜙 + 𝑇

𝑦
sin 𝜃 sin 𝑛

𝑚
𝜙 + 𝑇

𝑧
cos 𝜃, (43a)

𝑇
𝜃
= 𝑇

𝑥
cos 𝜃 cos 𝑛

𝑚
𝜙 + 𝑇

𝑦
cos 𝜃 sin 𝑛

𝑚
𝜙 − 𝑇

𝑧
sin 𝜃, (43b)

𝑇
𝜙
= −𝑇

𝑥
sin 𝑛

𝑚
𝜙 + 𝑇

𝑦
cos 𝑛

𝑚
𝜙. (43c)

For 𝑆𝑈(𝑛), the 𝑛-dimensional matrices 𝑇
𝑥
, 𝑇

𝑦
, 𝑇

𝑧
, and 𝑇

⊥
are

given by

𝑇
𝑥
=
1

2

(
(
(

(

0 ⋅ ⋅ ⋅ 0 0 0

.

.

. d
.
.
.
.
.
.
.
.
.

0 ⋅ ⋅ ⋅ 0 0 0

0 ⋅ ⋅ ⋅ 0 0 1

0 ⋅ ⋅ ⋅ 0 1 0

)
)
)

)

, (44a)
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𝑇
𝑦
=
1

2

(
(
(

(

0 ⋅ ⋅ ⋅ 0 0 0

.

.

. d
.
.
.
.
.
.
.
.
.

0 ⋅ ⋅ ⋅ 0 0 0

0 ⋅ ⋅ ⋅ 0 0 −𝑖

0 ⋅ ⋅ ⋅ 0 𝑖 0

)
)
)

)

, (44b)

𝑇
𝑧
=
1

2

(
(
(

(

0 ⋅ ⋅ ⋅ 0 0 0

.

.

. d
.
.
.
.
.
.

.

.

.

0 ⋅ ⋅ ⋅ 0 0 0

0 ⋅ ⋅ ⋅ 0 1 0

0 ⋅ ⋅ ⋅ 0 0 −1

)
)
)

)

, (44c)

𝑇
⊥
=

1

2√𝑛 (𝑛 − 2)

(
(
(
(

(

−2 0 ⋅ ⋅ ⋅ 0 0

0 d
.
.
.

.

.

.
.
.
.

.

.

. ⋅ ⋅ ⋅ −2 0 0

0 ⋅ ⋅ ⋅ 0 𝑛 − 2 0

0 ⋅ ⋅ ⋅ 0 0 𝑛 − 2

)
)
)
)

)

. (44d)

𝑇
𝑥
, 𝑇

𝑦
, 𝑇

𝑧
, and 𝑇

⊥
are suitable linear combinations of specific

elements of the Cartan subalgebra of 𝑆𝑈(𝑛) (see [10] for
details). The value of the integer 𝑛

𝑚
in (43a), (43b), and

(43c) is the integer multiple of the fundamental unit of dyon’s
magnetic charge.

These results differ from those of [10]. For a direct
comparison, first replace the azimuthal angle, 𝜙, in [10] with
𝜙
󸀠 and extend the domain from [0, 2𝜋] to [0, 2𝜋𝑛

𝑚
]; that is,

𝜙
󸀠
∈ [0, 2𝜋𝑛

𝑚
]. Now, perform the change of variables 𝜙󸀠 =

𝑛
𝑚
𝜙 to the dyon solutions of [10] to obtain those given in (41).

In addition, apply the same change of variables to the metric
in [10] to obtain the metric 𝐺

𝑖𝑗
:

𝐺
𝑖𝑗
= (

1 0 0

0 𝑟
2

0

0 0 𝑟
2
𝑛
2

𝑚
sin2𝜃

) . (45)

Here, 𝑟 ∈ [0,∞], 𝜃 ∈ [0, 𝜋], and 𝜙 ∈ [0, 2𝜋]. This generalizes
the results of [10] which only applies to dyons with one unit
of magnetic charge; that is, 𝑔

𝑚
= 1/𝑔

𝐷3
.

The solutions𝑊(𝑟),𝑄(𝑟), and 𝑆(𝑟) are obtained as in [10]

𝑊(𝑟) = 𝑤 (𝑥) = 1 −
𝑥

sinh𝑥
, (46a)

𝑄 (𝑟) = 𝑞 (𝑥) = coth𝑥 − 1
𝑥
, (46b)

𝑆 (𝑟) = 𝑠 (𝑥) = 𝑞 (𝑥) = coth𝑥 − 1
𝑥
, (46c)

where the dimensionless variable 𝑥 is related to the radial
coordinate 𝑟:

𝑥 = sin𝜓𝑔
𝐷3
V𝛼

1
𝑟. (47)

The field tensor 𝐹
𝐴𝐵

of a dyon with electric charge 𝑔
𝑒
and

magnetic charge 𝑔
𝑚
,

𝑔
𝑚
=
𝑛
𝑚

𝑔
𝐷3

, (48)

can now be obtained from (41). Specifically,

𝐹
𝑡𝑟
=
𝑔
𝑒

𝑔
𝑆
󸀠
(𝑟) 𝑔

𝐷3
V𝛼

1
𝑇
𝑟
,

𝐹
𝑡𝜃
= [1 −𝑊 (𝑟)]

𝑔
𝑒

𝑔
𝑆 (𝑟) 𝑔

𝐷3
V𝛼

1
𝑇
𝜃
,

𝐹
𝑡𝜙
= [1 −𝑊 (𝑟)]

𝑔
𝑒

𝑔
𝑆 (𝑟) 𝑔

𝐷3
V𝛼

1
𝑛
𝑚
sin 𝜃𝑇

𝜙
,

𝐹
𝑟𝜃
= −𝑊

󸀠
(𝑟) 𝑇

𝜙
,

𝐹
𝜙𝑟
= −𝑊

󸀠
(𝑟) 𝑛

𝑚
sin 𝜃𝑇

𝜃
,

𝐹
𝜃𝜙
= −𝑊(𝑟) (2 − 𝑊 (𝑟)) 𝑛

𝑚
sin 𝜃𝑇

𝑟
,

(49)

𝐷
𝑟
𝐴
4
= 𝑄

󸀠
(𝑟) 𝑔

𝐷3
V𝛼

1
𝑇
𝑟
,

𝐷
𝜃
𝐴
4
= [1 −𝑊 (𝑟)] 𝑄 (𝑟) 𝑔𝐷3V𝛼1𝑇𝜃,

𝐷
𝜙
𝐴
4
= [1 −𝑊 (𝑟)] 𝑄 (𝑟) 𝑔𝐷3V𝛼1𝑛𝑚 sin 𝜃𝑇

𝜙
.

(50)

We now show that gauge invariance of action, (23),
implies 𝑆𝐿(2, 𝑍) invariance. Consider 𝑈(1) gauge transfor-
mations which are constant at infinity and are also rotations
about the axis 𝐴

4
= 𝐴

4
/|𝐴

4
|, specifically the gauge transfor-

mations [8]

𝛿𝐴
𝑎

𝜇
=

1

𝑔
𝐷3
V𝛼

1

(D
𝜇
𝐴
4
)
𝑎

. (51)

Action (23) is invariant under these gauge transformations.
According to the Noether method, the generator of these
gauge transformations,N, is given by

N =
𝜕L

𝜕𝜕
0
𝐴𝑎

𝜇

𝛿𝐴
𝑎

𝜇
. (52)

Substituting the Lagrangian density (24) into (52), we obtain

N =
G
𝑒

𝑔
𝐷3

+
𝑔
2

𝐷3
𝜃G

𝑚

8𝜋2
, (53)

where

G
𝑚
=

1

V𝛼
1

∫𝑑
3
𝜉STr {D𝐴

4
⋅ 𝐵} , (54a)

G
𝑒
=

1

𝑔
2

𝐷3
V𝛼

1

∫𝑑
3
𝜉Tr {D𝐴

4
⋅ 𝑃

0
} (54b)

are the magnetic and electric charge operators. Since rota-
tions of 2𝜋 about the axis 𝐴

4
must yield the identity for

physical states, that is,

𝑒
2𝜋𝑖N

= 1, (55)
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applying the 𝑈(1) transformation on the left side of (55) to
states in the adjoint representation of 𝑆𝑈(𝑛), we find that the
eigenstates ofN are quantized with eigenvalue

N = 𝛼
1
𝜂, (56)

where 𝜂 is an arbitrary integer. Substituting (56) into (53), we
obtain

𝑔
𝑒
= 𝛼

1
[𝜂𝑔

𝐷3
−
𝜃
󸀠

2𝜋
𝑛
𝑚
𝑔
𝐷3
] , (57)

where we have defined 𝜃󸀠 by

𝜃 ≡ 𝛼
1
𝜃
󸀠
, (58)

and used the fact that

𝑔
𝑚
𝑔
𝐷3
= 𝑛

𝑚
4𝜋. (59)

Taking 𝜃󸀠 = 0 in (57), we obtain the quantization condition
for the electric charge

𝑔
𝑒
= 𝜂𝛼

1
𝑔
𝐷3
. (60)

The electromagnetic contribution to the mass (rest energy)
of the dyon, 𝑚em, can be obtained by substituting (54a) and
(54b) into (39) and integrating the second term within the
trace to obtain

𝑚em = V𝛼
1
√𝑔2

𝑒
+ 𝑔2

𝑚
. (61)

We can now make 𝑆𝐿(2, 𝑍) symmetry explicit. We first
define

𝜏 =
𝜃
󸀠

2𝜋
+
4𝜋

𝑔
2

𝐷3

𝑖. (62)

If 𝜃󸀠 = 0, then the weak/strong duality condition 𝑔
𝐷3

→

𝑔
𝑚
= (4𝜋)/𝑔

𝐷3
is equivalent to

𝜏 󳨀→ −
1

𝜏
. (63)

In (57), the transformation 𝜃
󸀠

→ 𝜃
󸀠
+ 2𝜋 results in

identical physical systems with only states being relabeled.
The transformation is equivalent to

𝜏 󳨀→ 𝜏 + 1. (64)

Transformations (63) and (64) generate the group 𝑆𝐿(2, 𝑍).
See [8, 9] for further details.

Note that in (54a) and (54b) G
𝑒
is, strictly speaking, not

the electric charge operator because 𝑃
0
is not the electric

field but rather is its conjugate; however, according to (33)
and (34), if D𝐴

4
and 𝐵 become vanishingly small for

asymptotically large values of the radial coordinate, then
𝑃
0
approaches 𝐸. Thus, in the asymptotic limit G

𝑒
is the

electric charge operator.This distinguishing feature is a direct
consequence of the fact that our analysis is based on the Born-
Infeld action rather than the Yang-Mills-Higgs action. In our
case, this point is inconsequential since 𝑃

0
= 𝐸, exactly.

2.2. Dyon Solutions on𝐷3-Branes. As emphasized previously,
the dyon solutions derived in Section 2.1, when interpreted
from 3 + 1 spacetime dimensions, that is, the compactified
theory in which 𝑅

4
→ 0, are the ’t Hooft/Polyakov magnetic

monopole or dyon, with the potential𝐴
4
being aHiggs boson

transforming in the adjoint representation of the gauge group
𝑈(𝑛). Here, our purpose is to reinterpret these dyon solutions
in which 𝑅

4
→ 0 from the equivalent 𝑇-dual theory. In the

𝑇-dual theory, the radius 𝑅
4
is replaced by 𝑅󸀠

4
(𝑅󸀠

4
= 𝛼

󸀠
/𝑅

4
)

so that the radius of the 𝑥4-dimension𝑅󸀠
4
→ ∞. In addition,

the potential 𝐴
4
is reinterpreted as the 𝑥4-coordinates of

the 𝑛 𝐷3-branes embedded in 4 + 1 dimensional spacetime.
These coordinates can be directly obtained by diagonalizing
𝐴
4
, (41), using a local gauge transformation which rotates 𝑇

𝑟

into 𝑇
𝑧
. The 𝑛 𝑥4-coordinates are the diagonal elements of

the matrix; that is (we are assuming that after the 𝑇-duality
transformation the 𝐷3-branes are far from any orientifold
hyperplanes. This can always be accomplished by adding the
to 𝐴

4
component of the gauge potential a constant 𝑈(1)

gauge transformation 𝜃
0
𝑇
0, 𝜃

0
being a suitable constant (see

Appendix A)),

𝐴
4
󳨀→ 2𝜋𝛼

󸀠
𝑔
𝐷3
V [𝛼

2
𝑇
⊥
+ 𝑄 (𝑟) 𝛼

1
𝑇
𝑧
]

= 2𝜋𝛼
󸀠
𝑔
𝐷3
V
(
(
(
(

(

𝑢
1
0 ⋅ ⋅ ⋅ 0 0

0 d
.
.
.

.

.

.
.
.
.

.

.

. ⋅ ⋅ ⋅ 𝑢
1

0 0

0 ⋅ ⋅ ⋅ 0 𝑢
2
+ 𝑢̃ (𝑟) 0

0 ⋅ ⋅ ⋅ 0 0 𝑢
2
− 𝑢̃ (𝑟)

)
)
)
)

)

,

(65)

where

𝑢
1
= −

𝛼
2

√𝑛 (𝑛 − 2)

, (66a)

𝑢
2
=
𝛼
2

2

√
𝑛 − 2

𝑛
, (66b)

𝑢̃ (𝑟) =
𝛼
1

2
𝑄 (𝑟) . (66c)

Of the 𝑛 𝐷3-branes 𝑛 − 2 of the 𝐷3-branes, denoted by
𝐷3

𝑛−2
, are coincident. The 𝑥4-coordinate of each is the

constant value 2𝜋𝛼󸀠𝑔
𝐷3
V𝑢

1
. For the remaining two 𝐷3-

branes, denoted by 𝐷3
1
and 𝐷3

2
, the 𝑥4-coordinate of each

is a function of the radial coordinate 𝑟. Specifically, 𝑥4 =

2𝜋𝛼
󸀠
𝑔
𝐷3
V(𝑢

2
− 𝑢̃(𝑟)) for 𝐷3

1
and 𝑥4 = 2𝜋𝛼󸀠𝑔

𝐷3
V(𝑢

2
+ 𝑢̃(𝑟))

for 𝐷3
2
, and as a consequence these two 𝐷3-branes have

nonvanishing intrinsic curvature.This occurs despite the fact
that before the application of the 𝑇-duality transformation
no gravitational interaction is explicitly present. We now
introduce the length scale 𝐿

𝐷3
which is the separation

between 𝐷3
1
and 𝐷3

2
, in the asymptotic limit as the radial

coordinate 𝑟 → ∞. It is related to previously defined
parameters by

𝐿
𝐷3
= 2𝜋𝛼

󸀠
𝑔
𝐷3
V𝛼

1
. (67)
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Another relevant length scale is the size of the dyon, that is,
the region of space where all components of the Yang-Mills
field, 𝐹

𝐴𝐵
, are nonvanishing. According to (49), (46a), (46b),

(46c), and (47), only the radial components of the electric and
magnetic fields are long range, with the remaining compo-
nents of the fields vanishing exponentially for 𝑥 ≫ 1. Thus,
additional structure of the dyon becomes apparent whenever
𝑥 ≲ 1 or equivalently whenever 𝑟 ≲ 1/(sin𝜓𝑔

𝐷3
V𝛼

1
). We

can therefore define the size of dyon 𝐿
𝑑
, as measured from

asymptotically flat space, that is, 𝑟 → ∞, to be

𝐿
𝑑
=

1

sin𝜓𝑔
𝐷3
V𝛼

1

=
2𝜋𝛼

󸀠

sin𝜓𝐿
𝐷3

. (68)

In Figure 1, we show, for the gauge group 𝑆𝑈(5), embedding
plots of the 5 𝐷3-branes as a function of the dimensionless
radial coordinate, 𝑥 (𝑥 = 𝑟/𝐿

𝑑
). As 𝑥 → ∞, the 𝑥4-

coordinate of 𝐷3
2
approaches that of the (5–2) coincident

𝐷3-branes, 𝐷3
5–2, in effect, joining them by a wormhole in

an asymptotically flat region of space. At 𝑥 = 0,𝐷3
2
is joined

to𝐷3
1
by another wormhole. (See [11] for a recent discussion

of thin shell wormholes exhibiting cylinder symmetry.) As
we will show, in general, the intrinsic curvature of the two
surfaces in the neighborhood of 𝑥 = 0 is relatively large
but, nonetheless, finite. Although these features described in
Figure 1 apply to the particular gauge group 𝑆𝑈(5), they apply
to all 𝑆𝑈(𝑛), 𝑛 ≥ 2. (For 𝑛 = 2 there are no coincident 𝐷3-
branes.)

We now consider in detail the two𝐷3-branes,𝐷
1
and𝐷

2
,

whose 𝑥4-coordinates are radial dependent. The 𝑇-duality
transformation on the 𝑥4-dimension pulls back the metric
onto𝐷

1
and𝐷

2
, inducing the metric, 𝐺󸀠

𝑖𝑗
,

𝐺
󸀠

𝑖𝑗
= 𝐺

𝑖𝑗
𝐼
𝑛
+ (D

𝑖
𝐴
4
)
(𝑖)

𝑇
(𝑖)
D

𝑗
𝐴
(𝑗)

4
𝑇
(𝑗)
𝛿
(𝑖)(𝑗)

𝐺
44
𝐼
𝑛
. (69)

Expanding the right-hand side of (69), we obtain

𝐺
󸀠

𝑖𝑗
=

(
(
(
(
(

(

𝐺
𝑖𝑗

0 ⋅ ⋅ ⋅ 0 0

0 d
.
.
.

.

.

.
.
.
.

.

.

. ⋅ ⋅ ⋅ 𝐺
𝑖𝑗

0 0

0 ⋅ ⋅ ⋅ 0 𝐺
𝑖𝑗
+ 𝐴

𝑖𝑗
0

0 ⋅ ⋅ ⋅ 0 0 𝐺
𝑖𝑗
+ 𝐴

𝑖𝑗

)
)
)
)
)

)

, (70)

where

𝐴
𝑖𝑗
= (

𝑔
𝐷3
𝐿𝛼

1

2
)

2

×(

[𝑄
󸀠
(𝑟)]

2

0 0

0 𝑊̃
2
(𝑟) 0

0 0 𝑊̃
2
(𝑟) 𝑛

2

𝑚
sin2𝜃

) .

(71)

Here,

𝑊̃ (𝑟) = [1 −𝑊 (𝑟)] 𝑄 (𝑟) , (72)

and 𝐺
𝑖𝑗
is given by (45). In obtaining (70), we have used (50)

and the fact that the matrices 𝑇
𝑟
, 𝑇

𝜃
, and 𝑇

𝜙
, (43a), (43b), and

(43c), satisfy the relationship

𝑇
2

𝑟
= 𝑇

2

𝜃
= 𝑇

2

𝜙
= (

1

2
)

2(
(
(

(

0 ⋅ ⋅ ⋅ 0 0 0

.

.

. d
.
.
.
.
.
.
.
.
.

0 ⋅ ⋅ ⋅ 0 0 0

0 ⋅ ⋅ ⋅ 0 1 0

0 ⋅ ⋅ ⋅ 0 0 1

)
)
)

)

. (73)

Each of the diagonal entries in the matrix 𝐺󸀠

𝑖𝑗
corresponds

to the metric on one of the 𝑛 𝐷3-branes obtained from
the 𝑇-duality transformation. In the case of the first 𝑛 − 2
entries, corresponding to the 𝐷3-branes 𝐷3

𝑛−2
, the metric

is flat. In the case of the last two entries corresponding to
the 𝐷3-branes, 𝐷3

1
and 𝐷3

2
, their geometries are identical

and intrinsically curved.The only feature which distinguishes
these two𝐷3-branes is that the function𝑄(𝑟) defining the𝑥4-
coordinate for 𝐷3-brane 𝐷

2
is replaced by −𝑄(𝑟) for 𝐷3

1
, as

evidenced in (65) and (66a) and (66b) and (66c) and also in
Figure 1. As a consequence, the electric andmagnetic charges
of the dyon on𝐷

2
areminus the values on𝐷

1
.The electric and

magnetic field lines enter the wormhole from one 𝐷3-brane
and exit from the other. Figure 2 is an embedding diagram
showing the 𝐷3-branes 𝐷

1
and 𝐷

2
in the neighborhood of

the radial coordinate 𝑟 = 0. As there is no event horizon
surrounding 𝑟 = 0, the two 𝐷3-branes are joined by a
wormhole at 𝑟 = 0.

Of particular interest is the intrinsic scalar curvature of
𝐷3

1
and 𝐷3

2
, in the neighborhood of 𝑟 = 0. The scalar

curvature can be calculated from the metric 𝐺󸀠

𝑖𝑗
, (70), and its

value 𝑅(0) at 𝑟 = 0 is

𝑅 (0) = 216 sin𝜓
𝐿
6

𝐷3
sin3𝜓

[𝐿
4

𝐷3
sin2𝜓 + (12𝜋𝛼󸀠)2]

2
. (74)

For a given value of sin𝜓, 𝑅(0) assumes its maximum value
𝑅̃(0):

𝑅̃ (0) =
27√3

8

sin𝜓
𝜋𝛼󸀠

, (75)

when 𝐿
𝐷3
= 𝐿̃

𝐷3
, where

𝐿̃
𝐷3
= (

12√3𝜋𝛼
󸀠

sin𝜓
)

1/2

. (76)

For either 𝐿
𝐷3

→ 0 or 𝐿
𝐷3

→ ∞, the scalar curvature
𝑅(0) → 0; that is, the geometry of 𝐷

1
and 𝐷

2
becomes

flat, everywhere. The expression for the scalar curvature
𝑅(𝑟) is a complicated function of 𝑟 and not amenable to
straightforward interpretation and, therefore, will not be
given. In Figure 3, we show a plot of the scalar curvature as a
function of the radial coordinate. In this example,𝐿

𝐷3
= √𝛼󸀠,

and the dyon has only one unit of magnetic charge so that
sin𝜓 = 1. Near 𝑟 = 0, the scalar curvature is positive and
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Figure 1: Embedding Functions of the 5 𝐷3-branes for the gauge
group 𝑆𝑈(5). The scaled coordinate 𝑥4/𝐿

𝐷3
is plotted as a function

of the scaled radial coordinate, 𝑟/𝐿
𝑑
, for the 5 𝐷3-branes.The radial

coordinate, 𝑟, is scaled by the size of the dyon, 𝐿
𝑑
, and the 𝑥4

coordinate is scaled by the separation between the two 𝐷3-branes
𝐷3

1
and𝐷3

1
in the asymptotic limit of large 𝑟.

Figure 2: Wormhole. Shown is the embedding diagram for the
two𝐷3-branes,𝐷3

1
and𝐷3

2
, with azimuthal angle suppressed.The

domain of the radial coordinate, 𝑟, is 0 ≤ 𝑟 ≤ 15𝐿
𝑑
, and the range of

the embedding coordinate 𝑥4 is −.45𝐿
𝐷3
≤ 𝑥

4
≤ +.45𝐿

𝐷3
.

finite. As 𝑟 increases, the scalar curvature becomes slightly
negative and asymptotically approaches zero as 𝑟 → ∞.
These features of the scalar curvature described for this
specific example also apply in general.

Consider dyon solutions for which 𝐿
𝐷3
≈ √𝛼󸀠 or less.The

𝐹-strings connecting 𝐷3
1
and 𝐷3

2
would be in their ground

state, a BPS state. In addition, assume that 𝑔
𝐷3
≪ 1; then as

𝑟 → 0 from an asymptotically flat region of space, within

0.00010

0.00008

0.00006

0.00004

0.00002

R
×
𝛼
󳰀

10 20 30 40 50

r/Ld

0

Figure 3: Scalar curvature 𝑅(𝑟). For the case 𝐿
𝐷3
= √𝛼󸀠 and sin𝜓 =

1, the dimensionless scalar curvature, 𝑅 × 𝛼󸀠, is plotted as a function
of the scaled radial coordinate, 𝑟/𝐿

𝑑
.

either 𝐷3
1
or 𝐷3

2
, the string length scale will be reached

before the gravitational interaction becomes dominant at the
length scale of O(𝑔1/4

𝐷3
√𝛼󸀠) [5]. Thus, action, (2), which does

not include the gravitational interaction, should apply, and
consequently the dyon solutions derived should be accurate.
On the other hand, let 𝑔

𝐷3
→ 1/𝑔

𝐷3
so 𝐿

𝐷3
≫ 1; then the

𝐷-string, also a BPS state, becomes lighter than the 𝐹-string.
As a consequence of weak/strong duality, the dyon solutions
should still be applicable with the 𝐹-strings being replaced by
𝐷-strings and the dyon electric and magnetic charges being
interchanged.

After applying a 𝑇-duality transformation to the dyon
solutions obtained in Section 2.1, we have obtained dyon
solutions residing on𝐷3-branes where the effect of the grav-
itational interaction is apparent. This occurs despite the fact
that action, (2), does not explicitly include the gravitational
interaction. The presence of gravitational effects in this case
is an example of how, in string theory, one-loop open string
interactions, that is, Yang-Mills interactions, are related to
tree level, closed string interactions, that is, gravitational
interactions. In Figure 4, we depict, for illustrative purposes,
two parallel 𝐷𝑝-branes in close proximity. The two 𝐷𝑝-
branes can interact through open strings which connect the
two 𝐷𝑝-branes. In the figure, we show the one-loop vacuum
graph for such an interaction which can be interpreted as an
open string moving in a loop. Alternatively, the interaction
can be interpreted as a closed string being exchanged between
two 𝐷𝑝-branes. In a certain sense, spin-2 gravitons, that is,
the closed strings in their massless state, comprise a bound
state of spin-one Yang-Mills bosons, that is, open strings in
their massless state.

Prior to the application of the 𝑇-duality transformation,
the open strings can propagate anywhere in the 𝐷4-brane.
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𝜏

𝜎

Figure 4: One-Loop String Diagram. Shown is the diagram for
an open string, whose end points are fixed on two different 𝐷𝑝-
branes, propagating in a loop, 𝜏 being the time variable on the world
sheet. Alternatively, interchanging 𝜏 with 𝜎, the same diagram can
be interpreted as a closed string being exchanged between the two
𝐷𝑝-branes.

After the 𝑇-duality transformation, the open strings are
constrained to propagate only within𝐷3-branes, whereas the
closed strings can still propagate in the bulk region between
the 𝐷3-branes; that is, gravitons can propagate in spacetime
dimensions not allowed for the Yang-Mills bosons. Based
on certain general assumptions, Weinberg and Witten have
shown the impossibility of constructing a spin-2 graviton
as a bound state of spin-1 gauge fields [12]. One of the
assumptions on which the proof is based is that the spin-
1 gauge bosons and spin-2 gravitons propagate in the same
spacetime dimensions. In the example presented here, this
assumption is violated so that the conclusion of their theorem
is avoided. These dyon solutions, thus, provide a simple
example of gauge/gravity duality, which is discussed in detail
in the work of Polchinski [13].

3. Conclusions

We have investigated dyon solutions within the context of
superstring theory. Beginning with type I 𝑆𝑂(32) superstring
theory in ten dimensions, six of the spatial dimensions of
which are compact, we have applied the group of 𝑇-duality
transformations to five of the compact dimensions.The result
is 16 𝐷4-branes, a number 𝑛 (2 ≤ 𝑛 ≤ 16) of which
are coincident. The five 𝑇-dualized dimensions, whose size
is taken to be vanishingly small, become the five internal
spacetime dimensions while the remaining five dimensions
correspond to the external 4 + 1-dimensional spacetime.
Making a suitable ansatz for the gauge fields residing on the 𝑛
coincident𝐷4-branes, we have obtained dyon solutions from
an action consisting of two terms: the 4 + 1-dimensional,
non-Abelian Dirac-Born-Infeld action and a Wess-Zumino-
like action. The former action gives the low energy effective
coupling of𝐷4-branes to NS-NS closed strings and the latter

of 𝐷4-branes to 𝑅-𝑅 closed strings. The method of solution
involves transforming the 4 + 1-dimensional action from
the Lagrangian formalism to the Hamiltonian formalism
and then seeking solutions which minimize the energy. The
resulting dyon solutions, which are BPS states, reside on the
𝑛 𝐷4-branes and are therefore associated with a supersym-
metric 𝑈(𝑛) gauge theory in 4 + 1 spacetime dimensions.
These dyon solutions can be alternatively understood in the
limit when the size of the remaining compact spacetime
dimension, 𝑥4, approaches zero. In this situation, the 4 + 1-
dimensional spacetime is reduced to a 3 + 1-dimensional
spacetime. As a consequence, the 𝐴

4
component of the

vector potential becomes a Lorentz scalar with respect to
3 + 1-dimensional spacetime and can be interpreted as a
Higgs boson transforming as the adjoint representation of the
𝑈(𝑛) gauge group, analogous to the Higgs boson associated
with the ’t Hooft/Polyakov magnetic monopole. Finally, we
perform a 𝑇-duality transformation in the 𝑥4-direction. As
a result, 𝑛 − 2 of the 𝐷4-branes are transformed into 𝑛 − 2
coincident 𝐷3-branes, whose intrinsic geometry is flat. The
remaining two 𝐷4-branes are transformed into two separate
𝐷3-braneswhose intrinsic geometry is curved. As depicted in
Figure 3, the two𝐷3-branes are joined by wormhole at 𝑟 = 0.
The scalar curvature of each 𝐷3-brane reaches a maximum,
finite value, at 𝑟 = 0 and approaches zero as 𝑟 → ∞.
The dyon resides on these two 𝐷3-branes. Furthermore, the
values of electric and magnetic charges of the dyon on one
𝐷3-brane are minus the values on the other𝐷3-brane, and as
a consequence the electric and magnetic field lines enter the
wormhole from one 𝐷3-brane and exit from the other 𝐷3-
brane.

The 𝑇-duality transformation in the 𝑥4-direction causes
two of the 𝐷3-branes to acquire intrinsic curvature. This
occurs despite the fact that the Lagrangian density from
which the dyon solutions have been obtained does not
explicitly include the gravitational interaction. This can be
understood heuristically from the open string, one-loop
vacuum graph given in Figure 4. From one perspective, the
graph describes an open string, whose ends are fixed on
two different 𝐷3-branes, moving in a loop, or, alternatively,
the exchange of a closed string between two 𝐷3-branes.
Thus, the gravitational interaction, that is, the closed string
interaction, and the Yang-Mills interaction, that is, the open
string interaction, appear as alternative descriptions of the
same interaction. This simple example is suggestive of the
subtle, but profound, connection between the Yang-Mills and
gravitational interactions, specifically gauge/gravity duality.

Appendices

A. Units and Conventions

Concerning conventions, the Minkowski signature is (− +
+ + . . .), and the Levi-Cività symbols 𝜖

0123
= 𝜖

123
=

1. Other relevant conventions are as follows: Greek letters
denote four-dimensional spacetime indices, that is, 0, 1, 2,
and 3, whereas capitalized Roman letters are used when
the spacetime dimension is greater than four. The small
Roman letters, 𝑖, 𝑗, 𝑘, 𝑙, and 𝑚, are reserved for spatial
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dimensions in four-dimensional spacetime, that is, 1, 2, and
3. The small Roman letters, 𝑎, 𝑏, 𝑐, 𝑑, are used to enumerate
the generators of the Lie group. The Levi-Cività tensor in
three space dimensions is 𝜀

𝑖𝑗𝑘
= √|det(𝐺

𝑖𝑗
)|𝜖

𝑖𝑗𝑘
, where 𝐺

𝑖𝑗

are the spatial components of the metric tensor. We focus
our attention on Yang-Mills theories based on the compact
Lie groups, 𝑈(𝑛). A typical group element 𝑢 (𝑢 ∈ 𝑈(𝑛))
is represented in terms of the group parameters 𝜃

𝑎
(𝑎 =

0 ⋅ ⋅ ⋅ 𝑛
2
− 1) as 𝑢 = 𝑒

𝑖𝜃𝑎𝑇
𝑎

. The generators of this group
in the fundamental representation are denoted by 𝑇𝑎 (𝑎 =

0 ⋅ ⋅ ⋅ 𝑛
2
− 1). The generator 𝑇0 generates the 𝑈(1) portion

of 𝑈(𝑛), and the remaining 𝑇𝑎 generate the 𝑆𝑈(𝑛) portion.
The Lie algebra of the group generators, 𝑇𝑎, is [𝑇𝑏, 𝑇𝑐] =
𝑖𝑓

𝑎𝑏𝑐
𝑇
𝑐, with 𝑓𝑎𝑏𝑐 being the structure constants of 𝑈(𝑛). The

generators of 𝑈(𝑛) are required to satisfy the trace condition
Tr(𝑇𝑎𝑇𝑏) = 𝛿

𝑎𝑏
/2. Thus, in particular, 𝑇0 = (1/√2𝑛)𝐼

𝑛
,

𝐼
𝑛
being the 𝑛-dimensional identity matrix. The Yang-Mills

coupling constant is denoted by 𝑔2
𝐷3
. We employ Lorentz-

Heaviside units of electromagnetism so that 𝑐 = ℏ = 𝜖
0
=

𝜇
0
= 1; consequently, the Dirac quantization condition is

𝑔
𝐷3
𝑔
𝑚
= 2𝜋. The quantity 𝑔

𝑚
is the magnetic charge of a unit

charged Dirac monopole.
Consistent with our analysis, the Yang-Mills-Higgs

Lagrangian is

L = −
1

2𝑔
2

𝐷3

Tr (𝐹
𝜇]𝐹

𝜇]
) + Tr (D

𝜇
𝑊D

𝜇
𝑊)

− 𝑉 (2Tr [𝑊𝑊])

= −
1

4𝑔
2

𝐷3

𝐹
𝑎

𝜇]𝐹
𝑎𝜇]

+
1

2
D

𝜇
𝑊

𝑎
D

𝜇
𝑊

𝑎

− 𝑉 (𝑊
𝑎
𝑊

𝑎
) ,

(A.1)

where𝑉 is a potential function depending on the Higgs field,
𝑊, and

𝐹
𝜇] = 𝐹

𝑎

𝜇]𝑇
𝑎
,

𝑊 = 𝑊
𝑎
𝑇
𝑎
,

𝐴
𝜇
= 𝐴

𝑎

𝜇
𝑇
𝑎
.

(A.2)

The covariant derivative,D
𝜇
, is defined as

D
𝜇
≡ 𝜕

𝜇
− 𝑖𝐴

𝜇
,

𝐹
𝜇] = −𝑖 [D𝜇

,D]] .
(A.3)

Thus,

𝐹
𝑎

𝜇] = 𝜕𝜇𝐴
𝑎

] − 𝜕]𝐴
𝑎

𝜇
+ 𝑓

𝑎𝑏𝑐
𝐴
𝑏

𝜇
𝐴
𝑐

]. (A.4)

The Higgs field 𝑊 is a scalar transforming as the adjoint
representation of 𝑈(𝑛) so that its covariant derivative is

D
𝜇
𝑊 = 𝜕

𝜇
𝑊− 𝑖 [𝐴

𝜇
,𝑊] = 𝜕

𝜇
𝑊

𝑎
+ 𝑓

𝑎𝑏𝑐
𝐴
𝑏

𝜇
𝑊

𝑐
. (A.5)

B. Relationships among the Various String
Theory Parameters

In principle, string theory has no adjustable parameters other
than its characteristic length scale, √𝛼󸀠; however, various
parameters of the theory do depend on values of the back-
ground fields. For reference, we provide explicit relationships
between various string theory parameters and 𝛼󸀠. Let Φ

0
be

the vacuum expectation value of the dilaton background; that
is, 𝜙

0
= ⟨Φ⟩, Φ being the dilaton background. The closed

string coupling constant, 𝑔, is

𝑔 = 𝑒
Φ0 . (B.1)

The physical gravitational coupling, 𝜅, is

𝜅
2
≡ 𝜅

2

10
𝑔
2
= 8𝜋𝐺

𝑁
=
1

2
(2𝜋)

7
𝛼
󸀠4
𝑔
2
, (B.2)

where𝐺
𝑁
is Newton’s gravitational constant in 10 dimensions

and 𝜅2
10

= 𝜅
2

11
/2𝜋𝑅. The quantity 𝜅

11
is the gravitational

constant appearing in the eleven-dimensional, low energy
effective action of supergravity, and 𝑅 is the compactification
radius for reducing the eleven-dimensional theory to ten
dimensions. The physical𝐷𝑝-brane tension, 𝜏

𝑝
, is

𝜏
𝑝
≡

𝑇
𝑝

𝑔
=

1

𝑔 (2𝜋)
𝑝
𝛼󸀠(𝑝+1)/2

= (2𝜅
2
)
−1/2

(2𝜋)
(7−2𝑝)/2

𝛼
󸀠4
,

(B.3)

where 𝑇
𝑝
is𝐷𝑝-brane tension.The𝐷𝑝-brane 𝑅-𝑅 charge, 𝜇

𝑝
,

is

𝜇
𝑝
= 𝑔𝜏

𝑝
=

1

(2𝜋)
𝑝
𝛼󸀠(𝑝+1)/2

. (B.4)

The coupling constant 𝑔
𝐷𝑝

of the 𝑈(𝑛) Yang-Mills theory on
a𝐷𝑝-brane is given by

𝑔
2

𝐷𝑝
=

1

(2𝜋𝛼󸀠)
2

𝜏
𝑝

= (2𝜋)
𝑝−2

𝑔𝛼
󸀠(𝑝−3)/2

. (B.5)

The ratio of the 𝐹-string tension, 𝜏
𝐹1
, to the 𝐷-string (𝐷1-

brane) tension, 𝜏
𝐷1
, is

𝜏
𝐹1

𝜏
𝐷1

= 𝑔. (B.6)

C. Evaluation of the Dirac-Born-Infeld
Determinant in an Arbitrary Number of
Dimensions

In this appendix, we provide a heuristic derivation of the
formula for evaluating an 𝑁

󸀠-dimensional (𝑁󸀠
= 𝑝 +

1) determinant of the form det(𝐺
𝐴𝐵

+ 2𝜋𝛼
󸀠
𝐹
𝐴𝐵
) (𝐴, 𝐵 =

0 ⋅ ⋅ ⋅ 𝑝), (2) and (5). (The notation used in this appendix
does not adhere strictly to the font conventions defined in
Appendix A.) Without loss of generality, we assume that
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the metric is diagonal. Consequently, we can express the
determinant in the generic form

det (ℎ) 𝜖
𝐼𝐽⋅⋅⋅𝑂𝑃

= 𝜖
𝑖𝑗⋅⋅⋅𝑜𝑝

ℎ
𝑖𝐼
ℎ
𝑗𝐽
⋅ ⋅ ⋅ ℎ

𝑜𝑂
ℎ
𝑝𝑃
, (C.1)

where ℎ
𝑖𝑗
= 𝑓

𝑖𝑗
= 2𝜋𝛼

󸀠
𝐹
(𝑖−1)(𝑗−1)

, (𝑖, 𝑗 = 1 ⋅ ⋅ ⋅ 𝑁󸀠
) and ℎ

(𝑖)𝑖
=

𝑔
(𝑖)𝑖

= 𝐺
(𝑖−1)(𝑖−1)

. Note: indices enclosed within parentheses
are not summed.

Thus, the right-hand side of (C.1) comprises a sum of
terms, each of which consists of products of the metric, 𝑔

(𝑖)𝑖

or𝑓
𝑖𝑗
.We need only to consider terms inwhich the number of

𝑓
𝑖𝑗
in each product is even, since terms containing products

of an odd number of 𝑓
𝑖𝑗
vanish because 𝐹

𝐴𝐵
= −𝐹

𝐵𝐴
. Thus,

det(ℎ
𝑖𝑗
), (C.1), can be reexpressed as a sum

det (ℎ) 𝜖
𝐼𝐽⋅⋅⋅𝑂𝑃

= (𝐻
0
+ 𝐻

2
+ 𝐻

4
+ 𝐻

2𝑛
󸀠 + ⋅ ⋅ ⋅) 𝜖

𝐼𝐽⋅⋅⋅𝑂𝑃
.

(C.2)

Each 𝐻
2𝑛
󸀠 is a term in (C.1) which contains a product of 𝑓

𝑖𝑗

which is even in number. The values of 2𝑛󸀠 range from 0 to
𝑁

󸀠 or 𝑁󸀠
− 1 depending on whether 𝑁󸀠 is even or odd. The

value of 𝐻
0
, which contains no off-diagonal elements, 𝑓

𝑖𝑗
, is

evaluated as

𝐻
0
= det (𝑔) ≡ 𝑔

11
𝑔
22
⋅ ⋅ ⋅ 𝑔

𝑁
󸀠
𝑁
󸀠 . (C.3)

In order to understand the structure of𝐻
2𝑛
󸀠 , for arbitrary

𝑛
󸀠, we first study the structure of𝐻

4
:

𝐻
4
𝜖
𝐼𝐽⋅⋅⋅𝑂𝑃

= 𝜖
𝐼𝐽⋅⋅⋅𝑘𝑙𝑚𝑛⋅⋅⋅𝑂𝑃

𝑔
(𝐼)𝐼
𝑔
(𝐽)𝐽

⋅ ⋅ ⋅ 𝑔
(𝑂)𝑂

𝑔
(𝑃)𝑃

𝑓
𝑘𝐾
𝑓
𝑙𝐿
𝑓
𝑚𝑀
𝑓
𝑛𝑁
.

(C.4)

Equation (C.4) represents a term in (C.1) where the values
of (𝑘, 𝑙, 𝑚, 𝑛) in the sum are restricted to the specific integer
values (𝐾, 𝐿,𝑀,𝑁) from the set of integers (1, 2 ⋅ ⋅ ⋅ 𝑁󸀠

).
Multiplying (C.4) by the Levi-Cività symbol (which does not
change value of the expression), we obtain

𝐻
4
= 𝑔

(𝐼)𝐼
𝑔
(𝐽)𝐽

⋅ ⋅ ⋅ 𝑔
(𝑂)𝑂

𝑔
(𝑃)𝑃

𝜖
𝐼𝐽⋅⋅⋅𝑘𝑙𝑚𝑛⋅⋅⋅𝑂𝑃

𝑓
𝑘𝐾
𝑓
𝑙𝐿
𝑓
𝑚𝑀
𝑓
𝑛𝑁
𝜖
𝐼𝐽⋅⋅⋅𝐾𝐿𝑀𝑁⋅⋅⋅𝑂𝑃

.

(C.5)

We now rearrange the terms in (C.5) in a form which is
more useful for the subsequent analysis. By virtue of the Levi-
Cività symbols, none of the (𝑘, 𝑙, 𝑚, 𝑛) is equal to any of the
others, and similarly for (𝐾, 𝐿,𝑀,𝑁); however, each of the
(𝑘, 𝑙, 𝑚, 𝑛) is equal to one of the (𝐾, 𝐿,𝑀,𝑁). Because of the
antisymmetry of 𝑓

𝑖𝑗
, some of the terms in the sum vanish,

that is, whenever 𝑘 = 𝐾, or whenever 𝑙 = 𝐿, and so forth. By
explicit construction or by a combinatorics argument, we can
show that there are nine terms which are nonvanishing. We
consider one typical term in the sum, for example, the term,
{1},

{1} = {𝑚 = 𝐾, 𝑘 = 𝐿, 𝑛 =𝑀, 𝑙 = 𝑁} . (C.6)

We now show how to reexpress (C.5) so half, that is, 2, of the
four 𝑓

𝑖𝑗
are associated with one of the Levi-Cività symbols

and the other half are associated with the other Levi-Cività

symbol. In order for the two 𝑓
𝑖𝑗
to be associated with one

Levi-Cività symbol, the four subscripts on the two 𝑓
𝑖𝑗
must

be different. We associate the first 𝑓
𝑘𝐾

with the Levi-Cività
symbol to its left. To determine the remaining associations,
we proceed as follows. Since 𝐾 = 𝑚, we associate 𝑓

𝑚𝑀
with

the Levi-Cività symbol to the right. We now consider the
second term in (C.5), that is, 𝑓

𝑙𝐿
. Since 𝐿 = 𝑘, we associate 𝑓

𝑙𝐿

with the Levi-Cività symbol to its right and𝑓
𝑛𝑁

with the Levi-
Cività symbol to the right. We continue in this manner to the
next remaining term, 𝑓

𝑛𝑁
. Since𝑁 does not equal any of the

lowercase Roman subscripts associated with the Levi-Cività
symbol to the left (𝑁 = 𝑙), we assign 𝑓

𝑛𝑁
to the Levi-Cività

symbol to the left.This completes the process since each 𝑓
𝑖𝑗
is

associated with either of the two Levi-Cività symbols. Using
(C.6) we reexpress the subscripts on the Levi-Cività symbols
in (C.5):

𝐻
4,{1}

= 𝑔
(𝐼)𝐼
𝑔
(𝐽)𝐽

⋅ ⋅ ⋅ 𝑔
(𝑂)𝑂

𝑔
(𝑃)𝑃

𝜖
𝐼𝐽⋅⋅⋅(𝑘)𝑁𝐾(𝑛)⋅⋅⋅𝑂𝑃

𝑓
𝑘𝐾
𝑓
𝑛𝑁
𝑓
𝑚𝑀
𝑓
𝑙𝐿
𝜖
𝐼𝐽⋅⋅⋅(𝑚)𝐿𝑀(𝑙)⋅⋅⋅𝑂𝑃

.

(C.7)

Now, we permute the subscripts of the Levi-Cività sym-
bols so that the corresponding lowercase and uppercase
Roman letters are adjoining. Both uppercase𝑀 and𝐾 require
the same number of movements as the uppercase 𝑁 and 𝐿
do. Since the number of permutations is even, no change in
sign of the Levi-Cività symbols results from permuting the
subscripts. Equation (C.7) becomes

𝐻
4,{1}

= 𝑔
(𝐼)𝐼
𝑔
(𝐽)𝐽

⋅ ⋅ ⋅ 𝑔
(𝑂)𝑂

𝑔
(𝑃)𝑃

𝜖
𝐼𝐽⋅⋅⋅(𝑘)(𝐾)(𝑛)(𝑁)⋅⋅⋅𝑂𝑃

𝑓
𝑘𝐾
𝑓
𝑛𝑁
𝑓
𝑚𝑀
𝑓
𝑙𝐿
𝜖
𝐼𝐽⋅⋅⋅(𝑚)(𝑀)(𝑙)(𝐿)⋅⋅⋅𝑂𝑃

.

(C.8)

Each of the remaining 𝐻
4,{𝑠}

(𝑠 = 2 ⋅ ⋅ ⋅ 9) can be expressed,
similarly.

In order to understand, in generic terms, the structure of
𝐻
4
, consider the following expression𝐻󸀠

4
:

𝐻
󸀠

4
= 𝑔

(𝐼)𝐼
𝑔
(𝐽)𝐽

⋅ ⋅ ⋅ 𝑔
(𝑂)𝑂

𝑔
(𝑃)𝑃

𝜖
𝐼𝐽⋅⋅⋅𝑘𝐾𝑛𝑁⋅⋅⋅𝑂𝑃

𝑓
𝑘𝐾
𝑓
𝑛𝑁
𝑓
𝑚𝑀
𝑓
𝑙𝐿
𝜖
𝐼𝐽⋅⋅⋅𝑚𝑀𝑙𝐿⋅⋅⋅𝑂𝑃

.

(C.9)

The expression 𝐻󸀠

4
differs from the individual term 𝐻

4,{1}

in that the repeated indices (𝑘, 𝐾, 𝑛,𝑁) and (𝑚,𝑀, 𝑙, 𝐿)

are summed. By inspection, the term 𝐻
4,{1}

, as well as the
remaining terms 𝐻

4,{𝑠}
(𝑠 = 2 ⋅ ⋅ ⋅ 9), is contained in 𝐻

󸀠

4
.

Overtly, the number of nonvanishing terms in (C.9) is (4!)2,
each factor of (4!) coming from each one of the Levi-Cività
symbols. By a combinatorics argument, each factor of 4!
is eightfold redundant so that the number of independent
terms associated with each Levi-Cività symbol is three.
Consequently, the number of independent terms in 𝐻󸀠

4
is 9,

that is, 3 × 3, with redundancy 8 × 8. Thus,

𝐻
4
=

1

8 × 8
𝐻

󸀠

4
. (C.10)

Using similar reasoning, we can show that

𝐻
2𝑛
󸀠 =

𝐻
󸀠

2𝑛
󸀠

𝑅
󸀠

2𝑛
󸀠 × 𝑅

󸀠

2𝑛
󸀠

, (C.11)
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where

𝑅
󸀠

2𝑛
󸀠 = 2

𝑛
󸀠

𝑛
󸀠
!. (C.12)

In order to show (C.11), one needs to use the fact that the
number of nonvanishing terms, 𝑅

2𝑛
󸀠 , in𝐻

2𝑛
󸀠 is given by

𝑅
2𝑛
󸀠 = (2𝑛

󸀠
− 1)𝑅

2(𝑛
󸀠
−1)
(2𝑛

󸀠
− 1)

= [(2𝑛
󸀠
− 1)!!]

2

,

(C.13)

so that the number of independent terms, 𝑟
2𝑛
󸀠 , associatedwith

each of the two Levi-Cività symbols of𝐻󸀠

2𝑛
󸀠 is

𝑟
2𝑛
󸀠 = (2𝑛

󸀠
− 1)!!. (C.14)

Thus,

𝑅
󸀠

2𝑛
󸀠 =

(2𝑛
󸀠
)!

𝑟
2𝑛
󸀠

= 2
𝑛
󸀠

𝑛
󸀠
!. (C.15)

Both (C.13) and (C.14) are obtained from combinatorics
arguments. Using themetric tensor to lower indices in𝑓𝑖𝑗 and
the relationship (C.15), we reexpress (C.11)

𝐻
2𝑛
󸀠 = − det (𝑔) 1

(𝑁󸀠 − 2𝑛󸀠)!
(2𝑛

󸀠
− 1)!!

2

×
∗
(𝑓 ∧ 𝑓 ∧ ⋅ ⋅ ⋅ 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛
󸀠

)

⋅
∗
(𝑓 ∧ 𝑓 ∧ ⋅ ⋅ ⋅ ∧ 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛
󸀠

).

(C.16)

The Hodge ∗ operation transforms an 𝑠-form 𝑄 in an 𝑁󸀠-
dimensional space to an (𝑁󸀠

− 𝑠)-form whose components
are

(
∗
𝑄)

𝑖𝑠+1⋅⋅⋅𝑖𝑁󸀠
= 𝑄

𝑖𝑗1
⋅⋅⋅𝑗𝑠
1

𝑠!
√det 󵄨󵄨󵄨󵄨𝑔

󵄨󵄨󵄨󵄨𝜖𝑗1𝑗2⋅⋅⋅𝑗𝑠𝑖𝑠+1⋅⋅⋅𝑖𝑁󸀠
,

∗
𝑄 ⋅

∗
𝑄 ≡ (

∗
𝑄)

𝑖𝑠+1⋅⋅⋅𝑖𝑁󸀠
(
∗
𝑄)

𝑖𝑠+1⋅⋅⋅𝑖𝑁󸀠 .

(C.17)

Note that in (C.16)𝑓 ∧ 𝑓 ∧ ⋅ ⋅ ⋅ 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛
󸀠

is a 2𝑛󸀠-form. Also, in (C.16),

the minus sign to the right of the equal sign is a consequence
of the Minkowski signature of the metric; that is, 𝜖12⋅⋅⋅𝑁

󸀠

=

−𝜖
12⋅⋅⋅𝑁

󸀠 . For Euclidean signature, the minus sign is replaced
by a plus sign. Using properties of the Levi-Cività symbol, we
can show that

𝐻
2
= det (𝑔) 1

2!
𝑓
𝑖𝑗
𝑓
𝑖𝑗
, (C.18)

irrespective of the signature of themetric. Using (C.2), (C.16),
and (C.18), we obtain

det (ℎ) = det (𝑔)[[

[

1 +
1

2!
𝑓
𝑖𝑗
𝑓
𝑖𝑗

∓

2𝑛
󸀠
=𝑁
󸀠󸀠

∑

2𝑛
󸀠
=4

(
1

(𝑁󸀠 − 2𝑛󸀠)!

× (2𝑛
󸀠
− 1)!!

2∗
(𝑓 ∧ 𝑓 ∧ ⋅ ⋅ ⋅ 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛
󸀠

)

⋅
∗
(𝑓 ∧ 𝑓 ∧ ⋅ ⋅ ⋅ ∧ 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛
󸀠

))
]
]

]

,

(C.19)

where

𝑁
󸀠󸀠
=

{

{

{

𝑁
󸀠 if 𝑁󸀠 is even

𝑁
󸀠
− 1 if 𝑁󸀠 is odd.

(C.20)

The minus (plus) sign corresponds to a metric with
Minkowski (Euclidean) signature.

For the case when𝑁󸀠
= 5 and the metric has Minkowski

signature, (C.19) reduces to

det (ℎ) = det (𝑔) [1 + 1

2!
𝑓
𝑖𝑗
𝑓
𝑖𝑗
−

1

(5 − 2 ⋅ 2)!

× (3
2
⋅ 1

2
)
∗
(𝑓 ∧ 𝑓)

𝑘

∗
(𝑓 ∧ 𝑓)

𝑘

] .

(C.21)
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