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The certain and uncertain neutral systems with time-delay and saturating actuator are considered in this paper. In order to analyse
and optimize the system, auxiliary functions are presented based on additive decomposition approach and the relationship among
them is discussed. As the novel stability criterion, two sufficient conditions are obtained for asymptotic stability of the neutral
systems. Furthermore, the paper gives the stability analysis algorithm and optimality algorithm to optimize the result. Finally, from
the two-stage dissolution tank of solid caustic soda in a chemical plant, three numerical examples are implemented to show the
effectiveness of the proposed method.

1. Introduction

Delay is often inevitable in various practical systems; exam-
ples include population ecology [1], steam or water pipes,
heat exchanges [2], and many others [3–5]. In the control
engineering language, these delays can be categorized as state
delay, input or output delay (retarded systems), delay in the
state derivative (neutral systems), and so forth. Guaranteeing
the stability of systems with delay is one core design objective
both in theory and in practice. Particularly, in terms of neutral
systems, the focus has mainly been on systems with identical
delays in neutral and discrete terms [6–10]. Results also exist
that depend only on the size of the discrete delays but not on
the size of the neutral delays [11–13].

Besides delays, the saturated controller is apt to cause
instability as well. In the presence of actuator saturation,
the problem of estimating asymptotic stability regions for
linear systems subject to it has been studied by many
researches in the past years in [14]. Generally speaking, the
existingmethods for estimating the stability regions for linear
systems with saturating actuators are based on the concept of
Lyapunov level set. LMI optimization-based approaches were
proposed to estimate the stability regions by using quadratic
Lyapunov functions and the Lur’s-type Lyapunov functions
in [15–19].

For the studies in response to both issues of delay and
saturation, the sufficient conditions for systems with delay
and saturated actuator are obtained in [18, 20–22]; Lyapunov-
Krasovskii functional is employed to investigate the delay-
dependent robust stabilization for uncertain neutral systems
with saturated actuators in [20]; a controller is constructed
in terms of linear matrix inequalities using descriptor model
transformation in [18], just to name a few.However, this paper
wants to provide a new method to find the system stability
region and give the optimality algorithm to obtain the largest
region in this method. Besides, it gives the application in the
chemical process of the plant.

In this paper, a novel Lyapunov functional is proposed
based on the delay-dividing approach, which leads to less
conservative stability conditions for linear systems with time-
delay and saturated actuator. This is done by introducing
auxiliary functions based on the additive decomposition
approach [23]. We also propose an algorithm to obtain
the optimal auxiliary function. Finally, we design a two-
stage dissolution tank of the chemical process by modeling
it as a neutral delay system with actuator saturation and
demonstrate the effectiveness of the proposed method.

Notations. ⋆ denotes the symmetric part to be a symmetric
block matrix,R𝑛 denotes the 𝑛 dimensional Euclidean space,
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andR𝑚×𝑛 is the set of all real𝑚 × 𝑛matrices. 𝐼 is the identity
matrix with proper dimensions.𝐶

0
is the set of all continuous

functions from [−𝜏, 0] to R𝑛 where 𝜏 is a constant represent-
ing the neutral time-delay. 𝐴𝑇 is the transpose of matrix 𝐴.
|𝐴| = [|𝑎

𝑖𝑗
|], with 𝐴 = [𝑎

𝑖𝑗
]. For real symmetric matrices

𝑋 and 𝑌, the notation 𝑋 ≥ 𝑌 (respectively, 𝑋 > 𝑌) means
that the matrix 𝑋 − 𝑌 is positive semidefinite (respectively,
positive definite). 𝜆max (min)(𝐴) is the eigenvalue of matrix 𝐴
with maximum (minimum) real part. ‖V‖ is the Euclidean
normof vector V, ‖V‖ = (V𝑇V)1/2, while ‖𝐴‖ is spectral normof
matrix 𝐴, ‖𝐴‖ = [𝜆max(𝐴

𝑇

𝐴)]
1/2. 𝜌 represents the domain of

attraction. diag{⋅ ⋅ ⋅ } denotes a block-diagonal matrix decided
by the corresponding elements in the brace and finally𝐵(𝜌) =
{𝑦 ∈ 𝑅

𝑛

: ‖𝑦‖ ≤ 𝜌}.

2. Problem Statement and Preliminaries

The following neutral system with time-delay and actuator
saturation is considered:

𝑥̇ (𝑡) − 𝐷𝑥̇ (𝑡 − 𝜏) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − ℎ) + 𝐶 Sat (𝑢 (𝑡)) , (1)

where 𝑥(𝑡) ∈ R𝑛 is the system state and 𝑢(𝑡) is the control
input. ℎ > 0 is the constant discrete time delay and 𝜏 > 0
is the constant neutral time-delay. 𝐴, 𝐵, 𝐶, and 𝐷 are known
real constant parameter matrices of appropriate dimensions
with ‖𝐷‖ < 1. Sat(⋅) is used to denote the standard saturation
function defined for 𝑢 = [𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑚
]:

Sat (𝑢) = [Sat (𝑢
1
) , Sat (𝑢

2
) , . . . , Sat (𝑢

𝑚
)]

𝑇

,

Sat (𝑢
𝑖
) =

{
{

{
{

{

𝑢
+

𝑖
if 𝑢
𝑖
> 𝑢
+

𝑖

𝑢
𝑖

otherwise
−𝑢
+

𝑖
if 𝑢
𝑖
< −𝑢
+

𝑖
.

(2)

The following linear state feedback is to be designed:

𝑢 (𝑡) = −𝐾𝑥 (𝑡) , (3)

where the linear state feedback gain 𝐾 = [𝐾𝑇
1
, 𝐾
𝑇

2
, . . . , 𝐾

𝑇

𝑚
]
𝑇;

𝐾
𝑖
∈ R𝑛 is an 𝑛-dimensional row vector.
Here we have slightly abused the notation by using Sat to

denote both a scalar valued and a vector valued function. We
have also assumed a unity saturation level for the saturation
function without loss of generality.

Define 𝐷𝑧(𝑢(𝑡)) = 𝑢(𝑡) − Sat(𝑢(𝑡)) where 𝐷𝑧(𝑢(𝑡)) =
[𝑑𝑧(𝑢

1
), 𝑑𝑧(𝑢

2
), . . . , 𝑑𝑧(𝑢

𝑚
)]
𝑇 and

𝑑𝑧 (𝑢
𝑖
) =

{
{

{
{

{

𝑢
𝑖
− 𝑢
+

𝑖
if 𝑢
𝑖
> 𝑢
+

𝑖

0 otherwise
𝑢
𝑖
+ 𝑢
+

𝑖
if 𝑢
𝑖
< −𝑢
+

𝑖
.

(4)

The saturated system can now be written as follows:

𝑥̇ (𝑡) − 𝐷𝑥̇ (𝑡 − 𝜏) = 𝐴
𝑐
𝑥 (𝑡) + 𝐵𝑥 (𝑡 − ℎ) + 𝐶𝐷𝑧 (𝐾𝑥 (𝑡)) ,

(5)

where 𝐴
𝑐
= 𝐴 − 𝐶𝐾.

The neutral system (5) then leads to the following by
model transformation:

𝑑

𝑑𝑡

[L (𝑥 (𝑡))] = ̂𝐴
𝑐
𝑥 (𝑡) + 𝐶𝐷𝑧 (𝐾𝑥) , (6)

where ̂𝐴
𝑐
= 𝐴
𝑐
+𝐵 = 𝐴+𝐵−𝐶𝐾 andL(𝑥(𝑡)) = 𝑥(𝑡)−𝐷𝑥(𝑡−

𝜏) + 𝐵∫

𝑡

𝑡−ℎ

𝑥(𝑠)𝑑𝑠.
The following definitions and lemmas are required before

proceeding with themain contributions presented in the next
section.

Definition 1 (see [24]). The operatorL : 𝐶
0
→ R𝑛 is said to

be stable if the zero solution of the homogeneous difference
equation

L (𝑥 (𝑡)) = 0, 𝑡 ≥ 0,

𝑥
0
= 𝜓 ∈ {𝜑 ∈ 𝐶

0
:L𝜑 = 0}

(7)

is uniformly asymptotically stable. The stability of operator
L is necessary for the stability of neutral system (1) with (3),
which is always satisfied when ‖ℎ|𝐵| + 𝐷‖ < 1.

Lemma 2 (see [24]). For any matrix 𝐵,𝐷 ∈ R𝑚×𝑛, if ‖ℎ|𝐵| +
𝐷‖ < 1, then the operatorL : 𝐶

0
→ R𝑛 with

L (𝑥 (𝑡)) = 𝑥 (𝑡) + 𝐵∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠 − 𝐷𝑥 (𝑡 − 𝜏) (8)

is stable.

Lemma 3 (see [25]). Let 𝑈 ∈ R𝑛×𝑛 and 𝑉 ∈ R𝑛×𝑛, and let
𝑥 ∈ R𝑛. Then we have

𝑥
𝑇

𝑈𝑉𝑥 ≤ ‖𝑈𝑉‖ 𝑥
𝑇

𝑥 ≤ ‖𝑈‖ ‖𝑉‖ 𝑥
𝑇

𝑥,

2𝑥
𝑇

𝑈𝑉𝑥 ≤ 𝑥
𝑇

(

1

𝛾

𝑈𝑈
𝑇

+ 𝛾𝑉
𝑇

𝑉)𝑥, ∀𝛾 > 0.

(9)

Definition 4 (see [23]). Auxiliary functions 𝑊
1
(𝜌
1
) and

𝑊
2
(𝜌
2
) are described in the following

𝑊
1
(𝜌
1
) =

{
{

{
{

{

𝑚

∑

𝑖=1

(1 −

𝑢
+

𝑖

󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
1

)

2

𝐾
𝑇

𝑖
𝐾
𝑖

if 󵄩󵄩󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
1
> 𝑢
+

𝑖
,

0 otherwise,

𝑊
2
(𝜌
2
) =

{
{

{
{

{

𝑚

∑

𝑖=1

(

𝜌
2

4𝑢
+

𝑖

)

2

(𝐾
𝑇

𝑖
𝐾
𝑖
)

2

if 󵄩󵄩󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
2
> 𝑢
+

𝑖
,

0 otherwise.
(10)

3. Main Results

In this section, we firstly construct the auxiliary functions
𝑊
3
(𝜌
3
),𝑊
4
(𝜌
4
), . . . ,𝑊

𝑛
(𝜌
𝑛
) using the geometric method and

with them present a new delay-dependent stabilization crite-
rion.Then the relationship between those auxiliary functions
is explored which helps to obtain the optimal𝑊

𝑖
(𝜌
𝑖
).
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Consider the polynomial function 𝑦 = 𝑎𝑥
𝑛 which is

tangent with saturated function 𝑦 = 𝑥 − 𝑢+
𝑖
in positive axis.

𝑎 can be firstly determined by the geometric relation and
auxiliary polynomial functions can be obtained.

Let

𝑦 = 𝑎𝑥
𝑛

,

𝑦 = 𝑥 − 𝑢
+

𝑖
.

(11)

The slope of polynomial function 𝑦 = 𝑎𝑥𝑛 equals to 1 at
the tangent point. Thus we have

̇𝑦 = 𝑎𝑛𝑥
𝑛−1

= 1. (12)

It can be determined by solving the resulting equations
simultaneously and we obtain

𝑎 = (

𝑛 − 1

𝑢
+

𝑖

)

𝑛−1

1

𝑛
𝑛
. (13)

Noting in the polynomial function, we replace 𝑥 with 𝑢
𝑖

here so that they have the same independent variable with
𝑑𝑧(𝑢
𝑖
). Consider

𝑦 = (

𝑛 − 1

𝑢
+

𝑖

)

𝑛−1

1

𝑛
𝑛
𝑢
𝑛

𝑖
. (14)

Thus we compare the nonlinear function 𝑑𝑧(𝑢
𝑖
) with the

polynomial function above. For simplicity, we consider the
cases 𝑛 = 2 and 𝑛 = 3. As shown in Figure 1, the graphics
of quadratic and cubic polynomial functions are above the
graphic of |𝑑𝑧(𝑢

𝑖
)|.

Furthermore, according to the nature of the polynomial
function when 𝑛 = 4, 5, . . ., the graphic of function 𝑦 = ((𝑛 −
1)/𝑢
+

𝑖
)
𝑛−1

(1/𝑛
𝑛

)𝑢
𝑛

𝑖
is also above the graphic of |𝑑𝑧(𝑢

𝑖
)|. So we

have the following inequality:

󵄨
󵄨
󵄨
󵄨
𝑑𝑧 (𝑢
𝑖
)

󵄨
󵄨
󵄨
󵄨
≤ (

𝑛 − 1

𝑢
+

𝑖

)

𝑛−1

1

𝑛
𝑛
𝑢
𝑛

𝑖
, (15)

where 𝑛 = 2, 3, 4, . . ..

Lemma5. When 𝑛 = 2, 3, 4, . . ., the following inequality holds:

𝐷𝑧
𝑇

(𝐾𝑥 (𝑡))𝐷𝑧 (𝐾𝑥 (𝑡)) ≤ 𝑥
𝑇

𝑊
𝑛
(𝜌
𝑛
) 𝑥, (16)

where

𝑊
𝑛
(𝜌
𝑛
) =

{
{

{
{

{

𝑚

∑

𝑖=1

(

(𝑛 − 1) 𝜌
𝑛

𝑛
𝑛/(𝑛−1)

𝑢
+

𝑖

)

2𝑛−2

(𝐾
𝑇

𝑖
𝐾
𝑖
)

𝑛

𝑖𝑓

󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
𝑛
>𝑢
+

𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(17)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1: Two polynomial functions are 𝑦 = (1/4𝑢+
𝑖
)𝑢
2

𝑖
and 𝑦 =

(4/27)(1/𝑢
+

𝑖
)
2

𝑢
3

𝑖
(when 𝑢+

𝑖
= 2) and the piecewise linear function is

𝑑𝑧(𝑢
𝑖
).

Proof. From (15) we obtain that

𝐷𝑧
𝑇

(𝐾𝑥)𝐷𝑧 (𝐾𝑥) =

𝑚

∑

𝑖=1

𝑑𝑧
2

(𝑢
𝑖
)

≤

𝑚

∑

𝑖=1

(

𝑛 − 1

𝑢
+

𝑖

)

2𝑛−2

1

𝑛
2𝑛
𝑢
2𝑛

𝑖

≤

𝑚

∑

𝑖=1

(

𝑛 − 1

𝑢
+

𝑖

)

2𝑛−2

×

1

𝑛
2𝑛
𝑥
𝑇

𝐾
𝑇

𝑖
𝐾
𝑖
𝑥 ⋅ ⋅ ⋅ 𝑥

𝑇

𝐾
𝑇

𝑖
𝐾
𝑖
𝑥

≤

𝑚

∑

𝑖=1

(

𝑛 − 1

𝑢
+

𝑖

)

2𝑛−2

×

1

𝑛
2𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥𝑥
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩

𝑛−1

𝑥
𝑇

𝐾
𝑇

𝑖
𝐾
𝑖
⋅ ⋅ ⋅ 𝐾
𝑇

𝑖
𝐾
𝑖
𝑥

≤

𝑚

∑

𝑖=1

(

𝑛 − 1

𝑢
+

𝑖

)

2𝑛−2

1

𝑛
2𝑛
𝜌
2𝑛−2

𝑛
𝑥
𝑇

(𝐾
𝑇

𝑖
𝐾
𝑖
)

𝑛

𝑥

≤ 𝑥
𝑇

𝑊
𝑛
(𝜌
𝑛
) 𝑥.

(18)

This completes the proof.

3.1. Asymptotic Stability for Certain Neutral System

Theorem 6. The neutral system with time-delay and actuator
saturation as described in (1) and (3) is asymptotic stability if
‖ℎ|𝐵| + 𝐷‖ < 1 and there exist scalars 𝛾

𝑖
> 0, 𝑖 = 1, 2, 3, 𝑃 > 0,

̂
𝑃 > 0, 𝑄 = [𝑄

𝑖𝑗
]
2×2

, 𝑄
𝑖𝑗
> 0, 𝑅 = [𝑅

𝑖𝑗
]
2×2

, 𝑅
𝑖𝑗
> 0, 𝑇

𝑖
> 0
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(𝑖 = 1, 2, 3, 4, 5, 6), and ̃𝑇
𝑖
> 0 (𝑖 = 3, 4) such that the following

symmetric linear matrix inequality holds:

Φ =

[

[

[

[

[

[

[

[

[

[

Φ
11
Φ
12

0 Φ
14
Φ
15
Φ
16

0

⋆ Φ
22
Φ
23

0 0 0 0

⋆ ⋆ Φ
33

0 0 0 0

⋆ ⋆ ⋆ Φ
44
Φ
45

0 0

⋆ ⋆ ⋆ ⋆ Φ
55

0 0

⋆ ⋆ ⋆ ⋆ ⋆ Φ
66

0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Φ
77

]

]

]

]

]

]

]

]

]

]

< 0, (19)

where

𝑊
𝑛
(𝜌) =

{
{

{
{

{

𝑚

∑

𝑖=1

(

(𝑛 − 1) 𝜌
𝑛

𝑛
𝑛/(𝑛−1)

𝑢
+

𝑖

)

2𝑛−2

(𝐾
𝑇

𝑖
𝐾
𝑖
)

𝑛

𝑖𝑓

󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
𝑛
> 𝑢
+

𝑖
,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

Φ
11
=
̂
𝐴
𝑇

𝑐
𝑃 + 𝑃

̂
𝐴
𝑐
+

1

𝛾
1

̂
𝑃 + (𝛾

1
+ 𝛾
2
+ 𝛾
3
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶
𝑇

𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑊
𝑖
(𝜌
𝑖
)

+ 𝑄
11
+ 𝑅
11
+ 𝑇
1
+ 𝑇
2
+

ℎ
2

2

(
̃
𝑇
3
+ 𝑇
5
)+

𝜏
2

2

(
̃
𝑇
4
+ 𝑇
6
) ,

Φ
22
= 𝑄
22
− 𝑄
11
,

Φ
33
= − 𝑄

22
− 𝑇
1
,

Φ
44
= 𝑅
22
− 𝑅
11
,

Φ
55
=

1

𝛾
2

𝐷
𝑇
̂
𝑃𝐷 − 𝑅

22
− 𝑇
2
,

Φ
66
=

1

𝛾
3

𝐵
𝑇
̂
𝑃𝐵 − 𝑇

3
,

Φ
77
= − 𝑇

4
,

Φ
12
= 𝑄
12
,

Φ
14
= 𝑅
12
,

Φ
15
= −

̂
𝐴
𝑇

𝑐
𝑃𝐷,

Φ
16
=
̂
𝐴
𝑇

𝑐
𝑃𝐵,

Φ
23
= − 𝑄

12
,

Φ
45
= − 𝑅

12
.

(20)

Proof. Define a legitimate Lyapunov functional candidate as
follows:

𝑉 (𝑥 (𝑡)) = 𝑉
1
(𝑥 (𝑡)) + 𝑉

2
(𝑥 (𝑡)) + 𝑉

3
(𝑥 (𝑡))

+ 𝑉
4
(𝑥 (𝑡)) + 𝑉

5
(𝑥 (𝑡)) + 𝑉

6
(𝑥 (𝑡)) ,

(21)

where

𝑉
1
(𝑥 (𝑡)) =L

𝑇

(𝑥 (𝑡)) 𝑃L (𝑥 (𝑡)) ,

𝑉
2
(𝑥 (𝑡)) = ∫

𝑡

𝑡−(ℎ/2)

[

[

𝑥 (𝑠)

𝑥 (𝑠 −

ℎ

2

)

]

]

𝑇

[

𝑄
11
𝑄
12

⋆ 𝑄
22

]

×
[

[

𝑥 (𝑠)

𝑥 (𝑠 −

ℎ

2

)

]

]

𝑑𝑠

+ ∫

𝑡

𝑡−(𝜏/2)

[

𝑥 (𝑠)

𝑥 (𝑠 −

𝜏

2

)

]

𝑇

× [

𝑅
11
𝑅
12

⋆ 𝑅
22

][

𝑥 (𝑠)

𝑥 (𝑠 −

𝜏

2

)

]𝑑𝑠,

𝑉
3
(𝑥 (𝑡)) = ∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑇
1
𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑇
2
𝑥 (𝑠) 𝑑𝑠,

𝑉
4
(𝑥 (𝑡)) = ∫

𝑡

𝑡−ℎ

[∫

𝑡

𝑠

𝑥
𝑇

(𝑠
1
) 𝑑𝑠
1
]𝑇
3
[∫

𝑡

𝑠

𝑥 (𝑠
2
) 𝑑𝑠
2
] 𝑑𝑠,

𝑉
5
(𝑥 (𝑡)) = ∫

𝑡

𝑡−𝜏

[∫

𝑡

𝑠

𝑥
𝑇

(𝑠
1
) 𝑑𝑠
1
]𝑇
4
[∫

𝑡

𝑠

𝑥
𝑇

(𝑠
2
) 𝑑𝑠
2
] 𝑑𝑠,

(22)

𝑉
6
(𝑥 (𝑡)) =

1

2

∫

𝑡

𝑡−ℎ

(𝑠 − 𝑡 + ℎ)
2

𝑥
𝑇

(𝑠) 𝑇
5
𝑥 (𝑠) 𝑑𝑠

+

1

2

∫

𝑡

𝑡−𝜏

(𝑠 − 𝑡 + 𝜏)
2

𝑥
𝑇

(𝑠) 𝑇
6
𝑥 (𝑠) 𝑑𝑠,

(23)

where 𝑃 > 0, 𝑄 = [𝑄
𝑖𝑗
]
2×2

, 𝑄
𝑖𝑗
> 0, 𝑅 = [𝑅

𝑖𝑗
]
2×2

, 𝑅
𝑖𝑗
> 0, and

𝑇
𝑖
> 0, 𝑖 = 1, 2, 3, 4, 5, 6.
Then

̇
𝑉 (𝑥 (𝑡)) =

̇
𝑉
1
(𝑥 (𝑡)) +

̇
𝑉
2
(𝑥 (𝑡)) +

̇
𝑉
3
(𝑥 (𝑡))

+
̇
𝑉
4
(𝑥 (𝑡)) +

̇
𝑉
5
(𝑥 (𝑡)) +

̇
𝑉
6
(𝑥 (𝑡)) .

(24)

By (19)-(22), we obtain that

̇
𝑉
1
(𝑥 (𝑡)) = 2 {𝑥

𝑇

(𝑡) − 𝑥
𝑇

(𝑡 − 𝜏)𝐷
𝑇

+ [∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] 𝐵
𝑇

}

× 𝑃 [
̂
𝐴
𝑐
𝑥 (𝑡) + 𝐶𝐷𝑧 (𝐾𝑥)]

= 2𝑥
𝑇

𝑃
̂
𝐴
𝑐
𝑥+ 2𝑥

𝑇

𝑃𝐶𝐷𝑧 (𝐾𝑥)− 2𝑥
𝑇
̂
𝐴
𝑇

𝑐
𝑃𝐷𝑥 (𝑡− 𝜏)

− 2𝑥
𝑇

(𝑡 − 𝜏)𝐷
𝑇

𝑃𝐶𝐷𝑧 (𝐾𝑥)

+ 2𝑥
𝑇

(𝑡)
̂
𝐴
𝑇

𝑐
𝑃𝐵[∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

+ 2 [∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] 𝐵
𝑇

𝑃𝐶𝐷𝑧 (𝐾𝑥)
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≤𝑥
𝑇

[
̂
𝐴
𝑇

𝑐
𝑃 + 𝑃

̂
𝐴
𝑐
+

1

𝛾
1

̂
𝑃

+ (𝛾
1
+ 𝛾
2
+ 𝛾
3
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶
𝑇

𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑊
𝑖
(𝜌
𝑖
)] 𝑥

+

1

𝛾
2

𝑥
𝑇

(𝑡 − 𝜏)𝐷
𝑇
̂
𝑃𝐷𝑥 (𝑡 − 𝜏)

+

1

𝛾
3

[∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] 𝐵
𝑇
̂
𝑃𝐵 [∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

− 2𝑥
𝑇

(𝑡)
̂
𝐴
𝑇

𝑐
𝑃𝐷𝑥 (𝑡 − 𝜏)

+ 2𝑥
𝑇

(𝑡)
̂
𝐴
𝑇

𝑐
𝑃𝐵[∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠] ,

(25)

where ̂𝑃 > 0, since ̂𝑃 = 𝑃2. Consider

̇
𝑉
2
(𝑥 (𝑡)) =

[

[

𝑥 (𝑡)

𝑥 (𝑡 −

ℎ

2

)

]

]

𝑇

[

𝑄
11
𝑄
12

⋆ 𝑄
22

]
[

[

𝑥 (𝑡)

𝑥 (𝑡 −

ℎ

2

)

]

]

−
[

[

𝑥(𝑡 −

ℎ

2

)

𝑥 (𝑡 − ℎ)

]

]

𝑇

[

𝑄
11
𝑄
12

⋆ 𝑄
22

]
[

[

𝑥(𝑡 −

ℎ

2

)

𝑥 (𝑡 − ℎ)

]

]

+ [

𝑥 (𝑡)

𝑥 (𝑡 −

𝜏

2

)

]

𝑇

[

𝑅
11
𝑅
12

⋆ 𝑅
22

][

𝑥 (𝑡)

𝑥 (𝑡 −

𝜏

2

)

]

− [

𝑥(𝑡 −

𝜏

2

)

𝑥 (𝑡 − 𝜏)

]

𝑇

[

𝑅
11
𝑅
12

⋆ 𝑅
22

][

𝑥(𝑡 −

𝜏

2

)

𝑥 (𝑡 − 𝜏)

] ,

̇
𝑉
3
(𝑥 (𝑡)) = 𝑥

𝑇

(𝑡) 𝑇
1
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − ℎ) 𝑇
1
𝑥 (𝑡 − ℎ)

+ 𝑥
𝑇

(𝑡) 𝑇
2
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − 𝜏) 𝑇
2
𝑥 (𝑡 − 𝜏) ,

̇
𝑉
4
(𝑥 (𝑡)) = − [∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠
1
) 𝑑𝑠
1
]𝑇
3
[∫

𝑡

𝑡−ℎ

𝑥 (𝑠
2
) 𝑑𝑠
2
]

+ ∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑡) 𝑇
3
[∫

𝑡

𝑠

𝑥 (𝑠
2
) 𝑑𝑠
2
] 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

[∫

𝑡

𝑠

𝑥 (𝑠
2
) 𝑑𝑠
2
]𝑇
3
𝑥 (𝑡) 𝑑𝑠

= − [∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠
1
) 𝑑𝑠
1
]𝑇
3
[∫

𝑡

𝑡−ℎ

𝑥 (𝑠
2
) 𝑑𝑠
2
]

+ ∫

𝑡

𝑡−ℎ

(𝑠 − 𝑡 + ℎ) 𝑥
𝑇

(𝑡) 𝑇
3
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

(𝑠 − 𝑡 + ℎ) 𝑥
𝑇

(𝑠) 𝑇
3
𝑥 (𝑡) 𝑑𝑠

= − [∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠
1
) 𝑑𝑠
1
]𝑇
3
[∫

𝑡

𝑡−ℎ

𝑥 (𝑠
2
) 𝑑𝑠
2
]

− ∫

𝑡

𝑡−ℎ

(𝑠 − 𝑡 + ℎ) (𝑇
3
𝑥 (𝑡) − 𝑇

5
𝑥 (𝑠))

𝑇

× 𝑇
−1

5
(𝑇
3
𝑥 (𝑡) − 𝑇

5
𝑥 (𝑠)) 𝑑𝑠

+

ℎ
2

2

𝑥
𝑇

(𝑡) 𝑇
3
𝑇
−1

5
𝑇
3
𝑥 (𝑡)

+ ∫

𝑡

𝑡−ℎ

(𝑠 − 𝑡 + ℎ) 𝑥
𝑇

(𝑠) 𝑇
5
𝑥 (𝑠) 𝑑𝑠

≤ − [∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠
1
) 𝑑𝑠
1
]𝑇
3
[∫

𝑡

𝑡−ℎ

𝑥 (𝑠
2
) 𝑑𝑠
2
]

+

ℎ
2

2

𝑥
𝑇

(𝑡)
̃
𝑇
3
𝑥 (𝑡)

+ ∫

𝑡

𝑡−ℎ

(𝑠 − 𝑡 + ℎ) 𝑥
𝑇

(𝑠) 𝑇
5
𝑥 (𝑠) 𝑑𝑠,

(26)

where ̃𝑇
3
> 0, since ̃𝑇

3
= 𝑇
3
𝑇
−1

5
𝑇
3
.

Similarly we have

̇
𝑉
5
(𝑥 (𝑡)) ≤ − [∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠
1
) 𝑑𝑠
1
]𝑇
4
[∫

𝑡

𝑡−𝜏

𝑥 (𝑠
2
) 𝑑𝑠
2
]

+

𝜏
2

2

𝑥
𝑇

(𝑡)
̃
𝑇
4
𝑥 (𝑡)

+ ∫

𝑡

𝑡−𝜏

(𝑠 − 𝑡 + 𝜏) 𝑥
𝑇

(𝑠) 𝑇
6
𝑥 (𝑠) 𝑑𝑠,

(27)

where ̃𝑇
4
> 0, since ̃𝑇

4
= 𝑇
4
𝑇
−1

6
𝑇
4
. Consider

̇
𝑉
6
(𝑥 (𝑡))

=

1

2

ℎ
2

𝑥
𝑇

(𝑡) 𝑇
5
𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ

(𝑠 − 𝑡 + ℎ) 𝑥
𝑇

(𝑠) 𝑇
5
𝑥 (𝑠) 𝑑𝑠

+

1

2

𝜏
2

𝑥
𝑇

(𝑡) 𝑇
6
𝑥 (𝑡) − ∫

𝑡

𝑡−𝜏

(𝑠 − 𝑡 + 𝜏) 𝑥
𝑇

(𝑠) 𝑇
6
𝑥 (𝑠) 𝑑𝑠.

(28)

Substituting these into (24), the time-derivative of𝑉 has new
upper bound as follows:

̇
𝑉 (𝑥 (𝑡)) ≤ 𝜉

𝑇

(𝑡) Φ𝜉 (𝑡) , (29)
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where

𝜉
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 −

ℎ

2

) 𝑥
𝑇

(𝑡 − ℎ) 𝑥
𝑇

(𝑡 −

𝜏

2

) 𝑥
𝑇

(𝑡 − 𝜏) ∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠 ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑑𝑠] ; (30)

Φ is defined as stated in (19).
If linear matrix inequality (19) is feasible, then we can get

̇
𝑉(𝑥(𝑡)) < 0, for all 𝑥 ∈ 𝐵(𝜌). Therefore, if constant scalar ℎ,
constant parameter matrices 𝐵,𝐷 such that ‖ℎ|𝐵| + 𝐷‖ < 1
and there exist 𝑃 > 0, ̂𝑃 > 0, 𝑄 = [𝑄

𝑖𝑗
]
2×2

, 𝑄
𝑖𝑗
> 0, 𝑅 =

[𝑅
𝑖𝑗
]
2×2

, 𝑅
𝑖𝑗
> 0, 𝑇

𝑖
> 0 (𝑖 = 1, 2, 3, 4, 5, 6), and ̃𝑇

𝑖
> 0 (𝑖 =

3, 4) satisfying (19) for real scalars 𝛾
𝑖
> 0 (𝑖 = 1, 2, 3), from

Hale andVerduyn Lunel [24], we can draw the neutral system
which can be described by (1) and (3) is asymptotic stability.
This completes the proof.

Remark 7. 𝑊
𝑖
(𝜌
𝑖
)(𝑖 = 1, 2, . . . , 𝑛) are created by the parameter

𝜌
𝑖
which is ameasure tool for domain of attraction.With these

functions, we obtain the novel stability criterion. However, in
Theorem 6 we need to look for the largest value of 𝜌

𝑖
with the

optimal𝑊
𝑖
(𝜌
𝑖
). These can be seen in Section 3.3 below.

Remark 8. Theorem 6 gives a delay-dependent stability crite-
rion for neutral systemwith (1) and (3) using a delay-dividing
approach. The delay differential conditions in other works,
such as in [26], are usually more strict. These facts mean that
our result is less conservative than some previous approaches.

Thedelay-dependent stability criterion for system (1)with
𝜏 ≡ ℎ is presented in the following corollary.

Corollary 9. The neutral systems (1) and (3) with 𝜏 ≡ ℎ are
asymptotic stability if ‖ℎ|𝐵|+𝐷‖ < 1 and there exist𝑃 > 0, ̂𝑃 >
0, 𝑄 = [𝑄

𝑖𝑗
]
2×2

, 𝑄
𝑖𝑗
> 0, 𝑇

𝑖
> 0 (𝑖 = 1, 2, 3), and ̃𝑇

2
> 0 such

that the following symmetric linear matrix inequality holds for
real constant scalars 𝛾

𝑖
> 0, 𝑖 = 1, 2, 3:

Φ =

[

[

[

[

Φ
11
Φ
12
Φ
13
Φ
14

⋆ Φ
22
Φ
23

0

⋆ ⋆ Φ
33

0

⋆ ⋆ ⋆ Φ
44

]

]

]

]

< 0, (31)

where𝑊
𝑖
(𝜌
𝑖
), 𝑖 = 1, 2, 3, . . . , 𝑛, are defined as before. Consider

Φ
11
=
̂
𝐴
𝑇

𝑐
𝑃 + 𝑃

̂
𝐴
𝑐
+

1

𝛾
1

̂
𝑃 + (𝛾

1
+ 𝛾
2
+ 𝛾
3
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶
𝑇

𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑊
𝑖
(𝜌
𝑖
)

+ 𝑄
11
+ 𝑇
1
+

ℎ
2

2

(
̃
𝑇
2
+ 𝑇
3
) ,

Φ
22
= 𝑄
22
− 𝑄
11
,

Φ
33
=

1

𝛾
2

𝐷
𝑇
̂
𝑃𝐷 − 𝑄

22
− 𝑇
1
,

Φ
44
=

1

𝛾
3

𝐵
𝑇
̂
𝑃𝐵 − 𝑇

2
,

Φ
12
= 𝑄
12
,

Φ
13
= −

̂
𝐴
𝑇

𝑐
𝑃𝐷,

Φ
14
=
̂
𝐴
𝑇

𝑐
𝑃𝐵,

Φ
23
= − 𝑄

12
.

(32)

Proof. Define a legitimate Lyapunov functional candidate as

𝑉 (𝑥 (𝑡)) = 𝑉
1
(𝑥 (𝑡)) + 𝑉

2
(𝑥 (𝑡))

+ 𝑉
3
(𝑥 (𝑡)) + 𝑉

4
(𝑥 (𝑡)) + 𝑉

5
(𝑥 (𝑡)) ,

(33)

where

𝑉
1
(𝑥 (𝑡)) =L

𝑇

(𝑥 (𝑡)) 𝑃L (𝑥 (𝑡)) ,

𝑉
2
(𝑥 (𝑡))

= ∫

𝑡

𝑡−(ℎ/2)

[

[

𝑥 (𝑠)

𝑥 (𝑠 −

ℎ

2

)

]

]

𝑇

[

𝑄
11
𝑄
12

⋆ 𝑄
22

]
[

[

𝑥 (𝑠)

𝑥 (𝑠 −

ℎ

2

)

]

]

𝑑𝑠,

𝑉
3
(𝑥 (𝑡)) = ∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑇
1
𝑥 (𝑠) 𝑑𝑠,

𝑉
4
(𝑥 (𝑡)) = ∫

𝑡

𝑡−ℎ

[∫

𝑡

𝑠

𝑥
𝑇

(𝑠
1
) 𝑑𝑠
1
]𝑇
2
[∫

𝑡

𝑠

𝑥 (𝑠
2
) 𝑑𝑠
2
] 𝑑𝑠,

𝑉
5
(𝑥 (𝑡)) =

1

2

∫

𝑡

𝑡−ℎ

(𝑠 − 𝑡 + ℎ)
2

𝑥
𝑇

(𝑠) 𝑇
3
𝑥 (𝑠) 𝑑𝑠,

(34)

where 𝑃 > 0, 𝑄 = [𝑄
𝑖𝑗
]
2×2

, 𝑄
𝑖𝑗
> 0, and 𝑇

𝑖
> 0, 𝑖 = 1, 2, 3.

According to (34) we obtain

̇
𝑉
1
(𝑥 (𝑡)) ≤ 𝑥

𝑇

[
̂
𝐴
𝑇

𝑐
𝑃 + 𝑃

̂
𝐴
𝑐
+

1

𝛾
1

̂
𝑃

+ (𝛾
1
+ 𝛾
2
+ 𝛾
3
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶
𝑇

𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑊
𝑖
(𝜌
𝑖
) ] 𝑥

+

1

𝛾
2

𝑥
𝑇

(𝑡 − ℎ)𝐷
𝑇
̂
𝑃𝐷𝑥 (𝑡 − ℎ)

+

1

𝛾
3

[∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] 𝐵
𝑇
̂
𝑃𝐵 [∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]
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− 2𝑥
𝑇

(𝑡)
̂
𝐴
𝑇

𝑐
𝑃𝐷𝑥 (𝑡 − ℎ)

+ 2𝑥
𝑇

(𝑡)
̂
𝐴
𝑇

𝑐
𝑃𝐵[∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠] ,

(35)

where ̂𝑃 > 0, since ̂𝑃 = 𝑃2. Consider

̇
𝑉
2
(𝑥 (𝑡)) =

[

[

𝑥 (𝑡)

𝑥 (𝑡 −

ℎ

2

)

]

]

𝑇

[

𝑄
11
𝑄
12

⋆ 𝑄
22

]
[

[

𝑥 (𝑡)

𝑥 (𝑡 −

ℎ

2

)

]

]

−
[

[

𝑥(𝑡 −

ℎ

2

)

𝑥 (𝑡 − ℎ)

]

]

𝑇

[

𝑄
11
𝑄
12

⋆ 𝑄
22

]
[

[

𝑥(𝑡 −

ℎ

2

)

𝑥 (𝑡 − ℎ)

]

]

,

̇
𝑉
3
(𝑥 (𝑡)) = 𝑥

𝑇

(𝑡) 𝑇
1
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − ℎ) 𝑇
1
𝑥 (𝑡 − ℎ) ,

̇
𝑉
4
(𝑥 (𝑡)) ≤ − [∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠
1
) 𝑑𝑠
1
]𝑇
2
[∫

𝑡

𝑡−ℎ

𝑥 (𝑠
2
) 𝑑𝑠
2
]

+

ℎ
2

2

𝑥
𝑇

(𝑡)
̃
𝑇
2
𝑥 (𝑡)

+ ∫

𝑡

𝑡−ℎ

(𝑠 − 𝑡 + ℎ) 𝑥
𝑇

(𝑠) 𝑇
3
𝑥 (𝑠) 𝑑𝑠,

(36)

where ̃𝑇
2
> 0, since ̃𝑇

2
= 𝑇
2
𝑇
−1

3
𝑇
2
. Consider

̇
𝑉
5
(𝑥 (𝑡)) =

1

2

ℎ
2

𝑥
𝑇

(𝑡) 𝑇
3
𝑥 (𝑡)

− ∫

𝑡

𝑡−ℎ

(𝑠 − 𝑡 + ℎ) 𝑥
𝑇

(𝑠) 𝑇
3
𝑥 (𝑠) 𝑑𝑠.

(37)

Then, the time-derivative of 𝑉 has new upper bound as
follows:

̇
𝑉 (𝑥 (𝑡)) =

̇
𝑉
1
(𝑥 (𝑡)) +

̇
𝑉
2
(𝑥 (𝑡)) +

̇
𝑉
3
(𝑥 (𝑡))

+
̇
𝑉
4
(𝑥 (𝑡)) +

̇
𝑉
5
(𝑥 (𝑡)) ≤ 𝜉

𝑇

(𝑡) Φ𝜉 (𝑡) ,

(38)

where Φ is defined as stated in (31) and

𝜉

𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 −

ℎ

2

) 𝑥
𝑇

(𝑡 − ℎ) ∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] .

(39)

The corollary can then be proved following [24].

3.2. Asymptotic Stability for Uncertain Neutral System. Con-
sider the following uncertain neutral system with time-delay
and actuator saturation:

𝑥̇ (𝑡) − 𝐷𝑥̇ (𝑡 − 𝜏) = (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+ 𝐵𝑥 (𝑡 − ℎ) + (𝐶 + Δ𝐶 (𝑡)) Sat (𝑢 (𝑡)) ,
(40)

where Δ𝐴(𝑡) and Δ𝐶(𝑡) stand for the uncertainties. For
simplicity, the constant parametermatrices𝐴,𝐵,𝐶, and𝐷 are

square matrices. The spectral norm bound of the unknown
uncertainties is

‖Δ𝐴 (𝑡)‖ ≤ 𝛼, ‖Δ𝐶 (𝑡)‖ ≤ 𝛽, ∀𝑡 ≥ 0. (41)

Using the nonlinear function𝐷𝑧(⋅), rewrite the uncertain
neutral system as follows:

𝑥̇ (𝑡) − 𝐷𝑥̇ (𝑡 − 𝜏) = (𝐴
𝑐
+ Δ𝐴 (𝑡) − Δ𝐶 (𝑡)𝐾) 𝑥 (𝑡)

+ 𝐵𝑥 (𝑡 − ℎ) + (𝐶 + Δ𝐶 (𝑡))𝐷𝑧 (𝐾𝑥 (𝑡)) ,

(42)

where 𝐴
𝑐
is defined as the same with certain neutral system

with time-delay and actuator saturation. In particular, when
‖Δ𝐴(𝑡)‖ = 0 and ‖Δ𝐶(𝑡)‖ = 0, the uncertain neutral system
becomes the certain case.

Similarly, we employ the operatorL : 𝐶
0
→ R𝑛 with

L (𝑥 (𝑡)) = 𝑥 (𝑡) + 𝐵∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠 − 𝐷𝑥 (𝑡 − 𝜏) . (43)

The following transformed system is then obtained:

𝑑

𝑑𝑡

L (𝑥 (𝑡)) = 𝐴
𝑐
𝑥 (𝑡) + (𝐶 + Δ𝐶 (𝑡))𝐷𝑧 (𝐾𝑥 (𝑡)) , (44)

where 𝐴
𝑐
=
̂
𝐴
𝑐
+ Δ𝐴(𝑡) − Δ𝐶(𝑡)𝐾 = 𝐴 + 𝐵 − 𝐶𝐾 + Δ𝐴(𝑡) −

Δ𝐶(𝑡)𝐾.

Theorem 10. The uncertain neutral system in (40) with
feedback control (3) is asymptotic stability if ‖ℎ|𝐵| + 𝐷‖ < 1
and there exist scalars 𝛾

𝑖
> 0, 𝑖 = 1, 2, 3, 4, 5, 6, 𝑃 > 0,

̂
𝑃 > 0, 𝑄 = [𝑄

𝑖𝑗
]
2×2

, 𝑄
𝑖𝑗
> 0, 𝑅 = [𝑅

𝑖𝑗
]
2×2

, 𝑅
𝑖𝑗
> 0,

𝑇
𝑖
> 0 (𝑖 = 1, 2, 3, 4, 5, 6), and ̃𝑇

𝑖
> 0 (𝑖 = 3, 4) such that

the following symmetric linear matrix inequality holds:

Ξ =

[

[

[

[

[

[

[

[

[

[

Ξ
11
Ξ
12

0 Ξ
14
Ξ
15
Ξ
16

0

⋆ Ξ
22
Ξ
23

0 0 0 0

⋆ ⋆ Ξ
33

0 0 0 0

⋆ ⋆ ⋆ Ξ
44
Ξ
45

0 0

⋆ ⋆ ⋆ ⋆ Ξ
55

0 0

⋆ ⋆ ⋆ ⋆ ⋆ Ξ
66

0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Ξ
77

]

]

]

]

]

]

]

]

]

]

< 0, (45)
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where

Ξ
11
=
̂
𝐴
𝑇

𝑐
𝑃 + 𝑃

̂
𝐴
𝑐
+

1

𝛾
1

̂
𝑃 +

1

𝛾
2

̂
𝑃

+ (𝛾
1
+ 𝛾
3
+ 𝛾
5
) (𝛼
2

+ 2𝛼𝛽 ‖𝐾‖ + 𝛽
2

‖𝐾‖
2

) 𝐼

+ (𝛾
2
+ 𝛾
4
+ 𝛾
6
) (𝛽
2

+ 2𝛽 ‖𝐶‖ + ‖𝐶‖
2

)𝑊
𝑖
(𝜌
𝑖
)

+ 𝑄
11
+ 𝑅
11
+ 𝑇
1
+ 𝑇
2
+

ℎ
2

2

(
̃
𝑇
3
+ 𝑇
5
) +

𝜏
2

2

(
̃
𝑇
4
+ 𝑇
6
) ,

Ξ
22
= 𝑄
22
− 𝑄
11
,

Ξ
33
= − 𝑄

22
− 𝑇
1
,

Ξ
44
= 𝑅
22
− 𝑅
11
,

Ξ
55
= (

1

𝛾
3

+

1

𝛾
4

)𝐷
𝑇
̂
𝑃𝐷 − 𝑅

22
− 𝑇
2
,

Ξ
66
= (

1

𝛾
5

+

1

𝛾
6

)𝐵
𝑇
̂
𝑃𝐵 − 𝑇

3
,

Ξ
77
= − 𝑇

4
,

Ξ
12
= 𝑄
12
,

Ξ
14
= 𝑅
12
,

Ξ
15
= −

̂
𝐴
𝑇

𝑐
𝑃𝐷,

Ξ
16
=
̂
𝐴
𝑇

𝑐
𝑃𝐵,

Ξ
23
= − 𝑄

12
,

Ξ
45
= − 𝑅

12
.

(46)

Proof. Define the legitimate Lyapunov functional candidate
as

𝑉 (𝑥 (𝑡)) = 𝑉
1
(𝑥 (𝑡)) + 𝑉

2
(𝑥 (𝑡)) + 𝑉

3
(𝑥 (𝑡))

+ 𝑉
4
(𝑥 (𝑡)) + 𝑉

5
(𝑥 (𝑡)) + 𝑉

6
(𝑥 (𝑡)) ,

(47)

where 𝑉
1
(𝑥(𝑡)), 𝑉

2
(𝑥(𝑡)), 𝑉

3
(𝑥(𝑡)), 𝑉

4
(𝑥(𝑡)), 𝑉

5
(𝑥(𝑡)), and

𝑉
6
(𝑥(𝑡)) are the same as inTheorem 6.
The time-derivative of 𝑉(𝑥(𝑡)) along the trajectories of

closed system (44) is given by the following:

̇
𝑉 (𝑥 (𝑡)) =

̇
𝑉
1
(𝑥 (𝑡)) +

̇
𝑉
2
(𝑥 (𝑡)) +

̇
𝑉
3
(𝑥 (𝑡))

+
̇
𝑉
4
(𝑥 (𝑡)) +

̇
𝑉
5
(𝑥 (𝑡)) +

̇
𝑉
6
(𝑥 (𝑡)) .

(48)

Then

̇
𝑉
1
(𝑥 (𝑡)) = 2 {𝑥

𝑇

(𝑡) − 𝑥
𝑇

(𝑡 − 𝜏)𝐷
𝑇

+[∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] 𝐵
𝑇

}

× 𝑃 [𝐴
𝑐
𝑥 (𝑡) + (𝐶 + Δ𝐶)𝐷𝑧 (𝐾𝑥)]

= 2𝑥
𝑇

𝑃𝐴
𝑐
𝑥 + 2𝑥

𝑇

𝑃 (𝐶 + Δ𝐶)𝐷𝑧 (𝐾𝑥)

− 2𝑥
𝑇

𝐴
𝑐

𝑇

𝑃𝐷𝑥 (𝑡 − 𝜏) − 2𝑥
𝑇

(𝑡 − 𝜏)𝐷
𝑇

× 𝑃 (𝐶 + Δ𝐶)𝐷𝑧 (𝐾𝑥)

+ 2𝑥
𝑇

(𝑡) 𝐴
𝑐

𝑇

𝑃𝐵[∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

+ 2 [∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] 𝐵
𝑇

𝑃 (𝐶 + Δ𝐶)𝐷𝑧 (𝐾𝑥)

= 2𝑥
𝑇

𝑃
̂
𝐴
𝑐
𝑥 + 2𝑥

𝑇

𝑃 (Δ𝐴 − Δ𝐶𝐾) 𝑥

+ 2𝑥
𝑇

𝑃 (𝐶 + Δ𝐶)𝐷𝑧 (𝐾𝑥)

− 2𝑥
𝑇

(𝑡 − 𝜏)𝐷
𝑇

𝑃
̂
𝐴
𝑐
𝑥 (𝑡)

− 2𝑥
𝑇

(𝑡 − 𝜏)𝐷
𝑇

𝑃 (Δ𝐴 − Δ𝐶𝐾) 𝑥

− 2𝑥
𝑇

(𝑡 − 𝜏)𝐷
𝑇

𝑃 (𝐶 + Δ𝐶)𝐷𝑧 (𝐾𝑥)

+ 2 [∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] 𝐵
𝑇

𝑃
̂
𝐴
𝑐
𝑥

+ 2 [∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] 𝐵
𝑇

𝑃 (Δ𝐴 − Δ𝐶𝐾) 𝑥

+ 2 [∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] 𝐵
𝑇

𝑃 (𝐶 + Δ𝐶)𝐷𝑧 (𝐾𝑥)

≤ 𝑥
𝑇

[
̂
𝐴
𝑇

𝑐
𝑃 + 𝑃

̂
𝐴
𝑐
] 𝑥 − 2𝑥

𝑇

(𝑡)
̂
𝐴
𝑇

𝑐
𝑃𝐷𝑥 (𝑡 − 𝜏)

+ 2𝑥
𝑇

(𝑡)
̂
𝐴
𝑇

𝑐
𝑃𝐵[∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

+

1

𝛾
1

𝑥
𝑇
̂
𝑃𝑥 + 𝛾

1
𝑥
𝑇

(Δ𝐴 − Δ𝐶𝐾)
𝑇

(Δ𝐴 − Δ𝐶𝐾) 𝑥

+

1

𝛾
2

𝑥
𝑇
̂
𝑃𝑥 + 𝛾

2
𝐷𝑧
𝑇

(𝐾𝑥) (𝐶 + Δ𝐶)
𝑇

× (𝐶 + Δ𝐶)𝐷𝑧 (𝐾𝑥)

+

1

𝛾
3

𝑥
𝑇

(𝑡 − 𝜏)𝐷
𝑇
̂
𝑃𝐷𝑥 (𝑡 − 𝜏)

+ 𝛾
3
𝑥
𝑇

(Δ𝐴 − Δ𝐶𝐾)
𝑇

(Δ𝐴 − Δ𝐶𝐾) 𝑥

+

1

𝛾
4

𝑥
𝑇

(𝑡 − 𝜏)𝐷
𝑇
̂
𝑃𝐷𝑥 (𝑡 − 𝜏)

+ 𝛾
4
𝐷𝑧
𝑇

(𝐾𝑥) (𝐶 + Δ𝐶)
𝑇

(𝐶 + Δ𝐶)𝐷𝑧 (𝐾𝑥)

+

1

𝛾
5

[∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] 𝐵
𝑇
̂
𝑃𝐵 [∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

+ 𝛾
5
𝑥
𝑇

(Δ𝐴 − Δ𝐶𝐾)
𝑇

(Δ𝐴 − Δ𝐶𝐾) 𝑥

+

1

𝛾
6

[∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] 𝐵
𝑇
̂
𝑃𝐵 [∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]



ISRN Applied Mathematics 9

+ 𝛾
6
𝐷𝑧
𝑇

(𝐾𝑥) (𝐶 + Δ𝐶)
𝑇

(𝐶 + Δ𝐶)𝐷𝑧 (𝐾𝑥)

≤ 𝑥
𝑇

{(
̂
𝐴
𝑇

𝑐
𝑃 + 𝑃

̂
𝐴
𝑐
)

+ [

1

𝛾
1

̂
𝑃 + 𝛾
1
(𝛼
2

+ 2𝛼𝛽 ‖𝐾‖ + 𝛽
2

‖𝐾‖
2

) 𝐼]

+ [

1

𝛾
2

̂
𝑃 + 𝛾
2
(𝛽
2

+ 2𝛽 ‖𝐶‖ + ‖𝐶‖
2

)𝑊
𝑖
(𝜌)]

+ 𝛾
3
(𝛼
2

+ 2𝛼𝛽 ‖𝐾‖ + 𝛽
2

‖𝐾‖
2

) 𝐼

+ 𝛾
4
(𝛽
2

+ 2𝛽 ‖𝐶‖ + ‖𝐶‖
2

)𝑊
𝑖
(𝜌
𝑖
)

+ 𝛾
5
(𝛼
2

+ 2𝛼𝛽 ‖𝐾‖ + 𝛽
2

‖𝐾‖
2

) 𝐼

+ 𝛾
6
(𝛽
2

+ 2𝛽 ‖𝐶‖ + ‖𝐶‖
2

)𝑊
𝑖
(𝜌
𝑖
)} 𝑥

+ 𝑥
𝑇

(𝑡 − 𝜏) (

1

𝛾
3

𝐷
𝑇
̂
𝑃𝐷 +

1

𝛾
4

𝐷
𝑇
̂
𝑃𝐷)𝑥 (𝑡 − 𝜏)

+ [∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] [

1

𝛾
5

𝐵
𝑇
̂
𝑃𝐵 +

1

𝛾
6

𝐵
𝑇
̂
𝑃𝐵]

× [∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠] − 2𝑥
𝑇

(𝑡)
̂
𝐴
𝑇

𝑐
𝑃𝐷𝑥 (𝑡 − 𝜏)

+ 2𝑥
𝑇

(𝑡)
̂
𝐴
𝑇

𝑐
𝑃𝐵[∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠] ,

(49)

where ̂𝑃 > 0, since ̂𝑃 = 𝑃2.
̇
𝑉
2
(𝑥(𝑡)), ̇

𝑉
3
(𝑥(𝑡)), ̇

𝑉
4
(𝑥(𝑡)), ̇

𝑉
5
(𝑥(𝑡)), and ̇

𝑉
6
(𝑥(𝑡)) are

obtained similarly as in Theorem 6. Substituting these into
(48), the time-derivative of 𝑉 has new upper bound as
follows:

̇
𝑉 (𝑥 (𝑡)) ≤ 𝜉

𝑇

(𝑡) Ξ𝜉 (𝑡) , (50)

where

𝜉
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 −

ℎ

2

) 𝑥
𝑇

(𝑡 − ℎ) 𝑥
𝑇

(𝑡 −

𝜏

2

) 𝑥
𝑇

(𝑡 − 𝜏) ∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠 ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑑𝑠] ; (51)

Ξ is defined as stated in (45).
If linear matrix inequality (45) is feasible, then ̇

𝑉(𝑥(𝑡)) <

0, for all 𝑥 ∈ 𝐵(𝜌). The theorem can then be proved following
[24].

Theorem 10 provides new asymptotic stability conditions
for the uncertain neutral systems in (40) and (3). The
following corollary is presented as a special case of the
theorem.

Corollary 11. The uncertain neutral system in (40) and (3)
with 𝜏 ≡ ℎ is asymptotic stability if ‖ℎ|𝐵| + 𝐷‖ < 1 and
there exist 𝑃 > 0, ̂𝑃 > 0, 𝑄 = [𝑄

𝑖𝑗
]
2×2

, 𝑄
𝑖𝑗
> 0, 𝑇

𝑖
>

0 (𝑖 = 1, 3), and ̃𝑇
2
> 0 such that the following symmetric

linear matrix inequality holds for real constant scalars 𝛾
𝑖
> 0,

𝑖 = 1, 2, 3, 4, 5, 6:

Ξ =

[

[

[

[

Ξ
11
Ξ
12
Ξ
13
Ξ
14

⋆ Ξ
22
Ξ
23

0

⋆ ⋆ Ξ
33

0

⋆ ⋆ ⋆ Ξ
44

]

]

]

]

< 0, (52)

where𝑊
𝑖
(𝜌), 𝑖 = 1, 2, 3, . . . , 𝑛 are defined as before and

Ξ
11
=
̂
𝐴
𝑇

𝑐
𝑃 + 𝑃

̂
𝐴
𝑐
+

1

𝛾
1

̂
𝑃 +

1

𝛾
2

̂
𝑃

+ (𝛾
1
+ 𝛾
3
+ 𝛾
5
) (𝛼
2

+ 2𝛼𝛽 ‖𝐾‖ + 𝛽
2

‖𝐾‖
2

) 𝐼

+ (𝛾
2
+ 𝛾
4
+ 𝛾
6
) (𝛽
2

+ 2𝛽 ‖𝐶‖ + ‖𝐶‖
2

)𝑊
𝑖
(𝜌
𝑖
)

+ 𝑄
11
+ 𝑇
1
+

ℎ
2

2

(
̃
𝑇
2
+ 𝑇
3
) ,

Ξ
22
= 𝑄
22
− 𝑄
11
,

Ξ
33
= (

1

𝛾
3

+

1

𝛾
4

)𝐷
𝑇
̂
𝑃𝐷 − 𝑄

22
− 𝑇
1
,

Ξ
44
= (

1

𝛾
5

+

1

𝛾
6

)𝐵
𝑇
̂
𝑃𝐵 − 𝑇

2
,

Ξ
12
= 𝑄
12
,

Ξ
13
= −

̂
𝐴
𝑇

𝑐
𝑃𝐷,

Ξ
14
=
̂
𝐴
𝑇

𝑐
𝑃𝐵,

Ξ
23
= − 𝑄

12
.

(53)

Proof. Choose a legitimate Lyapunov functional candidate as
𝑉 (𝑥 (𝑡)) = 𝑉

1
(𝑥 (𝑡)) + 𝑉

2
(𝑥 (𝑡))

+ 𝑉
3
(𝑥 (𝑡)) + 𝑉

4
(𝑥 (𝑡)) + 𝑉

5
(𝑥 (𝑡))

(54)

which are the same as (34).
̇
𝑉
1
(𝑥(𝑡)) can be evaluated similarly as in Theorem 10 and

Corollary 9. The proof can be readily obtained.

3.3. The Algorithm with 𝑊
2
(𝜌
2
) and the Algorithm to Solve

the Optimal𝑊
𝑖
(𝜌
𝑖
). From Definition 4, it is seen that𝑊

1
(𝜌
1
)

are different from 𝑊
2
(𝜌
2
), 𝑊
3
(𝜌
3
), and 𝑊

4
(𝜌
4
), . . . ,𝑊

𝑛
(𝜌
𝑛
).

We compare between𝑊
2
(𝜌
2
),𝑊
3
(𝜌
3
), and𝑊

4
(𝜌
4
), . . . ,𝑊

𝑛
(𝜌
𝑛
)

and intend to reduce the conservativeness of the result. To
that end, we should obtain 𝜌

2
in the first place. Inwhat follows

we present the stability analysis algorithm with 𝑊
2
(𝜌
2
) to

solve 𝜌
2
.
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Step 1. Give 𝛼, 𝛽,𝐾.

Step 2. Set positive values 𝛾
𝑖
(𝑖 = 1, 2, 3, 4, 5, 6).

Step 3. Initialize 𝜌
2
.

Step 4. With 𝑊
2
(𝜌
2
), solve linear matrix inequality (45) by

Matlab LMI Toolbox.

Step 5. If the solution satisfies the stability condition, go to
Step 6; otherwise, reduce 𝜌

2
and go to Step 3.

Step 6. Increase 𝜌
2
and go to Step 3.

Step 7. End.

Remark 12. The above algorithm is stated with respect to
uncertain systems (40) and (3). Other cases can be dealt with
similarly.

After defining 𝜌
2
, we replace 𝑊

2
(𝜌
2
) by 𝑊

𝑖
(𝜌
𝑖
) to

reduce the conservativeness. We analyse these functions
𝑊
2
(𝜌
2
),𝑊
3
(𝜌
3
),𝑊
4
(𝜌
4
), . . . ,𝑊

𝑛
(𝜌
𝑛
) and find the optimal

𝑊
𝑖
(𝜌
𝑖
) to obtain the maximum 𝜌

𝑖
among 𝜌

2
, 𝜌
3
, . . . , 𝜌

𝑛
.

Theorem 13. Given 𝑊
2
(𝜌
2
),𝑊
3
(𝜌
3
),𝑊
4
(𝜌
4
), . . . ,𝑊

𝑛
(𝜌
𝑛
), if

there exists 𝑗 ≤ 𝑛, such that 𝜌
𝑗−1

≥ 𝜌
𝑘
and ‖𝑊

𝑗
(𝜌
𝑗−1
)‖ ≤

‖𝑊
𝑘
(𝜌
𝑘
)‖, for all 𝑘 = 2, 3, . . . , 𝑗 − 1, then we have

󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
𝑗−1

𝑢
+

𝑖

≤ 𝑓
𝑘
(𝑗) , ∀𝑘 = 2, 3, . . . , 𝑗 − 1, (55)

where 𝜌
𝑗
is the domain attraction obtained by𝑊

𝑗
(𝜌
𝑗
) and

𝑓
𝑘
(𝑗) =

(𝑘 − 1)
(𝑘−1)/(𝑗−𝑘)

𝑘
𝑘/(𝑗−𝑘)

×

𝑗
𝑗/(𝑗−𝑘)

(𝑗 − 1)

(𝑗−1)/(𝑗−𝑘)

. (56)

Proof. Recall the definition of 𝑊
𝑗
(𝜌
𝑗
), we know it can be

expressed in the following equality:

𝑊
𝑗
(𝜌
𝑗
) =

𝑚

∑

𝑖=1

(

(𝑗 − 1) 𝜌
𝑗

𝑗
𝑗/(𝑗−1)

𝑢
+

𝑖

)

2𝑗−2

(𝐾
𝑇

𝑖
𝐾
𝑖
)

𝑗

. (57)

If we have 𝜌
𝑗−1
≥ 𝜌
𝑘
, for all 𝑘 = 2, 3, . . . , 𝑗 − 1, then from the

above equality we obtain

󵄩
󵄩
󵄩
󵄩
𝑊
𝑘
(𝜌
𝑘
)

󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑊
𝑘
(𝜌
𝑗−1
)

󵄩
󵄩
󵄩
󵄩
󵄩
, ∀𝑘 = 2, 3, . . . , 𝑗 − 1. (58)

With regard to𝑊
𝑗
(𝜌
𝑗−1
), we have

𝑊
𝑗
(𝜌
𝑗−1
) =

𝑚

∑

𝑖=1

(

(𝑗 − 1) 𝜌
𝑗−1

𝑗
𝑗/(𝑗−1)

𝑢
+

𝑖

)

2𝑗−2

(𝐾
𝑇

𝑖
𝐾
𝑖
)

𝑘

(𝐾
𝑇

𝑖
𝐾
𝑖
)

𝑗−𝑘

=

𝑚

∑

𝑖=1

[

(𝑘 − 1) 𝜌
𝑗−1

𝑘
𝑘/(𝑘−1)

𝑢
+

𝑖

]

2𝑘−2

(𝐾
𝑇

𝑖
𝐾
𝑖
)

𝑘

(𝐾
𝑇

𝑖
𝐾
𝑖
)

𝑗−𝑘

× (

𝜌
𝑗−1

𝑢
+

𝑖

)

2(𝑗−𝑘)

𝑘
2𝑘

(𝑘 − 1)
2𝑘−2

(𝑗 − 1)

2𝑗−2

𝑗
2𝑗

=

󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩

2(𝑗−𝑘)

(

𝜌
𝑗−1

𝑢
+

𝑖

)

2(𝑗−𝑘)

×

𝑘
2𝑘

(𝑘 − 1)
2𝑘−2

(𝑗 − 1)

2𝑗−2

𝑗
2𝑗

𝑊
𝑘
(𝜌
𝑗−1
) .

(59)

If we have ‖𝑊
𝑗
(𝜌
𝑗−1
)‖ ≤ ‖𝑊

𝑘
(𝜌
𝑘
)‖, then we can obtain

󵄩
󵄩
󵄩
󵄩
󵄩
𝑊
𝑗
(𝜌
𝑗−1
)

󵄩
󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩

2(𝑗−𝑘)

(

𝜌
𝑗−1

𝑢
+

𝑖

)

2(𝑗−𝑘)

𝑘
2𝑘

(𝑘 − 1)
2𝑘−2

×

(𝑗 − 1)

2𝑗−2

𝑗
2𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
𝑊
𝑘
(𝜌
𝑗−1
)

󵄩
󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
𝑊
𝑘
(𝜌
𝑘
)

󵄩
󵄩
󵄩
󵄩
.

(60)

By (58), we have

(

󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
𝑗−1

𝑢
+

𝑖

)

2(𝑗−𝑘)

𝑘
2𝑘

(𝑘 − 1)
2𝑘−2

(𝑗 − 1)

2𝑗−2

𝑗
2𝑗

≤ 1, (61)

where 𝑗 = 3, 4, 5, . . ., and 𝑘 = 2, 3, . . . , 𝑗 − 1.
Then we easily obtain
󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
𝑗−1

𝑢
+

𝑖

≤ 𝑓
𝑘
(𝑗) =

(𝑘 − 1)
(𝑘−1)/(𝑗−𝑘)

𝑘
𝑘/(𝑗−𝑘)

×

𝑗
𝑗/(𝑗−𝑘)

(𝑗 − 1)

(𝑗−1)/(𝑗−𝑘)

(62)

which completes the proof.

Remark 14. Theorem 13 provides us a criterion to find the
optimal𝑊

𝑗
(𝜌
𝑗
). That is, if condition (55) cannot be satisfied,

the procedure to find the optimal one should be ended. For
example, when 𝜌

4
is obtained, we compute ‖𝐾

𝑖
‖𝜌
4
/𝑢
+

𝑖
and the

following inequalities need to be satisfied:
󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
4

𝑢
+

𝑖

≤ 𝑓
2
(5) ,

󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
4

𝑢
+

𝑖

≤ 𝑓
3
(5) ,

󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
4

𝑢
+

𝑖

≤ 𝑓
4
(5) .

(63)

Otherwise, the algorithm terminates with 𝜌
4
.

The following optimality algorithm is used to obtain the
optimal𝑊

𝑛
(𝜌
𝑛
).
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Step 1. Set positive value 𝛿 (small value, for example, 10−5).

Step 2. Solve 𝜌
2
based on the above stability analysis algo-

rithm with𝑊
2
(𝜌
2
).

Step 3. Compute ‖𝐾
𝑖
‖𝜌
2
/𝑢
+

𝑖
, if (‖𝐾

𝑖
‖𝜌
2
/𝑢
+

𝑖
) − 𝑓
𝑘
(𝑗) ≤ 𝑓

2
(3),

then go to Step 4; otherwise, go to Step 7.

Step 4. Set 𝜌
𝑗+1

=𝜌
𝑗
, repeat the stability analysis algorithm

with𝑊
𝑗+1
(𝜌
𝑗
) then obtain 𝜌

𝑗+1
iteratively.

Step 5. Compute ‖𝐾
𝑖
‖𝜌
𝑗+1
/𝑢
+

𝑖
, if

󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
𝑗+1

𝑢
+

𝑖

≤ 𝑓
𝑘
(𝑗 + 2) ,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝐾
𝑖

󵄩
󵄩
󵄩
󵄩
𝜌
𝑗+1

𝑢
+

𝑖

− 𝑓
𝑘
(𝑗 + 2)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

> 𝛿,

∀𝑘 = 2, 3, . . . , 𝑗 + 1

(64)

then go to Step 6; otherwise go to Step 7.

Step 6. Set 𝑗 = 𝑗 + 1 and go to Step 4.

Step 7. End.

4. Application and Numerical Examples

The two-stage system has been applied to many factories
worldwide. For the interest of efficiency, a lot of equipment
such as converter, cylinder, and ejector is designed in the two-
stage form. The natural, social, and economic systems also
exhibit the two-stage mode. A typical example is the two-
stage ditch design which is a conservation tool supported
by the conservancy in Indiana. The advantages of a two-
stage ditch against the typical agricultural ditch include both
improved drainage function and ecological function. The
two-stage design improves ditch stability by reducing water
flow and the need for maintenance, saving both labor and
money.

Consider Figure 2 which shows two-stage dissolution
tank in the chemical process. The solute in the hopper is
transported by the conveyor belt and falls into DT1 within a
certain time. The solute is part of the solution in DT1; then
within a certain time the solution in DT1 and the undissolved
solute flow into DT2 to continue to dissolve and dilute.

Under normal circumstances, the dilute fluid flow of DT1
and the velocity of the conveyor belt are constant. The dilute
fluid flow of DT2 is controllable. In practical system design,
the pipeline of the DT2 dilute fluid is thin and the regulating
action of DT2 is tiny, which can thus be represented by the
saturating form Sat(𝑢(𝑡)). Let 𝜆

1
(𝑡) and 𝜆

2
(𝑡) be the solution

concentration of DT1 and DT2 and 𝜆
10
and 𝜆

20
the solution

concentration of DT1 and DT2 when the system reaches an
equilibrium, respectively. 𝑥

1
(𝑡) = 𝜆

1
(𝑡) − 𝜆

10
and 𝑥

2
(𝑡) =

𝜆
2
(𝑡) − 𝜆

20
are the considered system states and the dilute

fluid flow into DT2 𝑢(𝑡) is the control input. The latter is of
the saturating form Sat(𝑢(𝑡)) because the dilute fluid flow into
DT2 𝑢(𝑡) is a fine adjustment role. The chemical plant puts
the solute into DT1 with constant speed; that is, the velocity

DT1 DT2

Figure 2: Two-stage dissolution tank.

of the conveyor belt is constant in a period of time interval. In
addition, the velocity of the dilute fluid flow into DT1 is also
constant in a period of time interval.

4.1. No Uncertainty Case

Example 1. Themodel for the above described system is

𝑥̇ (𝑡) − [

0.2 0

0 0.2

] 𝑥̇ (𝑡 − 𝜏)

= [

1 1.5

0.3 −2

] 𝑥 (𝑡) + [

0 −1

0 0

] 𝑥 (𝑡 − ℎ) [

0

1

] Sat (𝑢 (𝑡)) ,

(65)

where the saturation limit is 𝑢+ = 15. The discrete time-delay
ℎ = 0.2 and neutral time-delay 𝜏 = 0.4.

It is seen that

‖ℎ |𝐵| + 𝐷‖ =

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

0.2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

[

0 −1

0 0

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ [

0.2 0

0 0.2

]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

= 0.1047 < 1

(66)

and the operatorL : 𝐶
0
→ R𝑛 with

L (𝑥 (𝑡)) = 𝑥 (𝑡) + 𝐵∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠 − 𝐷𝑥 (𝑡 − 𝜏) (67)

is stable.
The following linear state feedback control is used and the

same as [18]:

𝑢 = −𝐾𝑥 = [−0.1325 0.0153] 𝑥 (68)

To begin with the stability analysis algorithm, we have
𝜌
2
= 161.73, and compute ‖𝐾‖𝜌

2
/𝑢
+

= 1.4383. It is seen that

1 <

‖𝐾‖ 𝜌
2

𝑢
+

≤ 𝑓
2
(3) =

27

16

≐ 1.6875. (69)

According to the optimality algorithm, let initial data
𝜌
3
= 𝜌
2
. Repeating the stability algorithm with 𝑊

3
(𝜌
3
), we

obtain 𝜌
3
= 163.46. Similarly, we compute ‖𝐾‖𝜌

3
/𝑢
+ and

(‖𝐾‖𝜌
3
/𝑢
+

) = 1.4537.
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It is seen that
‖𝐾‖ 𝜌
3

𝑢
+

< 𝑓
2
(4) ≐ 1.5396, but ‖

𝐾‖ 𝜌
3

𝑢
+

>𝑓
3
(4) ≐ 1.4047

(70)

which terminates the algorithm. In this example, we obtain
that the optimal auxiliary function is𝑊

3
(𝜌
3
). ByTheorem 13,

we must verify ‖𝑊
3
(𝜌
3
)‖ ≤ ‖𝑊

2
(𝜌
2
)‖, which is true as

‖𝑊
3
(𝜌
3
)‖ = 0.0017 and ‖𝑊

2
(𝜌
2
)‖ = 0.0023. So we

infer that 𝑊
3
(𝜌
3
) is the optimal auxiliary function among

𝑊
2
(𝜌
2
),𝑊
3
(𝜌
3
),𝑊
4
(𝜌
4
), . . . ,𝑊

𝑛
(𝜌
𝑛
) and 𝜌

3
is the largest one

among 𝜌
2
, 𝜌
3
, 𝜌
4
, . . . , 𝜌

𝑛
.

The comparison of these results can be seen in Figure 3.
Notice that 𝜌 is not the domain of attraction.

We obtain the largest parameter 𝜌
𝑖
with optimal 𝑊

𝑖
(𝜌
𝑖
)

to enlarge the stability region. Thus the chemical plant can
make the conveyor belt and dilute fluid flow of DT1 speed up
accordingly. In this way, this chemical plant can improve the
production efficiency and reduce the cost of production.

However, in some circumstances, we cannot enlarge the
domain of attraction by replacing 𝑊

2
(𝜌
2
) with 𝑊

𝑖
(𝜌
𝑖
), 𝑖 =

3, 4, . . . , 𝑛. For example, let us see the following example.

Example 2. Consider the following linear neutral systemwith
time-delay and actuator saturation:

𝑥̇ (𝑡) − [

0.2 0

0 0.2

] 𝑥̇ (𝑡 − 𝜏)

= [

0.1 −0.1

0.1 −3.0

] 𝑥 (𝑡)

+ [

0.5 −1

0 0.5

] 𝑥 (𝑡 − ℎ) + [

0.7 0

0 0.1

] Sat (𝑢 (𝑡)) ,

(71)

where the saturation limit values are 𝑢+
1
= 10 and 𝑢+

2
= 4. The

discrete time-delay ℎ = 0.2 and neutral time-delay 𝜏 = 0.1.
Compute ‖ℎ|𝐵| + 𝐷‖ and we also know that the operator

L : 𝐶
0
→ R𝑛 with

L (𝑥 (𝑡)) = 𝑥 (𝑡) + 𝐵∫
𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠 − 𝐷𝑥 (𝑡 − 𝜏) (72)

is stable. Then we obtain the linear state feedback control
without considering the saturation using optimal control law
in [27]. Consider

𝑢 = −𝐾𝑥 = −[

0.8456 0.0627

0.0142 1.3754

] 𝑥. (73)

To begin with the stability analysis algorithm, we have
𝜌
2
= 17.84, and compute

󵄩
󵄩
󵄩
󵄩
𝐾
1

󵄩
󵄩
󵄩
󵄩
𝜌
2

𝑢
+

1

= 1.5127,

󵄩
󵄩
󵄩
󵄩
𝐾
2

󵄩
󵄩
󵄩
󵄩
𝜌
2

𝑢
+

2

= 6.1780. (74)

It is seen that

1 <

󵄩
󵄩
󵄩
󵄩
𝐾
1

󵄩
󵄩
󵄩
󵄩
𝜌
2

𝑢
+

1

≤ 𝑓
2
(3) =

27

16

≐ 1.6875,

but
󵄩
󵄩
󵄩
󵄩
𝐾
2

󵄩
󵄩
󵄩
󵄩
𝜌
2

𝑢
+

2

> 𝑓
2
(3)

(75)
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Figure 3: Attraction domain expanding schematic diagram: the
largest parameter 𝜌

3
with optimal𝑊

3
(𝜌
3
) is in red pentagram, with

𝑊
2
(𝜌
2
) in blue, and another one with𝑊

4
(𝜌
4
) in red.
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Figure 4: Attraction domain expanding schematic diagram: the
largest parameter 𝜌

2
with optimal𝑊

2
(𝜌
2
) is in red and another one

with𝑊
3
(𝜌
3
) in blue.

which terminates the algorithm. So we infer that 𝑊
2
(𝜌
2
)

is the optimal auxiliary function among 𝑊
2
(𝜌
2
),𝑊
3
(𝜌
3
),

𝑊
4
(𝜌
4
), . . . ,𝑊

𝑛
(𝜌
𝑛
). 𝜌
2
has been the largest one among

𝜌
2
, 𝜌
3
, 𝜌
4
, . . . , 𝜌

𝑛
and we cannot maximize the value of 𝜌

𝑖
.

The comparison of these results can be seen in Figure 4.

4.2. Uncertainty Case. In this subsection, we consider the
existence of uncertainty due to outside interference. The
numerical example demonstrates the effectiveness of the
proposed algorithm.

Example 3. Consider system (65) with norm bounded uncer-
tainties:

‖Δ𝐴 (𝑡)‖ ≤ 0.1, ‖Δ𝐵 (𝑡)‖ ≤ 0.1. (76)
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Figure 5: Attraction domain expanding schematic diagram: the
largest parameter 𝜌

3
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3
(𝜌
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) is in red pentagram, with

𝑊
2
(𝜌
2
) in blue, and another one with𝑊

4
(𝜌
4
) in red.

It is known that this uncertainty decreases the initial state
bound that guarantees the asymptotic stability of the system
(65). To compare with the above case, the feedback control
(68) is applied and we use (45) in Theorem 10.

Using the stability analysis algorithm and the optimal
algorithm, we see that𝑊

3
(𝜌
3
) is the optimal auxiliary func-

tion among 𝑊
2
(𝜌
2
),𝑊
3
(𝜌
3
),𝑊
4
(𝜌
4
), . . . ,𝑊

𝑛
(𝜌
𝑛
). 𝜌
3
= 43.57

is the largest one among 𝜌
2
, 𝜌
3
, 𝜌
4
, . . . , 𝜌

𝑛
. This is shown in

Figure 5.

5. Conclusions

By model transformation and Lyapunov method, delay-
dependent criteria for a class of uncertain neutral delay
systems with saturation are derived in terms of the spectral
radius and LMIs. Both conditions for asymptotic stability
and algorithms are presented. These theoretical findings are
successfully verified via a two-stage dissolution tank in the
chemical plant. Potentially, the result is of great significance
to the chemical production process.
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