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The effect of radiation on natural convection of Newtonian fluid contained in an open cavity is investigated in this study. The
governing partial differential equations are solved numerically using the Alternate Direct Implicit method together with the
Successive Overrelaxation method.The study is focused on studying the flow pattern and the convective and radiative heat transfer
rates are studied for different values of radiation parameters, namely, the optical thickness of the fluid, scattering albedo, and the
Planck number. It was found that, in the optically thin limit, an increase in the optical thickness of the fluid raises the temperature
and radiation heat transfer of the fluid. However, a further increase in the optical thickness decreases the radiative heat transfer rate
due to increase in the energy level of the fluid, which ultimately reduces the total heat transfer rate within the fluid.

1. Introduction

There are many physical phenomena in which energy
exchange due to radiation plays an important role, for
instance, heat transfer in furnaces and combustion chambers,
solar simulators and the utilization of solar energy, flow of
the earth’s mantle, the flow of oxide melts during crystal
growth, processing ofmolten glass, and the solar air receivers.
Heat leakage in evacuated spaces, energy dissipation in
vacuum tubes, role of air and water as coolant in power
plants, and cooling of electronic and optoelectronic devices
also involve the energy exchange via radiation. One of the
important features of radiation heat transfer is the nature
of its dependency on temperature. Review of the radiation
models that exist in the literature is given by Siegel andHowell
[1]. It should also be noted that the study of heat transfer
in fluids which absorb and emit radiant energy becomes
a complicated task due to the coupled, non-linear physical
phenomena of internal radiation and natural convection. A
detailed review of this coupling phenomenon of radiative and
fluid transport can also be found in Modest [2].

In general, the combined mechanism of radiant and
convective heat transfer in finite enclosures has received
considerable attention. Larson and Viskanta [3] investigated
the effects of free burning by taking a model of transient
natural convection and radiation for gray diffuse walls with
an arbitrary temperature in an enclosure. They showed that
the difference between the temperatures of the hot and the
cold walls reduces to about 1% of that of the hot wall, due to
radiation effect. More interestingly, the air in the core region
generally reached 33% of the hot wall temperature, whereas
it obtains 13% of the hot wall temperature in the absence of
radiation effect at the same time level. Lauriat [4] analyzed
the effect of combined radiation and radiation phenomena
for gray fluids. Bouallou and Sacadura [5] considered the
porous media case of participating medium. Draoui et al.
[6] further made an investigation of natural convection of
participating fluids in a square enclosure. The study of flow
properties for such kind of flows showed that there is a
tendency of flow reduction and an increase in heat transfer
for the process of combined conduction-radiation of fluids in
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enclosures. Moreover the centrosymmetric property of flow
is perturbed due to the effect of radiation (see also Lauriat
[4]). Salinger et al. [7] studied the effects of optical thickness
and thermal gradients on the stability and structure of flows
in a cylindrical container heated from below. Modest [2, page
466] indicated that there is a general misconception about
lowest order differential approximation, that it may fail in
optically thin limit. Rather there is some loss of accuracy only
when small optically thinmedium is sandwiched between hot
and cold surfaces in the presence of Collimated irradiation.
Derby et al. [8] examined the performance of the approxima-
tions for modeling a representative problem of heat transfer
and buoyant flow in optically thick fluids. They remarked
that although Rosseland diffusion had an advantage of less
computational cost, an inaccuracy in the thermal boundary
layer appears in it. However despite the fact that differential
approximation is more costly in terms of computation due to
an additional elliptic type differential equation, it gives more
accurate results. Ridouane et al. [9] studied both transient
and steady conditions for the effects of surface radiation
on natural convection in a square enclosure heated from
below and cooled from above.They showed that heat transfer
across the cavity rises quickly due to active walls emissivity.
Recent boundary layer study of combined mechanism of
convection and radiation under different conditions can be
seen in [10–14]. Liu et al. [15] used discrete ordinate method
to investigate the combinedmechanismof natural convection
and radiation in a cavity and showed that radiative heat
transfer was significantly reduced as the optical thickness was
increased.

Most of the study of natural convection in enclosures
has been devoted to the study of streamlines and isotherms.
However, the investigation of heat function is also useful in
studying the heat transfer characteristics of the phenomenon
of natural convection. Kimura and Bejan [16] introduced
heat function as the energy analog of stream function.
Also, isotherms provide credible information about heat flow
only in conduction dominated regime, whereas heatlines
are locally parallel to the actual direction of energy flow in
a domain. Thus heatlines study helps to comprehend the
flow and temperature profile as the heat function formu-
lation is based on identically satisfying the thermal energy
equation (see also Bello-Ochende [17], Costa [18, 19], and
Deng and Tang [20]). The study of heat function profile
becomesmore important when the natural convection flow is
combined with radiation, as the inclusion of radiation raises
the energy level of the fluid in domain considerably (see
Larson and Viskanta [3]). A very recent study of heatlines
formulation for surface radiation case in enclosures has been
made by Hossain et al. [21]. Further, the problem of natural
convection in open ended cavity is recently addressed by
Saleem et al. [22, 23]. As far as the study of the effect of
surface radiation in open cavity is concerned, the model
was considered by Hinojosa et al. [24]. They investigated
the Nusselt number distribution for the natural convection
and surface thermal radiation in a square tilted open cavity.
However, more emphasis was laid on the effect of tilt

angle on the Nusselt number distributions. Also the case of
conjugate natural convection with conduction and surface
radiation in open cavity was studied by Nouanegue et al.
[25].

The present study aims to investigate the basic flow pat-
tern and heat transfer characteristics in open ended domain.
Since, to author’s knowledge, the study of participating fluids
in open ended cavities is not found in literature, such kind
of models may have their applications in the situations where
heat is rejected via spaces between reflecting surfaces, energy
transfer in vacuum tubes, and flow of air and water as coolant
in power plants, where heat is mainly rejected via radiation.
Thus here we consider the case of combined natural con-
vection and radiation of Newtonian fluid in an open ended
cavity, whose left wall is maintained at a higher temperature.
The density of fluid with temperature is considered to vary
under Boussinesq approximation. Boussinesq approximation
is a better choice for laminar case of such fluids. (See also
[26].) Further, it is also worthmentioning here that modeling
such flows requires that the temperature of the gas does not
rise enough to a level where it causes generation of large
number of ions in the gas. So high energy photons due to ionic
exchange do not come into account and the frequency/energy
level of radiation does not vary over a wide range (Modest
[2]), and gray approximation remains valid therein. Air (Pr =
0.71) can be chosen for modeling such phenomenon (see also
[3, 4, 6]) so that the ionic exchange does not take place even
at high temperatures. Thus we consider a Boussinesq type
fluid with gray radiant properties and consider the Rayleigh
number only in the range of 2 × 10

5
≤ Ra ≤ 7 × 10

5.
Attention is focused on investigating the effect of radiation
parameters, namely, the optical thickness, scattering albedo,
and the Planck number.

2. Mathematical Formulation

Consider two-dimensional flow of a viscous incompressible
absorbing/emitting and scattering Boussinesq type fluid con-
fined in an open rectangular cavity formed by the regions
between two horizontal planes at 𝑦 = 0 and 𝑦 = 𝑌, and the
two vertical planes at 𝑥 = 0 and the open end along 𝑥 = 𝑋,
where 𝑋 is the length and 𝑌 is the height of the cavity. The
left wall is assumed to be emissive, whereas its temperature
is isothermally maintained at 𝑇

𝐻
. The temperature of the

fluid that enters the cavity region is supposed to be at 𝑇
𝐶

at 𝑡 = 0 (where 𝑇
𝐻

> 𝑇
𝐶
). In order to represent the

temperature at the open end, we use the subscripts “in” for
incoming and “out” for outgoing fluid, respectively. Flow con-
figuration and dynamical boundary conditions are shown in
Figure 1.

Here, 𝑢 and V are the components of velocity along the
𝑥 and 𝑦 axes, respectively, 𝑇 is the fluid temperature, and 𝑔
is the magnitude of acceleration due to gravity whereas 𝜖

𝑖
,

(𝑖 = 𝑖, 2, 3) is the emissivity of left, top, and bottom walls,
respectively. The unsteady motion of incompressible fluid
and the equations for conservation of mass, momentum, and
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Figure 1: Flow configuration in coordinate system.

energy in two-dimensional Cartesian coordinate system are
given by

𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦

= 0,

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ V

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ ](

𝜕
2
𝑢

𝜕𝑥
2
+
𝜕
2
𝑢

𝜕𝑦
2
) ,

𝜕V
𝜕𝑡

+ 𝑢
𝜕V
𝜕𝑥

+ V
𝜕V
𝜕𝑦

= −
1

𝜌

𝜕𝑝

𝜕𝑦
+ ](

𝜕
2V
𝜕𝑥
2
+
𝜕
2V
𝜕𝑦
2
) + 𝑔𝛽 (𝑇 − 𝑇

𝐶
),

(1)

𝜌𝐶
𝑝
(
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ V

𝜕𝑇

𝜕𝑦
) = 𝑘(

𝜕
2
𝑇

𝜕𝑥
2
+
𝜕
2
𝑇

𝜕𝑦
2
) − ∇ ⋅ 𝑞

𝑟
, (2)

where ] is the kinematic viscosity, 𝛽 is the coefficient of
volume expansion, 𝜌 is the density, 𝐶

𝑝
is the molar specific

heat at constant pressure, 𝑘 is the coefficient of thermal
conductivity, 𝑡 is the time, and 𝑞

𝑟
is the radiation flux vector

in two dimensions.We have considered semitransparent fluid
with gray radiant properties. The equation of radiant energy
for optically thick absorbing/emitting and scattering fluid is
thus given by (see [4–6])

𝜕
2
𝐺

𝜕𝑥
2
+
𝜕
2
𝐺

𝜕𝑦
2
= 3𝛼
2

𝑚
(1 − Ω

0
) {𝐺 − 𝜎(𝑇 − 𝑇

𝐶
)
4

} , (3)

where 𝛼
𝑚

is mean extinction coefficient, Ω
0
is scattering

albedo, and 𝜎 is Stefan-Boltzmann constant. The boundary
conditions are expressed as follows:

𝑡 < 0

𝑢 = V = 𝑇 = 𝐺 = 0, 0 ≤ 𝑦 ≤ 𝑌, 0 ≤ 𝑥 ≤ 𝑋,

(4)

𝑡 ≥ 0. First we describe the boundary conditions at the solid
walls. The velocity components at the solid walls are given by
no slip condition

𝑢 = V = 0. (5)

The temperature of the left wall is given by

𝑇 = 𝑇
𝐻
, 𝑥 = 0, 0 ≤ 𝑦 ≤ 𝑌, (6)

whereas the temperature at the nonisothermal walls is given
by

𝑘
𝜕𝑇

𝜕𝑦
+

1

3𝛼
𝑚

𝜕𝐺

𝜕𝑦
= 0, 𝑦 = 0, 𝑌, 0 ≤ 𝑥 ≤ 𝑋. (7)

Finally the boundary conditions at the solid walls for thermal
radiation are

𝜕𝐺

𝜕𝑛
𝑖

=
3𝛼
𝑚
𝜖
𝑖

4 − 2𝜖
𝑖

{𝐺 − 4𝜎(𝑇
𝑖
− 𝑇
𝐶
)
4

} . (8)

Here, 𝑛 is the direction normal to the wall and 𝑖 = 1, 2, 3,
respectively, represent the left, top, and bottomwall as labeled
in Figure 1. (See [6].)

To set up the open end boundary conditions, notice that
the velocity component 𝑢, V should satisfy the continuity
equation at the open end. Moreover, 𝜕V/𝜕𝑥 = 0 is a physically
more realistic condition for vertical velocity at the open end
as compared to V = 0, as the fluid may not necessarily leave
the domain horizontally. Further, (𝜕𝑇/𝜕𝑥)out = 0 is found
to be a suitable condition at the open end for temperature.
Most recently, these conditions are also addressed by the same
authors (Saleem et al. [22, 23] and see the references therein).
Further, since it is required to confine the effects of wall
radiation within the cavity, this suggests that the divergence
of radiation intensity at the open end for thermal radiation
should be zero.Thus the boundary conditions at the open end
of the cavity are summarized by the following equations

𝜕𝑢

𝜕𝑥
= −

𝜕V
𝜕𝑦

,
𝜕V
𝜕𝑥

=
𝜕𝐺

𝜕𝑥
= 0,

(
𝜕𝑇

𝜕𝑥
)

out
= 0, 𝑇in = 𝑇

𝐶
, 𝑥 = 𝑋, 0 ≤ 𝑦 ≤ 𝑌.

(9)

In order to transform the problem into stream vorticity form,
we define the stream function and vorticity by the following
relations:

𝜔 =
𝜕V
𝜕𝑥

−
𝜕𝑢

𝜕𝑦
,

𝑢 =
𝜕𝜓

𝜕𝑦
, V = −

𝜕𝜓

𝜕𝑥
.

(10)
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Further introduce the nondimensional variables by using the
following transformations:

𝑥 =
𝑥

𝑌
, 𝑦 =

𝑦

𝑌
, 𝑡 =

𝑡𝛼

𝑌
2
, 𝑢 =

𝑢𝑌

𝛼
,

V =
V𝑌
𝛼
, 𝜓 =

𝜓

𝛼
, 𝜔 =

𝜔𝑌
2

𝛼
, Δ𝑇 = 𝑇

𝐻
− 𝑇
𝐶
,

𝑇
0
=
𝑇
𝐻
+ 𝑇
𝐶

2
, 𝜃 =

𝑇 − 𝑇
𝐶

Δ𝑇

, 𝐴 =
𝑌

𝑋
,

𝜃
0
=
𝑇
0

Δ𝑇

, 𝑞
𝑟
=
𝑞
𝑟
𝐴

𝜎𝑇
4

0

, 𝐺 =
𝐺

𝜎𝑇
4

0

, 𝜏
0
= 𝛼
𝑚
𝑋,

(11)

where 𝑥, 𝑦 are the nondimensional coordinate axis, 𝑢, V are
the nondimensional velocity components, 𝜓 and 𝜔 are the
nondimensional stream and vorticity functions, 𝑡 is the time,
𝑇
0
is the reference temperature, 𝜃 is the nondimensional

temperature, 𝜃
0
is the mean temperature in nondimensional

form,𝐺 is the dimensionless radiant energy, and 𝜏
0
is the opti-

cal thickness.The treatment of radiative flux divergence in (2)
is based on two-dimensional differential approximation. The
nondimensional form of radiative flux and its divergence are
given by the following relations (see also [1, 2, 4–6]):

𝑞
𝑟,𝑥

= −
1

3𝜏
0

𝜕𝐺

𝜕𝑥
, 𝑞

𝑟,𝑦
= −

1

3𝜏
0

𝜕𝐺

𝜕𝑦
, (12)

where 𝑞
𝑟,𝑥

and 𝑞
𝑟,𝑦

are the radiative fluxes along the 𝑥 and
𝑦 components, respectively. Thus the governing equations in
nondimensional form finally become

𝜕
2
𝜓

𝜕𝑥
2
+
𝜕
2
𝜓

𝜕𝑦
2
= −𝜔, (13)

𝜕𝜔

𝜕𝑡
+ 𝑢

𝜕𝜔

𝜕𝑥
+ V

𝜕𝜔

𝜕𝑦
= Pr(𝜕

2
𝜔

𝜕𝑥
2
+
𝜕
2
𝜔

𝜕𝑦
2
) + RaPr𝜕𝜃

𝜕𝑥
, (14)

𝜕𝜃

𝜕𝑡
+ 𝑢

𝜕𝜃

𝜕𝑥
+ V

𝜕𝜃

𝜕𝑦
= (

𝜕
2
𝜃

𝜕𝑥
2
+
𝜕
2
𝜃

𝜕𝑦
2
) +

1

3𝑁CR
(
𝜕
2
𝐺

𝜕𝑥
2
+
𝜕
2
𝐺

𝜕𝑦
2
) ,

(15)

𝜕
2
𝐺

𝜕𝑥
2
+
𝜕
2
𝐺

𝜕𝑦
2
= 3𝜏
2

0
𝐴
2
(1 − Ω

0
) (𝐺 − 4

𝜃
4

𝜃
4

0

) , (16)

with the following boundary conditions:

𝑡 < 0

𝑢 = V = 𝜓 = 𝜔 = 𝜃 = 𝐺 = 0, 0 ≤ 𝑦 ≤ 1, 0 ≤ 𝑥 ≤
1

𝐴

𝑡 ≥ 0

𝑢 = V = 𝜓 = 0, 𝜔 = −
𝜕𝑢

𝜕𝑦
, 𝑦 = 0, 0 ≤ 𝑥 ≤

1

𝐴
,

𝑢 = V = 𝜓 = 0, 𝜔 = −
𝜕𝑢

𝜕𝑦
, 𝑦 = 1, 0 ≤ 𝑥 ≤

1

𝐴
,

𝑢 = V = 𝜓 = 0, 𝜔 =
𝜕V
𝜕𝑥

, 𝜃 = 1, 𝑥 = 0, 0 ≤ 𝑦 ≤ 1,

𝜕𝑢

𝜕𝑥
= −

𝜕V
𝜕𝑦
, 𝜔in = 𝜃in = 𝐺in = 0, 𝑥 =

1

𝐴
, 0 ≤ 𝑦 ≤ 1,

𝜕V
𝜕𝑥

= (
𝜕𝜔

𝜕𝑥
)

out
= (

𝜕𝜃

𝜕𝑥
)

out
= (

𝜕𝐺

𝜕𝑥
)

out
= 0,

𝑥 =
1

𝐴
, 0 ≤ 𝑦 ≤ 1,

(17)

where

Pr = ]
𝛼
, Ra =

𝑔𝛽Δ𝑇𝐻
3

𝛼]
, 𝑁CR =

𝑘𝛼
𝑚
Δ𝑇

𝜎𝑇
4

0

(18)

are, respectively, the Prandtl number, the Rayleigh number,
and the Planck number (also known as conduction-radiation
parameter). The temperature boundary conditions for hori-
zontal walls and radiation energy conditions at the three solid
walls in nondimensional form are now given by ([1, 2, 4–6])

𝜕𝜃

𝜕𝑦
+

1

3𝑁CR

𝜕𝐺

𝜕𝑦
= 0, 𝑦 = 0, 1, 0 ≤ 𝑥 ≤

1

𝐴
,

𝜕𝐺

𝜕𝑛
𝑖

=
3𝜏
0
𝐴𝜖
𝑖

4 − 2𝜖
𝑖

(𝐺 − 4
𝜃
4

𝑖

𝜃
4

0

) .

(19)

Heatlines are a measure of the path followed by the heat
function across the flow region. Following the formulation of
heat function defined by Kimura and Bejan [16], we construct
a Poisson-type heat function equation that identically satisfies
the energy transport equation (2) given by (see also [15–19])

𝜕𝐻

𝜕𝑦
= 𝜌𝐶
𝑝
𝑢 (𝑇 − 𝑇

𝐶
) − 𝑘

𝜕𝑇

𝜕𝑥
+ 𝑞
𝑟,𝑥
,

−
𝜕𝐻

𝜕𝑥
= 𝜌𝐶
𝑝
V (𝑇 − 𝑇

𝐶
) − 𝑘

𝜕𝑇

𝜕𝑦
+ 𝑞
𝑟,𝑦
.

(20)

Now defining 𝐻 = 𝐻/𝑘Δ𝑇 as the nondimensional heat
function and making use of (12), we get the following
definition of heat function:

𝜕
2
𝐻

𝜕𝑥
2
+
𝜕
2
𝐻

𝜕𝑦
2
= 𝑢

𝜕𝜃

𝜕𝑦
+ V

𝜕𝜃

𝜕𝑥
− 𝜃𝜔. (21)

The wall boundary conditions for the heatlines are followed
by the definition of heat function given by (17) (see also [15–
19]):

𝜕𝐻

𝜕𝑦
= −

𝜕𝑇

𝜕𝑥
, 𝑦 = 0, 1, 0 ≤ 𝑥 ≤

1

𝐴
,

𝜕𝐻

𝜕𝑥
=
𝜕𝑇

𝜕𝑦
, 𝑥 = 0, 0 ≤ 𝑦 ≤ 1,

𝜕𝐻

𝜕𝑥
= 0, 𝑥 =

1

𝐴
, 0 ≤ 𝑦 ≤ 1.

(22)
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Finally we define the heat transfer from the left wall. When
energy transfer takes place in combined mode, the net heat
transfer rate is also defined as the combined mechanism of
these modes (Lauriat [4]). Thus for combined mechanism of
convection and radiation the net heat transfer for solid wall
boundaries can be defined by the following relations (see [4–
6, 21]):

Nu
𝐶
= −(

𝜕𝜃

𝜕𝑥
)

𝑥=0

, Nu
𝑅
= −

1

3𝑁CR
(
𝜕𝐺

𝜕𝑥
)

𝑥=0

,

Nu = Nu
𝐶
+Nu
𝑅
.

(23)

From here it follows that the average Nusselt number is
defined as

Nu = Nu
𝐶
+Nu
𝑅
= ∫

1

0

Nu 𝑑𝑦

= ∫

1

0

[(−
𝜕𝜃

𝜕𝑥
)

𝑥=0

+ (−
1

3𝑁CR

𝜕𝐺

𝜕𝑥
)

𝑥=0

] 𝑑𝑦,

(24)

where 𝑑𝑦 is the element of length 𝑌 along the wall. Equations
(13) to (16) are solved with the boundary conditions given by
(17) and (19) to solve the system. The heat lines are given by
(21) whereas the average heat transfer is calculated from (24).

3. Method of Solution

The flow is developed by coupling of buoyancy term in (14),
which is updated by (15) and (16), stream function is obtained
by coupling of (13) and (14), and finally velocity profile is
updated using the nondimensional form of (10).The solution
is complemented with the implementation of boundary con-
ditions given in (17) and (19). The stream function equation
(13) is solved using SuccessiveOverRelaxation (SOR)method
with residual tolerance of order 10−5. With 𝑌 as the reference
height of the cavity, we have considered a uniform grid of
size ℎ = 𝑌/(𝐽 − 1), where 𝐽 is the maximum number of
grids along coordinate axes.Throughout the computation we
take 𝑌 = 1. The time dependent vorticity transport equation
(14) and thermal conduction-convection equation (15) are
solved using theAlternateDirect Implicitmethod.Thedetails
of the proposed method are also given in [21–23, 27]. A
simple discretization procedure given by Bello-Ochende [17]
is adopted for the solution of radiation equation (16) and
heat function equation given by (21). As a simple case, all
computations are performed for square cavity. That is,𝐴 = 1.
Now in order to meet the criteria of convergence to reach the
steady state, we define the error bound in the computed value
of a variable 𝐹, by the relation



𝐹
𝑚+1

(𝑖,𝑗)
− 𝐹
𝑚

(𝑖,𝑗)

𝐹
𝑚

(𝑖,𝑗)



< 10
−8
, (25)

where the superscript 𝑚 refers to the number of time steps
and (𝑖, 𝑗) is a grid location on coordinate axes. A grid
dependence study has been carried out for the choice of
suitable number of grid points whose results are shown in
Figure 2.
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Figure 2: Average heat transfer rate of the heated wall against time
for various grid choices at Ra = 5 × 10

5, Pr = 0.7, and 𝜏
0
= Ω
0
=

𝑁CR = 0.5.

Figure 2 shows the result of grid dependence study at Ra =
5 × 10

5, 𝜏
0
= Ω
0
= 𝑁CR = 0.5 for the choice of appropriate

mesh size ℎ. For any variable 𝐹, we define the relative error %
between the computed values taking different grid points as
given by

Error% =



𝐹
(𝜅+10,𝜅+10)

− 𝐹
𝜅,𝜅

𝐹
𝜅,𝜅



, (26)

where 𝐹
𝜅,𝜅

is previously calculated value of a variable for
(𝜅 × 𝜅) grid points. As a demonstration, Figure 2 shows the
percentage error in the values obtained from the difference
between the computed values of the Average Nusselt number,
for different choices of mesh points. It can be seen that the
maximum error between mesh sizes 61 × 61 and 71 × 71,
in terms of Nu, drops to less than 1%. Thus a mesh of 61 ×
61 is considered sufficient for the entire computation. The
reduction in relative error justifies the grid independence
of the solution. In order to further check the validity for
the solution method of the proposed model, we have also
revisited the work of Draoui et al. [6] using the solid wall
conditions and the temperature and radiation condition
given by [6] for the right wall.The comparison of streamlines,
isotherms, and heatlines, for Ra = 10

5, Pr = 0.7, 𝜏
0
= 1,Ω

0
=

0.2, and 𝑁CR = 0.1, is shown in Figure 3. From this figure
we assert that the numerical solution we obtained agrees
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Figure 3: Comparison of (a) streamlines and (b) isotherms. (c) Heat lines with the results of Draoui et al. [6] for Ra = 10
5, Pr = 0.7, 𝜏

0
= 1,

Ω
0
= 0.2, and𝑁CR = 0.1 with the conditions given by [6].

well with the existing literature of heatlines. Intel 1.83GHz
processing machine is used for the entire computation.

4. Results and Discussion

We have considered combined natural convection and radia-
tion phenomena for participating fluid confined in an open
square cavity. The left wall is considered at a temperature
higher than that of the fluid entering from the ambient
region. The effect of relevant radiation parameters, namely,
the optical thickness, scattering albedo, and Planck number,
on the flowprofile and heat transfer rate has been numerically
studied. The result is presented graphically in terms of

streamlines, isotherms, heatlines, and heat transfer rate for
different values of these governing physical parameters.

4.1. Effect of Optical Thickness. Figure 4 represents the
selected results of steady state pattern of streamlines while
Ra = 7×10

5,Ω
0
= 0.2, and𝑁CR = 0.1 for (a) 𝜏

0
= 0.0, (b) 𝜏

0
=

0.5, and (c) 𝜏
0
= 1.0, respectively. The result of Figure 4(a)

shows the streamlines in the absence of radiation effects.
However, with the increase in optical thickness, the flow in
the core region decreases as shown in Figure 4(b); rather it is
minimum at this value of 𝜏

0
. By further increasing the optical

thickness, the flow develops into amulticell pattern due to the
dominance of radiation effects into the core region. It may be
due to the reason that the fluid in the core region experiences
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Figure 4: Steady state pattern of streamlines for Ra = 7 × 10
5,Ω
0
= 0.2, and𝑁CR = 0.1 at (a) 𝜏

0
= 0.0, (b) 𝜏

0
= 0.5, and (c) 𝜏

0
= 1.0.

a force from the incoming fluid, whereas the recirculation
is higher in the half open vortex close to the opening. This
counteracting mechanism develops a multicellular pattern as
shown in Figure 4(c). Figure 5 shows the isotherms at these
values of optical thickness. Figure 5(a) shows that, at 𝜏

0
=

0.0, the isotherms are clustered close to the heated wall. It is
due to the dominance of convection in the boundary layer
region. However with the increase in optical thickness, the
boundary layer thickness increases.This effect is qualitatively
in agreementwith the case of completely confined enclosures.
The radiation energy adds to the total energy of isotherms and
thus the high energy isotherms shift towards the core region
as shown in Figure 5(b). At 𝜏

0
= 1.0, the whole flow domain

has the isotherms nearly equal to unity due to the dominance
of radiant energy, shown in Figure 5(c). This might well be
understood also from the heatlines pattern of Figure 6.

Figure 6 shows the heatlines while Ra = 7 × 10
5, Ω
0
=

0.2, and 𝑁CR = 0.1 for (a) 𝜏
0
= 0.0, (b) 𝜏

0
= 0.5, and

(c) 𝜏
0
= 1.0, respectively. Obviously, at 𝜏

0
= 0.0, there is

no contribution of radiation in heat transfer and fluid flow.
All fluid entering the flow domain absorbs heat from the
solid wall and heatlines are negative throughout the flow
region with higher values close to the solid wall as shown
in Figure 6(a). The flow region, in which the recirculation
is weaker (as in Figure 4(b)), is the region which absorbs
heat at 𝜏

0
= 0.5, given in Figure 6(b). The positive part

of the heatlines pattern is the region of fluid with higher
energy level. Figure 6(c) shows the heatlines pattern at 𝜏

0
=

1.0. This clearly indicates the high energy level of fluid due
to dominance of radiation effect. The heatlines are positive
throughout the region, which indicates that the fluid in the
region is at high energy level and emitting heat. The effect of
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Figure 5: Isotherms for Ra = 7 × 10
5,Ω
0
= 0.2, and𝑁CR = 0.1 at (a) 𝜏

0
= 0.0, (b) 𝜏

0
= 0.5, and (c) 𝜏
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optical thickness on heat transfer is described in Figure 7. It
can be discerned that the overall heat transfer Nu pattern is
dominated by the radiation heat transfer Nu

𝑅
. In particular,

overall heat transfer is almost the same as radiative heat
transfer beyond 𝜏

0
> 0.5. Heat transfer is maximum at

𝜏
0
= 0.5, when the flow in the core region is very weak.

The contribution of convective heat transfer asymptotically
vanishes with the increase in the contribution of optical
thickness. At 𝜏

0
= 1.25, both the radiative and convective heat

transfer rates coincide with “0,” beyond which the negative
heat transfer signifies the energy level of fluid due to the fact
that contribution of radiant energy is so high that it serves to
reject heat to the solid wall. However, the smooth curve, for
𝜏
0
> 1.75, shows that the flow pattern and transfer rates are

not much affected beyond 𝜏
0
= 1.75.

4.2. Effect of Scattering Albedo. Scattering albedo is ameasure
of radiative participation of the fluid. 0 ≤ Ω

0
≤ 1 shifts the

fluid regime from perfectly participating to nonparticipating.
Figure 8 shows the average total heat transfer against time
at Ra = 2 × 10

5, 𝜏
0

= 0.5, and 𝑁CR = 0.2 for
different values of scattering albedo Ω

0
. The right hand side

of (16) signifies that the fluid is perfectly transmitting at
Ω
0
= 0. This justifies that with the increase in the value

of Ω
0
, the scattering increases, which enhances the effect of

convective heat transfer; ultimately Nu
𝐶
increases whereas

the radiative heat transfer decreases and the decrease seems
more prominent because Ω

0
= 1 decouples the radiation

equation from the thermal energy. Thus, at Ω
0
= 1, the

radiative heat transfer is zero. Figure 8 signifies thatΩ
0
has no

significant effect on the overall heat transfer 0 ≤ Ω
0
≤ 0.75;
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Figure 6: Heat lines for Ra = 7 × 10
5,Ω
0
= 0.2, and𝑁CR = 0.1 at (a) 𝜏

0
= 0.0, (b) 𝜏

0
= 0.5, and (c) 𝜏

0
= 1.0.

rather, there is a considerable decrease only between Ω
0
=

0.75 and Ω
0
= 1 due to the reason that at Ω

0
= 1 the fluid

surface is perfectly scattering, and the contribution of Nu
𝑅

vanishes at this value ofΩ
0
.

4.3. Effect of Planck Number. Planck number represents the
ratio of conduction to radiation effects on the fluid. The
greater the value of𝑁CR is, the lesser the effect of radiation on
the fluid will be. Figure 9 shows the streamlines at Ra = 5 ×

10
5, Ω
0
= 0.2, and 𝜏

0
= 1.0 for (a)𝑁CR = 0.2, (b)𝑁CR = 2.0,

and (c) 𝑁CR = 4.0, respectively. At 𝑁CR = 0.2, the radiation
effect is dominant and the flow in the core region is weaker.
Rather, a multicellular pattern appears due to the reason that
the lower energy fluid is trapped by the recirculating fluid
close to the opening. However, at 𝑁CR = 2.0, the two effects

are comparable, and the flow in the core region develops into
a unicellular pattern with maximum value of the flow at the
opening. At𝑁CR = 4.0, the conduction effect is dominant and
the flow further decreases. The flow in Figure 9(c) is weaker
than the one noticed in Figure 9(b), because of the gradual
exclusion of radiant energy from the flow. Figure 10 shows
the heatlines at Ra = 5 × 10

5, Ω
0
= 0.2, and 𝜏

0
= 1.0 for (a)

𝑁CR = 0.2, (b) 𝑁CR = 2.0, and (c) 𝑁CR = 4.0. Obviously at
𝑁CR = 0.2, the radiant energy is a dominant factor in the
flow, because the fluid in most of the domain is at higher
energy level, shown by positive values of heatlines. However,
the heatline labeled −6 at the opening signifies that there is a
small portion of the incoming fluid that absorbs heat from
the flow domain. Figures 10(b) and 10(c) show that as the
value of Planck number increases, more andmore fluid in the
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core region absorbs heat by conduction due to decrease in the
energy level of the fluid in the core region.

Finally Figure 11 shows the convective, radiative, and total
heat transfer as a function of 𝑁CR while 𝜏

0
= 1, Ω

0
= 0.2,

and Ra = 5 × 10
5. It can be observed that, for sufficiently

low value of Planck number (𝑁CR ≤ 0.5), both the radiation
and convective heat transfer increase. The reason might be
that, for low value of Planck number, radiation is assisted by
natural convection. Looking up at (15) and (24), it becomes
obvious that the contribution of radiation in total energy and
total heat transfer should fade away in the limit 𝑁CR →

∞, and for sufficiently large 𝑁CR, the energy equation (15)
gets decoupled from the radiant energy, whereas natural
convection becomes the main mechanism to drive the flow.
This is now evident from Figure 11 that, beyond 𝑁CR0.5,
there is a decrease in the radiation heat transfer with the
increasing values of𝑁CR, and it asymptotically reaches to zero
in the limit 𝑁CR > 20 in this case, whereas the convective
heat transfer rate increases and approaches total heat transfer
curve for𝑁CR > 20.Thus in this case for𝑁CR > 20, the overall
heat transfer rate is represented by convective heat transfer
rate and the contribution of radiative heat transfer vanishes.
Therefore we can say that there is a smooth transition of flow
from radiation dominated regime to convection dominated
regime. This is also physically evident from the definition of
Planck number that, for 𝑁CR ≫ 1, the conduction effects
would become dominant. However, the convective and total
heat transfer attain almost a steady value beyond 𝑁CR > 15,
due to the fact that the contribution of radiation in the total
thermal energy becomes less and less as we increase the value
of𝑁CR.

5. Conclusion

An investigation of the effect of radiation and natural convec-
tion of viscous incompressible fluid in a square open cavity

t
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Figure 8: Average heat transfer rate against time while Ra = 2×10
5,

𝜏
0
= 0.5, and𝑁CR = 0.2 for different values of scattering albedo Ω

0
.

has been carried out. The main focus was the study of flow
pattern and heat transfer rates for different values of radiation
parameters 0 ≤ 𝜏

0
≤ 2.5, 0 ≤ Ω

0
≤ 1, and 0.05 ≤ 𝑁CR ≤ 20.

The following conclusions are obtained.

(1) It was seen that with the increase in the optical thick-
ness the strength of flow and energy level of the fluid
increases, which ultimately results in the negation
of heat transfer rate. Convective heat transfer Nu

𝐶

decreases asymptotically to zero, whereas radiative
heat transfer Nu

𝑅
first increases in the range 0 ≤ 𝜏

0
≤

0.5 and then decreases due to rapid attenuation along
propagation in the optically thick media.

(2) The total heat transfer is not significantly affected
in the range 0 ≤ Ω

0
≤ 0.75, whereas due to

rapid decrease in radiative heat transfer, overall heat
transfer decreases nearΩ

0
= 1.

(3) Both the strength of flow and energy level of the fluid
decreasewith the increase in Planck number𝑁CR.The
contribution of radiative heat transfer asymptotically
fades to zero with the increase in the value of 𝑁CR,
whereas convective heat transfer remains the main
mechanism of heat transfer for large values of𝑁CR.

Nomenclature

English Letters

𝐴: Aspect ratio
𝐶
𝑝
: Molar specific heat at constant pressure (JK−1)

𝑔: Acceleration due to gravity (ms−2)
𝐺: Radiant energy Wm−2
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Figure 9: Streamlines for Ra = 5 × 10
5,Ω
0
= 0.2, and 𝜏

0
= 1.0 at (a)𝑁CR = 0.2, (b)𝑁CR = 2.0, and (c)𝑁CR = 4.0.

𝐺: Dimensionless radiant energy
𝐻: Heat function Wm−1
𝐻: Dimensionless heat function
ℎ: Mesh spacing
(𝑖, 𝑗): Nodal locations of (𝑥, 𝑦) on grid
𝐼, 𝐽: Thenumber of grid points in each direction
𝑘: Coefficient of thermal conductivity

(Wm−1K−1)
𝑁CR: Planck number
Nu
𝐶
: Convective Nusselt number

Nu
𝐶
: Average convection Nusselt number

Nu
𝑅
: Radiation heat transfer

Nu
𝑅
: Average radiation heat transfer

Nu: Total Nusselt number
Nu: Average Nusselt numbers

𝑝: Fluid pressure (Pa)
𝑞
𝑟
: Radiant flux Wm−2

𝑞
𝑟
: Dimensionless radiant flux

Pr: Prandtl number
Ra: Raleigh number
𝑇: Dimensional temperature (K)
𝑇
𝐻
, 𝑇
𝐶
: Maximum and minimum temperature (K)

𝑇
0
: Average/reference temperature (K)

𝑡: Dimensional time (s)
𝑡: Nondimensional time
𝑢,V: Velocity components (ms−1)
𝑢, V: Nondimensional velocity components
𝑋,𝑌: Length and height of the cavity (m)
𝑥, 𝑦: Dimensional coordinate axis (m)
𝑥, 𝑦: Nondimensional coordinate axis.
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Figure 10: Heatlines for Ra = 5 × 10
5,Ω
0
= 0.2, and 𝜏

0
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Greek Letters

𝛼: Thermal diffusivity (𝑘/𝜌𝐶
𝑝
)

𝛼
𝑚
: Mean extinction coefficient

𝛽: Thermal expansion coefficient (K−1)
𝜖
𝑖
: Wall emissivity/absorption

𝜃: Nondimensional temperature
𝜇: Dynamic viscosity (m−1s−1)
]: Kinematic viscosity m2s−1Kg−1
𝜌: Density of fluid (Kgm−3)
𝜎: Stefan-Boltzmann constant Wm−2K−4
𝜏
0
: Optical thickness

𝜓: Stream function (m2s−1Kg−1)
𝜓: Nondimensional stream function
Ω
0
: Scattering Albedo

𝜔: Dimensional vorticity function (s−1)
𝜔: Nondimensional vorticity function.
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