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The dynamics model is established in view of the self-designed, two-wheeled, and self-balancing robot.This paper uses the particle
swarm algorithm to optimize the parameter matrix of LQR controller based on the LQR control method to make the two-wheeled
and self-balancing robot realize the stable control and reduce the overshoot amount and the oscillation frequency of the system at
the same time. The simulation experiments prove that the LQR controller improves the system stability, obtains the good control
effect, and has higher application value through using the particle swarm optimization algorithm.

1. Introduction

The two-wheeled and self-balancing robot belongs to a
multivariable, nonlinear, high order, strong coupling, and
unstable essential motion control system, and it is a typ-
ical device of testing various control theories and control
methods; therefore, the research has great theoretical and
practical significance. Because it has the advantages of simple
structure, stable running, high energy utilization rate, and
strong environmental adaption, it has the broad application
prospects whether in the military field or in the civilian field.

Since 1980s, the scholars of various countries have
conducted the system research on the two-wheeled self-
balancing robot. The two-wheeled and self-balancing robot
control system based on the fuzzy control can overcome the
instability and nonlinear nature of the system, but it relies
on the expert’s experience too much [1, 2]. The optimal LQR
controller is designed on the basis of establishing the system
structuremodel; the correctness and effectiveness of the LQR
controller are verified, but it is difficult to determine the
weighted matrix 𝑄 and 𝑅 [3–5]. The genetic algorithm is
successfully applied to the parameter optimization of the LQR
controller of the inverted pendulum system, and it achieves
the good control effect. However, the parameters are difficult
to adjust, and it is easy to fall into the local optimization [6].

This paper concerns the self-designed and two-round
self-balancing robot as the research object, which uses
the Newtonian mechanics equation method and the linear
method near the balance point to establish the linearized
mathematical model of the system. In view of the mathemat-
ical model of the system, LQR controller is designed based
on the particle swarm optimization and makes full use of
the searching capability of the particle swarm algorithm to
optimize the matrix 𝑄 and matrix 𝑅 of the LQR controller. It
gains the global optimal solution of matrix 𝑄 and 𝑅 of the
LQR controller so as to design the optimal state feedback
control matrix 𝐾 and overcome the disadvantages of relying
on the experience and the trial and error in the selection of
matrix𝑄 and𝑅 of the general LQR control design,making up
for the inadequacy of big workload. This method has better
control effect by simulation tests and comparison.

2. The Dynamics Model of the Two-Wheeled
Self-Balancing Robot

The two-wheeled and self-balancing robot structure ismainly
composed of the body and the two wheels, and the robot is
the coaxial two wheels, driven by the independent motor;
the parameters of quality, moment of inertia, and radius of
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Figure 1: The force analysis of revolver.

the two wheels are regarded as the same, so the body center
of gravity is inverted above the axletree and it keeps balance
through sports.

The two-wheeled and self-balancing robot can be
regarded as the vehicle-mounted inverted pendulum, so the
dynamic system analysis process is more complex.This paper
separates the wheel from the pendulum analysis first in the
process of modeling, and then it deduces the dynamics state
equation of the two-wheeled self-balancing robot through
the simultaneous two parts [7, 8].

The two wheels are regarded as the research object,
Figure 1 is a diagram revolver force analysis. According to
the revolver force equation can be obtained in the following
according to the Newton’s law [9] and the rotational torque
formula [10]:

𝑀
𝑤
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𝑓𝑅
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(1)

The right wheel force equation is as follows:
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After finishing, it can obtain

2 (𝑀
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𝑅2
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Among them, 𝑀
𝑤
is the weight of the wheel; 𝐼

𝜔
is the

moment of inertia of the wheel; 𝑅 is the radius of the wheel;
�̈� is the wheel acceleration of𝑋 axis; 𝐶

𝑅
and 𝐶

𝐿
are the right

and left wheel torque; 𝐻
𝐿
and 𝐻

𝑅
are the 𝑍 axis forces of

the left and right wheels with the car body; 𝐻
𝑓𝑅

and 𝐻
𝑓𝐿

are the interatomic forces of the right and left wheels with
the ground; and 𝜃

𝜔
is the angle of wheel around the 𝑍 axis

direction.
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ẍ

𝜃2

MPg ΣFxp

Figure 2: The analysis of car body force.

The car body of the two-wheeled and self-balancing robot
is modelled as an inverted pendulum; the car body force
analysis is shown in Figure 2. Using Newton’s second law, the
horizontal force is as follows:
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(4)

Among them, 𝑥
𝑝
is the displacement of the car body

centre of gravity relative to the ground,

𝑥
𝑝
= 𝑥 + 𝑙 sin 𝜃

𝑝
. (5)

Using Newton’s second law, the force of the vertical
direction of the car body is as follows:
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(6)

The sum of the torques of the car body mass center is as
follows:
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On the small angle scope, 𝜃2
𝑝
≈ 0, sin 𝜃

𝑝
≈ 𝜃
𝑝
, cos 𝜃

𝑝
≈

1, the linearized equations are gotten after the linearization
process:
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Among them, 𝜃
𝑝
is the angle of the car body deviating

from the 𝑍 axis direction; 𝐼
𝑝
is the moment of inertia of the

car body;𝑀
𝑃
is the weight of the car body; and 𝑙 is the height

of which the car body is apart from the shaft. The output
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torque of the wheel is 𝐶
𝑅
= 𝐶
𝐿
= 𝐼
𝑅
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−
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𝜔
; the state equation of the two-wheeled self-

balancing robot is obtained:
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Among them, 𝐴 = [𝐼
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The output equation is as follows:

𝑦 = [0 0 1 0]

[
[
[
[
[

[

𝑥

�̇�

𝜃
𝑝

̇𝜃
𝑝

]
]
]
]
]

]

. (10)

3. The LQR Controller Parameter
Optimization Based on the Particle
Swarm Optimization Algorithm

3.1. The Design of the Self-Balancing Robot LQR Controller.
The LQR method is the most mature controller design
method in the development of modern control theory [11];
LQR optimal control is to seek the control amount 𝑢∗(𝑡) to
make the system reach the steady state and guarantee the
performance index 𝐽 to take the minimum value:

𝐽 = ∫

∞

0

(𝑋
𝑇

𝑄𝑋 + 𝑢
𝑇

𝑅𝑢) 𝑑𝑡. (11)

Among them, 𝑢∗ = −𝑅−1𝐵𝑇𝑃𝑥 = −𝐾𝑥, and 𝑃 is the solu-
tion of the algebraic equation𝑃𝐴+𝐴𝑇𝑃+𝑄−𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0 of
the matrix Riccati [12]. In (13), the matrix𝑄 and matrix 𝑅 are
mutually restricted, and the size of the𝑄 value is proportional
to the anti-interference ability of the system; increasing the𝑄
value, the anti-interference ability of the system is enhanced,
and the adjustment time of the system is shortened. However,
at the same time, the oscillation of the system is strengthened,
and the consumption of energy increases. The increase of 𝑅

value makes the energy consumed by the system less, but
the adjustment time increases. Therefore, the design key is
to find the right weight matrix 𝑄 and matrix 𝑅. As long
as we make sure of the matrix 𝑄 and matrix 𝑅, the state
feedback matrix 𝐾 is the only confirmation. However, the
selection of the 𝑄 matrix and 𝑅 matrix entirely depends on
the experience and trial and error method in the process of
LQR controller design, so the subjectivity is larger, resulting
in the imperfection of the controller design and affecting the
control effect.

3.2. The Parameter Optimization Principle of the LQR Con-
troller Based on the Particle Swarm Optimization Algorithm.
As a new optimization algorithm has been developed in
recent years, the particle swarm optimization algorithm is
abbreviated as the PSO. The particle swarm optimization
algorithm is a kind of evolutionary algorithms, and it starts
from the random solutions and searches for the optimal
solution through the iterative algorithm [13].

Assuming 𝑋 particles are composed of a group in 𝑛
dimensional space, among them, the position and velocity
of 𝑖 particle in the space are 𝑥

𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝐷
), V
𝑖
=

(V
𝑖1
, V
𝑖2
, V
𝑖3
, . . . , V

𝑖𝐷
), 𝑖 = 1, 2, . . . , 𝑚, the best position that

the 𝑖 particle experiences is denoted by 𝑝bset(𝑖), and the best
position that all the particles in the group experience is
denoted by 𝑔bset(𝑖). The whole particle swarm updates the
velocity and position through tracking the individual extreme
value and the optimal value [14]. The particle optimization
process is expressed in

V𝑘+1
𝑖𝑑

= 𝑤V𝑘
𝑖𝑑
+ 𝑐
1
𝜕 (𝑝
𝑘

𝑖𝑑
− 𝑥
𝑘

𝑖𝑑
) + 𝑐
2
𝛽 (𝑝
𝑘

𝑔𝑑
− 𝑥
𝑘

𝑖𝑑
) ,

𝑥
𝑘+1

𝑖𝑑
(𝑡 + 1) = 𝑥

𝑘

𝑖𝑑
(𝑡) + V𝑘

𝑖𝑑
(𝑡) .

(12)

Among them, 𝜔 is the inertia weight; 𝑐
1
is the weight

coefficient of the optimal value that the particle tracks its
history; 𝑐

2
is weight coefficients that particle track the optimal

value; and 𝜕 and𝛽 are the randomnumbers changing in [0, 1].
𝑝
𝑘

𝑖𝑑
is the individual optimal solution of the particle after the

𝑘 iterations; 𝑝𝑘
𝑔𝑑

is the global optimal solution of the group
in the 𝑘 iterations. To make the algorithm a more accurate
search scope, the movement speed of the particle is limited
in [−Vmax, Vmax]; if Vmax is too large, the particle will fly over
the optimal solution; if it is too small, it is easy to fall into
the local optimum. Assuming that the particle position is
defined as the interval [−Vmax, Vmax], the two-wheeled self-
balancing robot state variables [𝑥, �̇�, 𝜃

𝑝
, ̇𝜃
𝑝
]
𝑇 are regarded as

the particles, and the particle’s position and the initial value
of the speed are produced at random in a certain range. The
fitness function is an important link in using the particle
swarm optimization algorithm, and it is the standard of the
whole particle swarm algorithm iterative evolution. Because
what we have designed is the quadratic optimal control
regulator, we adopt the linear quadratic performance index
formula (10) as the fitness function. The 𝑄 is a symmetric
positive semidefinite matrix of 6 ∗ 6; 𝑅 is a constant positive
definite matrix. In order to simplify the problem and make
the weighted matrix a clear physical meaning, we choose
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Table 1: The parameter of the robot.

Symbol Actual value
𝑘
𝑚

0.0136Nm/A
𝑘
𝑒

0.01375V/(rad/s)
𝑅 1.6Ω
𝑀
𝑃

0.52 kg
𝑀
𝑤

0.02 kg
𝑙 0.16m
𝐼
𝑝

0.0038 kg⋅m2

𝑔 9.8m/s2

𝐼
𝑤

0.0032 kg⋅m2

𝑟 0.025m

the weighted matrix 𝑄 as the diagonal matrix, so that the
performance index can be represented as

𝐽 = ∫

∞

0

(𝑞
1
𝑥
2

1
+ 𝑞
2
𝑥
2

2
+ 𝑞
3
𝑥
2

3
+ 𝑞
4
𝑥
2

4
+ 𝑅𝑢
2

) 𝑑𝑡. (13)

Among them, 𝑞
1
, 𝑞
2
, 𝑞
3
, and 𝑞

4
are the weights of the

position, speed, angle, and angular velocity of the two-
wheeled self-balancing robot, respectively. 𝑅 is the square
weight of the control amount 𝑢 in the objective function.

3.3. The Parameter Optimization Steps of the LQR Controller
Based on the Practical Swarm Optimization Algorithm

Step 1. Initialize the particle swarm. Set the speed coefficients
𝑐
1
, 𝑐
2
, the maximum evolution algebra gen, the size of the

group pop, and the location of the initial search point and its
speed, and each particle has the value of the current position.

Step 2. Calculate the fitness value 𝐹
𝑖𝑑
[𝑖] of each particle.

Step 3. Compare the fitness value 𝐹
𝑖𝑑
[𝑖] with the individual

extremum 𝑝best(𝑖) of each particle; if 𝐹
𝑖𝑑
[𝑖] > 𝑝best(𝑖), use

𝐹
𝑖𝑑
[𝑖] to replace 𝑝best(𝑖).

Step 4. Compare the fitness value 𝐹
𝑖𝑑
[𝑖] with the global

extremum 𝑔best of each particle; if 𝐹
𝑖𝑑
[𝑖] > 𝑝best(𝑖), use 𝐹𝑖𝑡[𝑖]

to replace 𝑔best.

Step 5. Update the particle’s speed V
𝑖
and position 𝑥

𝑖
accord-

ing to formula (12).

Step 6. If itmeets the end condition (the error is good enough
or it reaches the maximum cycle times), it will exit, or it
returns to Step 2.

4. The Simulation Experiment of
the LQR Controller Based on the Particle
Swarm Algorithm

The parameter symbols, description, and the actual value of
the two-wheeled self-balancing robot are shown in Table 1.

The actual parameters of this system are substituted into
the state equation; the actual state equation is obtained as
follows:

[
[
[

[

�̇�

�̇�
̇𝜙
̈𝜙

]
]
]

]

=
[
[
[

[

0 1 0 0

0 −0.1038 25.5862 0

0 0 0 1

0 −0.5015 238.4685 0

]
]
]

]

[
[
[

[

𝑋

�̇�

𝜙
̇𝜙

]
]
]

]

+
[
[
[

[

0

0.4891

0

2.3634

]
]
]

]

𝑉
𝑎
.

(14)

The initial state of self-balancing robot system is as
follows: [𝑥, �̇�, 𝜃

𝑝
, ̇𝜃
𝑝
]
𝑇

= [0, 0, 0, 0]
𝑇, selecting 𝑐

1
= 𝑐
2
= 1.2

to make experiment, at the same time, selecting the inertia
weight formula [15]:

𝜔
𝑘

= 𝜔max −
𝑘

gen
(𝜔max − 𝜔min) . (15)

Among them, 𝜔max = 1, 𝜔min = 0.3, and gen = 30; it
indicates the iterative number of the algorithm evolution, and
𝑘 is the current evolution algebra.

For an initial population of 40 ∗ 8 matrix, the four
dimensions in the front represent particle updated location
and the four dimensions in the latter represent particle
updated speed. The particle swarm updated position curve
is shown in Figure 3. The particle motion curve shown in
Figure 3 is not lost regularity, so there is only one particle
position in critical condition. The PSO updated rate curve
is shown in Figure 4. Figure 4 shows the particle movement
speed can be controlled, not beyond the intended scope.
Selecting the inertia weight formula is appropriate.

PSO algorithm in this case has a total of 50 times iterative
and adaptive values. The number of iterations with the curve
is shown in Figure 5.

Seen fromFigure 5,𝑄 and𝑅 parameters after 21 iterations
to achieve the optimization.

The global optimal solution can be gotten through the
particle swarm algorithm programming:

𝑄 =
[
[
[

[

221.5326 0 0 0

0 169.2376 0 0

0 0 121.2542 1

0 0 0 187.6532

]
]
]

]

,

𝑅 = 1.7682.

(16)

With the aid of MATLAB function 𝐾 = lqr(𝐴, 𝐵, 𝑄, 𝑅)
to work out the optimal feedback matrix: 𝐾 = [−11.1932,

−16.2145, −72.4045, −17.7329].
The dynamic response curves of the two kinds of algo-

rithms of the LQR controller and the LQR controller based
on the particle swarm algorithm are shown, respectively, in
Figure 6.

The simulation curves of Figure 6 show that when the
initial conditions of self-balancing robot are zero, the LQR
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Figure 3: Particle swarm position initialization.
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Figure 5: 𝑄 and 𝑅 iterative optimization Figure based on PSO
algorithm.

control and LQR control after the particle swarm optimiza-
tion algorithm can make the system stable. However, the
latter algorithm has the advantages of stable short time, less
overshoot with fewer shocks.

In order to verify the LQR algorithm based on PSO opti-
mization is better than that LQR algorithm in the literature
[4] and literature [7]. LQR algorithm comparison and each
algorithm control indicators are shown in Table 2.
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Figure 6: Based on self-balancing robot angle PSO optimized
response.

According to the above results, three kinds of algorithms
can all achieve the stability of the system. The proposed
algorithmon the overshoot and oscillation frequency is out of
the more obvious advantages. That is because the algorithm
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Table 2:The effective comparison table between othermethods and
proposed methods.

Symbol Stability Overshoot Regulation
time

Oscillation
frequency

Literature [4] Stable 62% 1.8 s 1
Literature [7] Stable 21% 3.2 s 3
Proposed method Stable 18% 2.5 s 1

can find the optimal solution of the LQRmatrix𝑄 andmatrix
𝑅.

5. Conclusion

Using the particle swarm algorithm to optimize the selection
of weighted matrix 𝑄 and matrix 𝑅 can overcome the
blindness of selectingmatrix𝑄 andmatrix𝑅 in the traditional
LQR optimal control. This paper uses the characteristics that
the particle swarm optimization algorithm can achieve an
intelligent search, gradual optimization, and rapid conver-
gence. Therefore, it is not easy to fall into local optimum,
but easy to be implemented on the basis of the linear model
of the two-wheeled and self-balancing robot to obtain the
global optimal solution of the 𝑄, 𝑅, achieving the optimal
LQR controller design through the MATLAB simulation
experiments. It can be found that the design response speed
of the LQR optimal controller is faster with less overshoot
amount, and it can keep the steady-state error zero, so the
control effect is better.
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