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This paper is concerned with the existence of multiple periodic solutions for discrete Nicholson’s blowflies type system. By using
the Leggett-Williams fixed point theorem, we obtain the existence of three nonnegative periodic solutions for discrete Nicholson’s
blowflies type system. In order to show that, we first establish the existence of three nonnegative periodic solutions for the n-
dimensional functional difference system 𝑦(𝑘 + 1) = 𝐴(𝑘)𝑦(𝑘) + 𝑓(𝑘, 𝑦(𝑘 − 𝜏)), 𝑘 ∈ Z, where 𝐴(𝑘) is not assumed to be diagonal
as in some earlier results. In addition, a concrete example is also given to illustrate our results.

1. Introduction and Preliminaries

In 1954 Nicholson [1] and later in 1980 Gurney et al. [2]
proposed the following delay differential equation model:

𝑥


(𝑡) = −𝛿𝑥 (𝑡) + 𝑝𝑥 (𝑡 − 𝜏) 𝑒
−𝛾𝑥(𝑡−𝜏)

, (1)

where 𝑥(𝑡) is the size of the population at time 𝑡, 𝑝 is the
maximum per capita daily egg production, 1/𝛾 is the size at
which the population reproduces at its maximum rate, 𝛿 is
the per capita daily adult death rate, and 𝜏 is the generation
time.

Now, Nicholson’s blowflies model and its various anal-
ogous equations have attracted more and more attention.
There is large literature on this topic. Recently, the study
on Nicholson’s blowflies type systems has attracted much
attention (cf. [3–8] and references therein). In particular,
several authors have made contribution on the existence of
periodic solutions for Nicholson’s blowflies type systems (see,
e.g., [6, 7]). In addition, discrete Nicholson’s blowflies type
models have been studied by several authors (see, e.g., [9–12]
and references therein).

Stimulated by the above works, in this paper, we consider
the following discrete Nicholson’s blowflies type system:

𝑥
1
(𝑘 + 1) = 𝑎

11
(𝑘) 𝑥
1
(𝑘)

+ 𝑎
12

(𝑘) 𝑥
2
(𝑘) + 𝑏 (𝑘)

× [𝑥
1
(𝑘 − 𝜏) + 𝑥

2
(𝑘 − 𝜏)]

𝑚

× 𝑒
−𝑐(𝑘)[𝑥

1
(𝑘−𝜏)+𝑥

2
(𝑘−𝜏)]

,

𝑥
2
(𝑘 + 1) = 𝑎

21
(𝑘) 𝑥
1
(𝑘)

+ 𝑎
22

(𝑘) 𝑥
2
(𝑘) + 𝑏 (𝑘)

× [𝑥
1
(𝑘 − 𝜏) + 𝑥

2
(𝑘 − 𝜏)]

𝑚

× 𝑒
−𝑐(𝑘)[𝑥

1
(𝑘−𝜏)+𝑥

2
(𝑘−𝜏)]

,

(2)

where 𝑚 > 1 is a constant, 𝜏 is a nonnegative integer, and 𝑎
𝑖𝑗
,

𝑖, 𝑗 = 1, 2, 𝑏, and 𝑐 are all 𝑁-periodic functions from Z to R.
In fact, there are seldom results concerning the existence

of multiple periodic solutions for Nicholson’s blowflies type
equations. It seems that the only results on this topic are
due to Padhi et al. [13–15], where they established several
existence theorems about multiple periodic solutions of
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Nicholson’s blowflies type equations. In addition, recently,
several authors have investigated the existence of almost
periodic solutions for Nicholson’s blowflies type equations
(see, e.g., [11, 16, 17] and references therein). However, to
the best our knowledge, there are few results concerning
the existence of multiple periodic solutions for Nicholson’s
blowflies type systems. That is the main motivation of this
paper.

Next, let us recall the Leggett-Williams fixed point theo-
rem, which will be used in the proof of our main results.

Let 𝑋 be a Banach space. A closed convex set 𝐾 in 𝑋 is
called a cone if the following conditions are satisfied: (i) if 𝑥 ∈

𝐾, then 𝜆𝑥 ∈ 𝐾 for any 𝜆 ≥ 0; (ii) if 𝑥 ∈ 𝐾 and −𝑥 ∈ 𝐾, then
𝑥 = 0.

A nonnegative continuous functional 𝜓 is said to be
concave on 𝐾 if 𝜓 is continuous and

𝜓 (𝜇𝑥 + (1 − 𝜇) 𝑦) ≥ 𝜇𝜓 (𝑥) + (1 − 𝜇)𝜓 (𝑦) ,

𝑥, 𝑦 ∈ 𝐾, 𝜇 ∈ [0, 1] .

(3)

Letting 𝑐
1
, 𝑐
2
, and 𝑐

3
be three positive constants and letting

𝜙 be a nonnegative continuous functional on 𝐾, we denote

𝐾
𝑐
1

= {𝑦 ∈ 𝐾 :
𝑦

 < 𝑐
1
} ,

𝐾 (𝜙, 𝑐
2
, 𝑐
3
) = {𝑦 ∈ 𝐾 : 𝑐

2
≤ 𝜙 (𝑦) ,

𝑦
 < 𝑐
3
} .

(4)

In addition, we call that 𝜙 is increasing on 𝐾 if 𝜙(𝑥) ≥ 𝜙(𝑦)

for all 𝑥, 𝑦 ∈ 𝐾 with 𝑥 − 𝑦 ∈ 𝐾.

Lemma 1 (see [18]). Let 𝐾 be a cone in a Banach space
𝑋, let 𝑐

4
be a positive constant, let Φ : 𝐾

𝑐
4

→ 𝐾
𝑐
4

be
a completely continuous mapping, and let 𝜓 be a concave
nonnegative continuous functional on 𝐾 with 𝜓(𝑢) ≤ ‖𝑢‖ for
all 𝑢 ∈ 𝐾

𝑐
4

. Suppose that there exist three constants 𝑐
1
, 𝑐
2
, and

𝑐
3
with 0 < 𝑐

1
< 𝑐
2
< 𝑐
3
≤ 𝑐
4
such that

(i) {𝑢 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
3
) : 𝜓(𝑢) > 𝑐

2
} ̸=Ø, and 𝜓(Φ𝑢) > 𝑐

2
for

all 𝑢 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
3
);

(ii) ‖Φ𝑢‖ < 𝑐
1
for all 𝑢 ∈ 𝐾

𝑐
1

;

(iii) 𝜓(Φ𝑢) > 𝑐
2
for all 𝑢 ∈ 𝐾(𝜓, 𝑐

2
, 𝑐
4
) with ‖Φ𝑢‖ > 𝑐

3
.

Then Φ has at least three fixed points 𝑢
1
, 𝑢
2
, and 𝑢

3
in 𝐾
𝑐
4

.
Furthermore, ‖𝑢

1
‖ ≤ 𝑐
1
< ‖𝑢
2
‖, and 𝜓(𝑢

2
) < 𝑐
2
< 𝜓(𝑢

3
).

Throughout the rest of this paper, we denote by Z the
set of all integers, by R the set of all real numbers, and by
𝑙
∞

𝑁
(Z,R𝑛) the space of all 𝑁-periodic functions 𝑥 : Z →

R𝑛, where 𝑁 is a fixed positive integer. It is easy to see that
𝑙
∞

𝑁
(Z,R𝑛) is a Banach space under the norm

‖𝑥‖ = max
1≤𝑘≤𝑁

max
1≤𝑖≤𝑛

𝑥𝑖 (𝑘)
 , (5)

where 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇. In addition, we denote

R
𝑛

+
:= {(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) : 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
≥ 0} . (6)

2. Main Results

To study the existence of multiple periodic solutions for
system (2), we first consider the following more general 𝑛-
dimensional functional difference system:

𝑦 (𝑘 + 1) = 𝐴 (𝑘) 𝑦 (𝑘) + 𝑓 (𝑘, 𝑦 (𝑘 − 𝜏)) , 𝑘 ∈ Z, (7)

where, for every 𝑘 ∈ Z, 𝐴(𝑘) is 𝑁-periodic and nonsingular
𝑛 × 𝑛 matrix, and 𝑓 = (𝑓

1
, . . . , 𝑓

𝑛
)
𝑇

: Z × R𝑛 → R𝑛 is 𝑁-
periodic in the first argument and continuous in the second
argument.

To note that the existence of periodic solutions for system
(7) and its variants had been of great interest formany authors
(see, e.g., [19–25] and references therein) is needed. However,
in some earlier works (see, e.g., [21]) on the existence of
periodic solutions for system (7), the matrix 𝐴(𝑘) is assumed
to be diagonal. In this paper, we will remove this restrictive
condition by utilizing an idea in [22], where the authors
studied the existence of periodic solutions for a class of
nonlinear neutral systems of differential equations.

Let Φ(0) = 𝐼,

Φ (𝑘) =

𝑘−1

∏

𝑖=0

𝐴 (𝑖) = 𝐴 (𝑘 − 1) ⋅ ⋅ ⋅ 𝐴 (0) ,

𝑘 ≥ 1,

Φ (𝑘) =

−1

∏

𝑖=𝑘

[𝐴 (𝑖)]
−1

= [𝐴 (𝑘)]
−1

⋅ ⋅ ⋅ [𝐴 (−1)]
−1

,

𝑘 ≤ −1,

𝐺 (𝑘, 𝑠) = Φ (𝑘) [Φ
−1

(𝑁) − 𝐼]
−1

Φ
−1

(𝑠 + 1) ,

𝑘 ∈ Z, 𝑘 ≤ 𝑠 ≤ 𝑘 + 𝑁 − 1.

(8)

We first present some basic results aboutΦ(𝑘) and𝐺(𝑘, 𝑠).

Lemma 2. For all 𝑘, 𝑠 ∈ Z with 𝑘 ≤ 𝑠 ≤ 𝑘 + 𝑁 − 1, the
following assertions hold:

(i) Φ(𝑘 + 1) = 𝐴(𝑘)Φ(𝑘),
(ii) Φ(𝑘 + 𝑁) = Φ(𝑘)Φ(𝑁),
(iii) 𝐺(𝑘 + 1, 𝑠) = 𝐴(𝑘)𝐺(𝑘, 𝑠),
(iv) 𝐺(𝑘 + 𝑁, 𝑠 + 𝑁) = 𝐺(𝑘, 𝑠).

Proof. One can show (i) and (ii) by some direct calculations
and noting that 𝐴(𝑘 + 𝑁) = 𝐴(𝑘). So we omit the details. In
addition, the assertion (iii) follows from the assertion (i) and
the assertion (iv) follows from the assertion (ii).

By using Lemma 2, we can get the following result.

Lemma 3. A function 𝑦 : Z → R𝑛 is a 𝑁-periodic solution
of system (7) if and only if 𝑦 is a𝑁-periodic function satisfying

𝑦 (𝑘) =

𝑘+𝑁−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) , 𝑘 ∈ Z. (9)



Abstract and Applied Analysis 3

Proof. Sufficiency. Assume that 𝑦 : Z → R𝑛 is a 𝑁-periodic
function satisfying (9); that is,

𝑦 (𝑘) =

𝑘+𝑁−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) , 𝑘 ∈ Z. (10)

Then, we have

𝑦 (𝑘 + 1)

=

𝑘+𝑁

∑

𝑠=𝑘+1

𝐺 (𝑘 + 1, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏))

=

𝑘+𝑁−1

∑

𝑠=𝑘+1

𝐺 (𝑘 + 1, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏))

+ 𝐺 (𝑘 + 1, 𝑘 + 𝑁)𝑓 (𝑘 + 𝑁, 𝑦 (𝑘 + 𝑁 − 𝜏))

=

𝑘+𝑁−1

∑

𝑠=𝑘+1

𝐴 (𝑘) 𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏))

+ 𝐺 (𝑘 + 1, 𝑘 + 𝑁)𝑓 (𝑘, 𝑦 (𝑘 − 𝜏))

=

𝑘+𝑁−1

∑

𝑠=𝑘

𝐴 (𝑘) 𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏))

− 𝐴 (𝑘) 𝐺 (𝑘, 𝑘) 𝑓 (𝑘, 𝑦 (𝑘 − 𝜏))

+ 𝐺 (𝑘 + 1, 𝑘 + 𝑁)𝑓 (𝑘, 𝑦 (𝑘 − 𝜏))

= 𝐴 (𝑘) 𝑦 (𝑘) − 𝐴 (𝑘) 𝐺 (𝑘, 𝑘) 𝑓 (𝑘, 𝑦 (𝑘 − 𝜏))

+ 𝐺 (𝑘 + 1, 𝑘 + 𝑁)𝑓 (𝑘, 𝑦 (𝑘 − 𝜏))

= 𝐴 (𝑘) 𝑦 (𝑘) + 𝑓 (𝑘, 𝑦 (𝑘 − 𝜏)) ,

(11)

where

𝐺 (𝑘 + 1, 𝑘 + 𝑁) − 𝐴 (𝑘) 𝐺 (𝑘, 𝑘)

= Φ (𝑘 + 1) [Φ
−1

(𝑁) − 𝐼]
−1

Φ
−1

(𝑘 + 𝑁 + 1)

− 𝐴 (𝑘)Φ (𝑘) [Φ
−1

(𝑁) − 𝐼]
−1

Φ
−1

(𝑘 + 1)

= Φ (𝑘 + 1) [Φ
−1

(𝑁) − 𝐼]
−1

Φ
−1

(𝑁)Φ
−1

(𝑘 + 1)

− Φ (𝑘 + 1) [Φ
−1

(𝑁) − 𝐼]
−1

Φ
−1

(𝑘 + 1)

= Φ (𝑘 + 1)Φ
−1

(𝑘 + 1) = 𝐼.

(12)

Thus, we conclude that 𝑦 is a 𝑁-periodic solution of system
(7).
Necessity. Let𝑦 : Z → R𝑛 be a𝑁-periodic solution of system
(7). Then, we have

𝑦 (𝑠 + 1) = 𝐴 (𝑠) 𝑦 (𝑠) + 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) , 𝑠 ∈ Z, (13)

which yields

Φ
−1

(𝑠 + 1) 𝑦 (𝑠 + 1) − Φ
−1

(𝑠) 𝑦 (𝑠)

= Φ
−1

(𝑠 + 1) [𝐴 (𝑠) 𝑦 (𝑠) + 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏))]

− Φ
−1

(𝑠) 𝑦 (𝑠) = Φ
−1

(𝑠 + 1) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) ,

𝑠 ∈ Z.

(14)

For all 𝑙 ≥ 𝑘, we have

Φ
−1

(𝑙 + 1) 𝑦 (𝑙 + 1) − Φ
−1

(𝑘) 𝑦 (𝑘)

=

𝑙

∑

𝑠=𝑘

[Φ
−1

(𝑠 + 1) 𝑦 (𝑠 + 1) − Φ
−1

(𝑠) 𝑦 (𝑠)]

=

𝑙

∑

𝑠=𝑘

Φ
−1

(𝑠 + 1) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) ,

(15)

which yields

Φ
−1

(𝑙 + 1) 𝑦 (𝑙 + 1)

= Φ
−1

(𝑘) 𝑦 (𝑘) +

𝑙

∑

𝑠=𝑘

Φ
−1

(𝑠 + 1) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) .

(16)

Letting 𝑙 = 𝑘 + 𝑁 − 1 and noting that 𝑦 is 𝑁-periodic, we get

Φ
−1

(𝑘 + 𝑁) 𝑦 (𝑘)

= Φ
−1

(𝑘 + 𝑁) 𝑦 (𝑘 + 𝑁)

= Φ
−1

(𝑘) 𝑦 (𝑘) +

𝑘+𝑁−1

∑

𝑠=𝑘

Φ
−1

(𝑠 + 1) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) .

(17)

Noting that

Φ
−1

(𝑘 + 𝑁) − Φ
−1

(𝑘) = [Φ
−1

(𝑁) − 𝐼]Φ
−1

(𝑘) , (18)

we conclude

𝑦 (𝑘) = Φ (𝑘) [Φ
−1

(𝑁) − 𝐼]
−1

×

𝑘+𝑁−1

∑

𝑠=𝑘

Φ
−1

(𝑠 + 1) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏))

=

𝑘+𝑁−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠 − 𝜏)) .

(19)

That is, (9) holds. This completes the proof.

Let

𝐺 (𝑘, 𝑠) = [𝐺
𝑖𝑗
(𝑘, 𝑠)] ,

𝑝 = min
1≤𝑖≤𝑛

min
1≤𝑘≤𝑁

min
𝑘≤𝑠≤𝑘+𝑁−1

𝑛

∑

𝑗=1

𝐺
𝑖𝑗
(𝑘, 𝑠) ,

𝑞 = max
1≤𝑖≤𝑛

max
1≤𝑘≤𝑁

max
𝑘≤𝑠≤𝑘+𝑁−1

𝑛

∑

𝑗=1

𝐺
𝑖𝑗
(𝑘, 𝑠) .

(20)
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Now, we introduce a set

𝐾 = {𝑥 ∈ 𝑙
∞

𝑁
(Z,R

𝑛
) : 𝑥
𝑖
(𝑘) ≥ 0,

𝑘 = 1, 2, . . . , 𝑁, 𝑖 = 1, 2, . . . , 𝑛} .

(21)

It is not difficult to verify that𝐾 is a cone in 𝑙
∞

𝑁
(Z,R𝑛). Finally,

we define an operator Φ on 𝐾 by

(Φ𝑥) (𝑘) =

𝑘+𝑁−1

∑

𝑠=𝑘

𝐺 (𝑘, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠 − 𝜏)) ,

𝑥 ∈ 𝐾, 𝑘 ∈ Z.

(22)

Theorem4. Assume that𝑓
1
= 𝑓
2
= ⋅ ⋅ ⋅ = 𝑓

𝑛
and the following

assumptions hold.

(H0) 𝑞 > 𝑝 > 0, 𝑓
1
(𝑠, 𝑥) ≥ 0 for all 𝑠 ∈ Z and 𝑥 ∈ R𝑛

+
, and

∑
𝑛

𝑗=1
𝐺
𝑖𝑗
(𝑘, 𝑠) ≥ 0 for all 𝑘 ∈ Z, 𝑘 ≤ 𝑠 ≤ 𝑘 +𝑁− 1, and

𝑖 = 1, 2, . . . , 𝑛.

(H1) There exist two constants 𝑐
4
> 𝑐
1
> 0 such that

𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥) < 𝑐

1
𝑓𝑜𝑟 𝑥 ∈ R

𝑛

+
𝑤𝑖𝑡ℎ ‖𝑥‖ ≤ 𝑐

1
,

𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥) ≤ 𝑐

4
𝑓𝑜𝑟 𝑥 ∈ R

𝑛

+
𝑤𝑖𝑡ℎ ‖𝑥‖ ≤ 𝑐

4
.

(23)

(H2) There exists a constant 𝑐
2
∈ (𝑐
1
, 𝑐
4
) such that 𝑞𝑐

2
≤ 𝑝𝑐
4
,

and

𝑝 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥) > 𝑐

2
𝑓𝑜𝑟 𝑥 ∈ R

𝑛

+
𝑤𝑖𝑡ℎ ‖𝑥‖ <

𝑞

𝑝
𝑐
2
,

𝑛

∑

𝑖=1

𝑥
𝑖
≥ 𝑛𝑐
2
.

(24)

Then system (7) has at least three nonnegative 𝑁-periodic
solutions.

Proof. Firstly, by (H0) and noting that 𝐺(𝑘 + 𝑁, 𝑠 + 𝑁) =

𝐺(𝑘, 𝑠), Φ is an operator from 𝐾 to 𝐾. Secondly, noting that
𝑓 is continuous for the second argument, by similar proof to
[21, Lemma 2.5], one can show thatΦ : 𝐾 → 𝐾 is completely
continuous.

Let

𝜓 (𝑥) = min
1≤𝑘≤𝑁

∑
𝑛

𝑖=1
𝑥
𝑖
(𝑘)

𝑛
, 𝑥 ∈ 𝐾. (25)

It is easy to see that 𝜓 is a concave nonnegative continuous
functional on 𝐾 and 𝜓(𝑥) ≤ ‖𝑥‖.

Now,we show thatΦmaps𝐾
𝑐
4

into𝐾
𝑐
4

. For every𝑥 ∈ 𝐾
𝑐
4

,
we have 𝑥(𝑠 − 𝜏) ∈ R𝑛

+
and ‖𝑥(𝑠 − 𝜏)‖ ≤ 𝑐

4
for all 𝑠 ∈ Z. Then,

by (H1), we have

‖Φ𝑥‖

= max
1≤𝑘≤𝑁

max
1≤𝑖≤𝑛

𝑘+𝑁−1

∑

𝑠=𝑘

𝑛

∑

𝑗=1

𝐺
𝑖𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥 (𝑠 − 𝜏))

≤ 𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥 (𝑠 − 𝜏)) ≤ 𝑐

4
.

(26)

Similarly, for every 𝑥 ∈ 𝐾
𝑐
1

, it follows from (H1) that

‖Φ𝑥‖ ≤ 𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥 (𝑠 − 𝜏)) < 𝑐

1
. (27)

That is, condition (ii) of Lemma 1 holds.
Let 𝑐
3

= (𝑞/𝑝)𝑐
2
. Next, let us verify condition (i) of

Lemma 1. It is easy to see that the set

{𝑥 ∈ 𝐾 (𝜓, 𝑐
2
, 𝑐
3
) : 𝜓 (𝑥) > 𝑐

2
} ̸= 0. (28)

In addition, for every 𝑥 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
3
), we have 𝑥(𝑠 − 𝜏) ∈ R𝑛

+
,

‖𝑥(𝑠−𝜏)‖ < 𝑐
3
= (𝑞/𝑝)𝑐

2
, and∑

𝑛

𝑖=1
𝑥
𝑖
(𝑠−𝜏) ≥ 𝑛𝑐

2
for all 𝑠 ∈ Z.

Then, by (H2), we get

𝜓 (Φ𝑥)

=
1

𝑛
⋅ min
1≤𝑘≤𝑁

𝑛

∑

𝑖=1

𝑘+𝑁−1

∑

𝑠=𝑘

𝑛

∑

𝑗=1

𝐺
𝑖𝑗
(𝑘, 𝑠) 𝑓

𝑗
(𝑠, 𝑥 (𝑠 − 𝜏))

≥ 𝑝 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥 (𝑠 − 𝜏)) > 𝑐

2

(29)

which means that condition (i) of Lemma 1 holds.
It remains to verify that condition (iii) of Lemma 1 holds.

Let 𝑥 ∈ 𝐾(𝜓, 𝑐
2
, 𝑐
4
)with ‖Φ𝑥‖ > 𝑐

3
; we have 𝑐

2
≤ ‖𝑥‖ < 𝑐

4
and

𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥 (𝑠 − 𝜏)) ≥ ‖Φ𝑥‖ > 𝑐

3
, (30)

which yields

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥 (𝑠 − 𝜏)) >

𝑐
3

𝑞
=

𝑐
2

𝑝
. (31)

Then, we have

𝜓 (Φ𝑥) ≥ 𝑝 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥 (𝑠 − 𝜏)) > 𝑐

2
. (32)

Then, by Lemma 1, we know thatΦ has at least three fixed
points in 𝐾

𝑐
4

. Then, it follows from Lemma 3 that system (7)
has at least three nonnegative 𝑁-periodic solutions.



Abstract and Applied Analysis 5

Now, we applyTheorem 4 to Nicholson’s blowflies system
(2). Let 𝑛 = 2,

𝐴 (𝑘) = (
𝑎
11

(𝑘) 𝑎
12

(𝑘)

𝑎
21

(𝑘) 𝑎
22

(𝑘)
) ,

𝑓
1
(𝑘, 𝑥)

= 𝑓
2
(𝑘, 𝑥) = 𝑏 (𝑘) [𝑥

1
+ 𝑥
2
]
𝑚

𝑒
−𝑐(𝑘)[𝑥

1
+𝑥
2
]
,

(33)

and let Φ(𝑘), 𝐺(𝑘, 𝑠), 𝑝, 𝑞, and 𝐾 be as inTheorem 4.

Corollary 5. Assume that 𝑞 > 𝑝 > 0, and ∑
2

𝑗=1
𝐺
𝑖𝑗
(𝑘, 𝑠) (𝑖 =

1, 2), 𝑏(𝑘), and 𝑐(𝑘) are all nonnegative for 𝑘 ∈ Z and 𝑘 ≤ 𝑠 ≤

𝑘+𝑁−1.Then the system (2) has at least three nonnegative𝑁-
periodic solutions provided that 𝑐+ := max

1≤𝑠≤𝑁
𝑐(𝑠) ≥ 𝑐

−
:=

min
1≤𝑠≤𝑁

𝑐(𝑠) > 0, and

𝑝 ⋅ 2
𝑚

⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) > 𝑒
𝑚−1

⋅ [
2𝑐
+
𝑞

𝑝 (𝑚 − 1)
]

𝑚−1

. (34)

Proof. We only need to verify that all the assumptions of
Theorem 4 are satisfied. Firstly, it is easy to see that (H0)
holds. Let

𝑐
2
=

𝑝 (𝑚 − 1)

2𝑐+𝑞
. (35)

Secondly, let us check (H1). In fact, one can choose sufficiently
small 𝑐

1
∈ (0, 𝑐

2
) such that, for all 𝑥 ∈ R𝑛

+
with ‖𝑥‖ ≤ 𝑐

1
, there

holds

𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥)

= 𝑞 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) [𝑥
1
+ 𝑥
2
]
𝑚

𝑒
−𝑐(𝑠)[𝑥

1
+𝑥
2
]

≤ 𝑞 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) ⋅ 2
𝑚

⋅ ‖𝑥‖
𝑚

= (2
𝑚
𝑞 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠)) ⋅ ‖𝑥‖
𝑚

< ‖𝑥‖ ≤ 𝑐
1
.

(36)

In addition, for all 𝑥 ∈ R𝑛
+
, we have

𝑞 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥)

≤ 𝑞 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) [𝑥
1
+ 𝑥
2
]
𝑚

𝑒
−𝑐
−
[𝑥
1
+𝑥
2
]

≤ 𝑞 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) ⋅ (
𝑚

𝑐−
)

𝑚

𝑒
−𝑚

.

(37)

So, letting

𝑐
4
= max{

𝑞𝑐
2

𝑝
, 𝑞 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) ⋅ (
𝑚

𝑐−
)

𝑚

𝑒
−𝑚

} , (38)

we conclude that (H1) holds.

It remains to verify (H2). For all 𝑥 ∈ R𝑛
+
with ‖𝑥‖ <

(𝑞/𝑝)𝑐
2
and ∑

2

𝑖=1
𝑥
𝑖
≥ 2𝑐
2
, by using (34), we have

𝑝 ⋅

𝑁

∑

𝑠=1

𝑓
1
(𝑠, 𝑥)

= 𝑝 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) [𝑥
1
+ 𝑥
2
]
𝑚

𝑒
−𝑐(𝑠)[𝑥

1
+𝑥
2
]

≥ 𝑝 ⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) ⋅ 2
𝑚
𝑐
𝑚

2
⋅ 𝑒
−(2𝑐
+
𝑞/𝑝)𝑐
2

= (𝑝 ⋅ 2
𝑚

⋅

𝑁

∑

𝑠=1

𝑏 (𝑠)) ⋅ 𝑐
𝑚−1

2
⋅ 𝑒
−(2𝑐
+
𝑞/𝑝)𝑐
2 ⋅ 𝑐
2

= (𝑝 ⋅ 2
𝑚

⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) ⋅ 𝑒
−(𝑚−1)

⋅ [
𝑝 (𝑚 − 1)

2𝑐+𝑞
]

𝑚−1

) ⋅ 𝑐
2

> 𝑐
2
.

(39)

This completes the proof.

Next, we give a concrete example forNicholson’s blowflies
type system (2).

Example 6. Let 𝑚 = 𝑁 = 2, 𝜏 = 1, 𝑏(𝑘) = 100 + sin2(𝜋𝑘/2),
𝑐(𝑘) = 1 + cos2(𝜋𝑘/2), and

𝐴 (0) = (

0
1

3
1

2
0

) , 𝐴 (1) = (

0
1

2
1

3
0

) . (40)

By a direct calculation, we can get

𝐺 (1, 1) = (

0
3

8
2

3
0

) , 𝐺 (1, 2) = (

9

8
0

0
4

3

) ,

𝐺 (2, 2) = (

0
2

3
3

8
0

) , 𝐺 (2, 3) = (

4

3
0

0
9

8

) .

(41)

Then, we have 𝑝 = 3/8 and 𝑞 = 4/3. In addition, we have
𝑐
+
= 2 > 𝑐

−
= 1 > 0 and

𝑝 ⋅ 2
𝑚

⋅

𝑁

∑

𝑠=1

𝑏 (𝑠) =
3

8
⋅ 4 ⋅ 201

=
603

2
>

128

9
𝑒 = 𝑒
𝑚−1

⋅ [
2𝑐
+
𝑞

𝑝 (𝑚 − 1)
]

𝑚−1

.

(42)

So, by Corollary 5, we know that system (2) has at least three
nonnegative 2-periodic solutions.
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