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This paper studies in detail the background and implementation of a teaching-learning based optimization (TLBO) algorithm
with differential operator for optimization task of a few mechanical components, which are essential for most of the mechanical
engineering applications. Like most of the other heuristic techniques, TLBO is also a population-based method and uses a
population of solutions to proceed to the global solution. A differential operator is incorporated into the TLBO for effective search
of better solutions. To validate the effectiveness of the proposed method, three typical optimization problems are considered
in this research: firstly, to optimize the weight in a belt-pulley drive, secondly, to optimize the volume in a closed coil helical
spring, and finally to optimize the weight in a hollow shaft. have been demonstrated. Simulation result on the optimization
(mechanical components) problems reveals the ability of the proposed methodology to find better optimal solutions compared

to other optimization algorithms.

1. Introduction

The problem of volume minimization of a closed coil helical
spring was solved using some traditional technique under
some constraints. A graphical technique was used by Y. V. M.
Reddy and B. S. Reddy to optimize weight of a hollow shaft
after satistying a few constraints. Moreover, Reddy et al. opti-
mized weight of a belt-pulley drive under some constraints
using geometric programming [1-3].

Majority of mechanical design includes an optimization
task in which engineers always consider certain objectives
such as weight, wear, strength, deflection, corrosion, and vol-
ume depending on the requirements. However, design opti-
mization for a complete mechanical system leads to a cum-
bersome objective function with a large number of design
variables and complex constraints [4-6]. Hence, it is a general
procedure to apply optimization techniques for individual
components or intermediate assemblies rather than a com-
plete assembly or system. For example, in a centrifugal pump,
the optimization of the impeller is computationally and math-
ematically simpler than the optimization of the complete

pump. Analytical or numerical methods for calculating the
extremes of a function have long been applied to engineering
computations. Perhaps these traditional optimization proce-
dures perform well in many practical cases; they may fail to
perform in more complex design situations. In real time opti-
mization (design) problems, the number of design variables
will be very large, and their influence on the objective func-
tion to be optimized can be very complicated (nonconvex),
with a nonlinear character. The objective function may have
many local optima, whereas the designer is interested in the
global optimum or a reasonable and acceptable optimum
(7, 8].

Optimization is a method of obtaining the best result
under the given circumstances. It plays a vital role in
machine design because the mechanical components are to be
designed in an optimal manner. While designing machine
elements, optimization helps in a number of ways to reduce
material cost, to ensure better service of components, to
increase production rate, and many such other parameters
[9-12]. Thus, optimization techniques can effectively be used



to ensure optimal production rate. There are several methods
available in the literature of optimization. Some of them are
direct search methods and others are gradient methods. In
direct search method, only the function value is necessary,
whereas the gradient based methods require gradient infor-
mation to determine the search direction. However, there
are some difficulties with most of the traditional methods of
optimization and these are given below.

A large body of literature is available on traditional meth-
ods for solving the above problems. Perhaps, the traditional
techniques have a variety of drawbacks paving the way for
advent of new and versatile methodologies to solve such
optimization problems. Such problems cannot be handled
by classical methods (e.g., gradient methods) that only
compute local optima. So, there remains a need for efficient
and effective optimization methods for mechanical design
problems. Continuous research is being conducted in this
field and nature-inspired heuristic optimization methods are
proving to be better than deterministic methods and thus are
widely used [13-16].

The most commonly used evolutionary optimization
technique is the genetic algorithm (GA). However, GA pro-
vides a near optimal solution for a complex problem having
large number of variables and constraints. This is mainly due
to the difficulty in determining the optimum controlling
parameters such as population size, crossover rate, and muta-
tion rate. A change in the algorithm parameters changes the
effectiveness of the algorithm. The same is the case with PSO,
which uses inertia weight and social and cognitive param-
eters. Similarly, ABC [17] requires optimum controlling
parameters of number of bees (employed, scout, and onlook-
ers), limit, and so forth. HS requires the harmony memory
consideration rate, the pitch adjusting rate, and the number
of improvisations. Therefore, the efforts must be continued
to develop a new optimization technique which is free from
the algorithm parameters; that is, no algorithm parameters
are required for the working of the algorithm. This aspect is
considered in the present work.

Recently, a new optimization technique, known as
teaching-learning based optimization (TLBO), has been
developed by Rao et al. [5, 18-20]. It is one of the recent evolu-
tionary algorithms and is based on the natural phenomenon
of teaching and learning process. It has already proved its
superiority over other existing optimization techniques such
as GA, ABC, PSO, harmony search (HS), DE, and hybrid-
PSO. This research also proposes a hybrid method combining
the teaching-learning based optimization (TLBO) and a
differential mechanism. Here, TLBO will be performed as
a base level search procedure, which makes a decision to
direct the search towards the optimal region. Later, the exact
method (SQP) will be used to fine-tune that region to get the
final solution.

2. Mathematical Formulation

In this section, the detailed design considerations of closed
coil helical spring, optimum design of hollow shaft, and opti-
mal design of belt-pulley drive are discussed. These problems
are adopted from [9], which uses GA as optimization tool.
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FIGURE 1: Schematic representation of a closed coil helical spring.

Case 1 (Closed Coil Helical Spring). The helical spring is
made up of a wire coiled in the form of a helix which is pri-
marily intended for compressive and tensile load (Figure 1).
The cross-section of the wire from which the spring is
made may be circular, square, or rectangular. Two forms of
helical springs are used, namely, compression helical spring
and tensile spring. The helical spring is said to be closely
coiled when the spring wire is coiled so close that the plane
containing each turn is nearly at right angles to the axis of
the helix and the wire is subjected to torsion (Figure 1). Shear
stress is produced in the helical spring due to twisting. The
load applied is parallel to or along the axis of the spring.

The optimization criterion is to minimize the volume of a
closed coil helical spring under several constraints (Figure 1).
The problem may be stated mathematically as follows.

The volume of the spring (U) can be minimized subject
to the constraints discussed below. Consider

2
U= ﬂT (N. +2) Dd>. )

Stress Constraint. The shear stress must be less than the
specified value and can be represented as

S-— 8Cmeax$ >0, (2)
where
4C-1 0615 D
= +— C==. 3
f=ac-4" C d ®)

Here, maximum working load (F,,,) and allowable shear
stress (S) are set to be 453.6 kg and 13288.02 kgf/cm?, respec-
tively.

Configuration Constraint. The free length of the spring must
be less than the maximum specified value. The spring con-
stant (K) can be determined using the following expression:

. Gd'
~ 8N.D¥

(4)

where shear modulus G is equal to 808543.6 kgf/cm®.
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The deflection under maximum working load is given by
0= ==, (5)

It is assumed that the spring length under F,,, is 1.05
times the solid length. Thus, the free length is given by the
expression

lp =&+ 1.05(N, +2)d. (6)
Thus, the constraint is given by

Inax = 1 20, (7)

where [, is set equal to 35.56 cm.
The wire dia must exceed the specified minimum value
and it should satisfy the following condition:
d—d, =0, (8)
where d,;, is equal to 0.508 cm.
The outside dia of the coil must be less than the maximum
specified and it is

D x—(D+d)=0, 9)

where D, is equal to 7.62 cm.

The mean coil dia must be at least three times the wire
dia to ensure that the spring is not tightly wound and it is
represented as

C-3>0. (10)

The deflection under preload must be less than the maximum
specified. The deflection under preload is expressed as

F
8, = £ (11)
K
where F, is equal to 136.08 kg.
The constraint is given by the expression
8pm =0, 20, (12)

where &, is equal to 15.24 cm.
The combined deflection must be consistent with the
length and the same can be represented as

lj-96,= % -1.05(N.+2)d=0. (13)
Truly speaking, this constraint should be an equality. It is
intuitively clear that, at convergence, the constraint function
will always be zero.

The deflection from preload to maximum load must be
equal to the specified value. These two made an inequality
constraint since it should always converge to zero. It can be
represented as

P50, (14)

where §,, is made equal to 3.175 cm.

3
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FIGURE 2: Schematic representation of a hollow shaft.

During optimization, the ranges for different variables are
kept as follows:

0.508 < d < 1.016,
1.270 < D < 7.620, (15)
15 < N, < 25.

Therefore, the above-mentioned problem is a constrained
optimization problem with a single objective function sub-
jected to eight constraints.

Case 2 (Optimum Design of Hollow Shaft). A shaftis rotating
member which transmits power from one point to another
(Figure 2). It may be divided into two groups, namely, (i)
transmission shaft and (ii) line shaft. Shafts which are used
to transmit power between the source and the machines,
absorbing power, are called transmission shaft. Machine
shafts are those which form an integral part of the machine
itself. The common example of machine shaft is a crank shaft.
Figure 2 shows the schematic representation of a hollow shaft.

The objective of this study is to minimize the weight of a
hollow shaft which is given by the expression

W = cross sectional area x length x density

(16)
=7 (& -a) .

Substituting the values of L, p as 50 cm and 0.0083 kg/cm®,
respectively, one finds the weight of the shaft (W;) and it is
given by

W, =0.326d; (1- k). (17)

It is subjected to the following constraints.
The twisting failure can be calculated from the torsion
formula as given below:

T GO
7TT (18)
or
TL
0= G_] (19)

Now, 0 applied should be greater than TL/GJ; that is,
0=>TL/GJ.
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FIGURE 3: Schematic representation of a belt-pulley drive.

Substituting the values of 0,T,G,] as 2m/180 per
m length, 1.0 x 10°kg-cm, 0.84 x 10°kg/cm?® and
(] 32)d3(1 - kY], respectively, one gets the constraints as

dy (1-k")-1736.93 > 0. (20)

The critical buckling load (T,) is given by the following

expression:
< ndyE(1 - k)*°
a S _12\/5(1 B y2)0.75'
Substituting the values of T, y, and E to 1.0 x 10° kg-cm, 0.3,

and 2.0 x 10° kg/cm?, respectively, the constraint is expressed
as

(21)

dE(1 - k)™ ~0.4793 < 0. (22)
The ranges of variables are mentioned as follows:

7 <d, <25,
(23)
0.7 <k <0.97.

Case 3 (Optimum Design of Belt-Pulley Drive). The belts are
used to transmit power from one shaft to another by means
of pulleys which rotate at the same speed or at different
speeds (Figure 3). The stepped flat belt drives are mostly used
in factories and workshops where the moderate amount of
power is to be transmitted. Generally, the weight of pulley
acts on the shaft and bearing. The shaft failure is most
common due to weight of the pulleys (Table 1). In order to
prevent the shaft and bearing failure, weight minimization of
flat belt drive is very essential. The schematic representation
of a belt-pulley drive is shown in Figure 3.

Objective Function. The weight of the pulley is considered as
objective function which is to be minimized as

W, = mpb [dyt, +dyt, +dit) +dyty ] . (24)
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TABLE 1: Comparison of the results obtained by GA with the
published results (Case 1).

Results obtained

Optimal values by GA Published result
Coil mean dia, cm 2.3397870400 2.31140000
Wire dia, cm 0.6700824800 0.66802000
Volume of spring wire, cm®  46.6653438304 46.53926176

Assuming t, = 0.1d,,t, = 0.1d,, t| = 0.1d}, and t} =
O.Idé and replacing dl,dz,di, and d; by NI,NZ,Nll, and
Nzl, respectively, and also substituting the values of N}, N,,
N}, and N,, p (to 1000,250,500,500) 7.2 x 10~ kg/cm’,
respectively, the objective function can be written as

W, = 0.113047d] + 0.0028274d. (25)

It is subjected to the following constraints.
The transmitted power (P) can be represented as

P= MV, (26)
75

Substituting the expression for V in the above equation, one
gets

nd, N
P=(T,-T) —2* (27)
75 x 60 x 100
T nd , N
p- Tl(l——z)#. (28)
T,/ 75 %60 x 100

Assuming T, /T, = 1/2, P = 10 hp and substituting the values
of T, /T, and P, one gets

1 nd , N
10:T1(1__># (29)
2/ 75 %60 x 100
or
286478 0)
L= .
dPNP
Assuming
d,N, < d|Nj,
(31
T, < a,bty,.
And considering (26) to (28), one gets
o bt > 2564789 (32)
pOty 2 d,N,

Substituting o, = 30kg/cm® t, = 1 cm, N, = 250 rpm in the
above equation, one gets

28864789
30bx 1.0 > a0 (33)
or
o 38197 G
d,
or
bd, — 81.97 > 0. (35)
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Assuming that width of the pulley is either less than or equal
to one-fourth of the dia of the first pulley, the constraint is
expressed as

b <0.25d, (36)
or
d,
— -1 . 3
>0 (37)

The ranges of the variables are mentioned as follows:

15<d, <25,
70 < d, < 80, (38)

4<b<10.

3. Optimization Procedure

Classical search and optimization techniques demonstrate a
number of difficulties when faced with complex problems.
The major difficulties arise when one algorithm is applied
to solve a number of different problems. This is because
classical method is designed to solve only a particular class
of problems efficiently. Thus, this method does not have the
breadth to solve different types of problem. Moreover, most
of the classical methods do not have the global perspective
and often get converged to a locally optimal solution; another
difficulty that exist in classical methods includes they cannot
be efficiently utilized in parallel computing environment.
Most classical algorithms are serial in nature and hence more
advantages cannot be derived with these algorithms.

Over few years, a number of search and optimization
techniques, drastically different in principle from classical
method, are increasingly getting more attention. These meth-
ods mimic a particular natural phenomenon to solve an opti-
mization problem, Genetic Algorithm, Simulated Annealing
are few among the nature inspired techniques.

4. Teaching-Learning Based Optimization

Teaching-learning based optimization (TLBO) is an opti-
mization technique developed by Ragsdell and Phillips and
David Edward [14, 15], based on teaching-learning process
in a class among the teacher and the students. Like other
nature-inspired algorithms, TLBO is also a population-based
technique with a predefined population size that uses the
population of solutions to arrive at the optimal solution.
In this method, populations are the students that exist in a
class and design variables are the subjects taken up by the
students. Each candidate solution comprises design variables
responsible for the knowledge scale of a student and the
objective function value symbolizes the knowledge of a
particular student. The solution having best fitness in the
population (among all students) is considered as the teacher.

More specifically, an individual student (X;) within the
population represents a single possible solution to a particular
optimization problem. X; is a real-valued vector with D

elements, where D is the dimension of the problem and is
used to represent the number of subjects that an individ-
ual, either student or teacher, enrolls to learn/teach in the
TLBO context. The algorithm then tries to improve certain
individuals by changing these individuals during the Teacher
and Learner Phases, where an individual is only replaced if
his/her new solution is better than his/her previous one. The
algorithm will repeat until it reaches the maximum number
of generations.

During the Teacher Phases, the teaching role is assigned
to the best individual (X, cper)- The algorithm attempts to
improve other individuals (X;) by moving their position
towards the position of the X ., ., by referring to the current
mean value of the individuals (X,,.,,). This is constructed
using the mean values for each parameter within the problem
space (dimension) and represents the qualities of all students
from the current generation. Equation (39) simulates how
student improvement may be influenced by the difference
between the teacher’s knowledge and the qualities of all
students. For stochastic purposes, two randomly generated
parameters are applied within the equation: r ranges between
0 and I; T is a teaching factor which can be either 1 or 2, thus
emphasizing the importance of student quality:

Xnew = Xi tr- (Xteacher - (TF ' Xmean)) . (39)

During the Learner Phase, student (X;) tries to improve
his/her knowledge by peer learning from an arbitrary student
X;;» where i is unequal to 7i. In the case that X; is better than
X;, X; moves towards X;; (40). Otherwise, it is moved away
from X;; (41). If student X, ., performs better by following
(40) or (41), he/she will be accepted into the population.
The algorithm will continue its iterations until reaching the
maximum number of generations. Consider

Xnew = Xi +r- (Xii - Xi)’ (40)
Xpew = X; +7-(X; - X;) - (41)

Additionally infeasible individuals must be appropriately
handled, to determine whether one individual is better than
another, when applied to constrained optimization problems.
For comparing two individuals, the TLBO algorithm, accord-
ing to [14-17], utilizes Deb’s constrained handling method [4].

(i) If both individuals are feasible, the fitter individual
(with the better value of fitness function) is preferred.

(ii) If one individual is feasible and the other one infeasi-
ble, the feasible individual is preferred.

(iii) If both individuals are infeasible, the individual hav-
ing the smaller number of violations (this value is
obtained by summing all the normalized constraint
violations) is preferred.

Differential Operator. All students can generate new positions
in the search space using the information derived from
different students using best information. To ensure that a
student learns from good exemplars and to minimize the time
wasted on poor directions, we allow the student to learn from
the exemplars until the student ceases improving for a certain
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FIGURE 4: Differential operator illustrated.

number of generations called the refreshing gap. We observe
three main differences between the DTLBO algorithm and
the original TLBO [4].

(1) Once the sensing distance is used to identify the
neighboring members of each student, as exemplars
to update the position, this mechanism utilizes the
potentials of all students as exemplars to guide a
student’s new position.

(2) Instead of learning from the same exemplar students
for all dimensions, each dimension of a student in
general can learn from different students for different
dimensions to update its position. In other words,
each dimension of a student may learn from the
corresponding dimension of different student based
on the proposed equation (42).

(3) Finding the neighbor for different dimensions to
update a student position is done randomly (with a
vigil that repetitions are avoided). This improves the
thorough exploration capability of the original TLBO
with large possibility to avoid premature convergence
in complex optimization problems.

Compared to the original TLBO, DTLBO algorithm searches
more promising regions to find the global optimum. The
difference between TLBO and DTLBO is that the differential
operator applied accepts the basic TLBO, which generates
better solution for each student instead of accepting all the
students to get updated as in KH. This is rather greedy. The
original TLBO is very efficient and powerful, but highly prone
to premature convergence. Therefore, to evade premature
convergence and further improve the exploration ability of
the original TLBO, a differential guidance is used to tap useful
information in all the students to update the position of a
particular student. Equation (42) expresses the differential
mechanism. Consider
Zi—Z;= (zn 2z 23 - an)>
(42)

Zin) = (201 Zp2 Zp3

where

z;; is the first element in the n dimension vector Z;;
z;, is the nth element in the n dimension vector Z;;
Z,y is the first element in the n dimension vector Z ;

p is the random integer generated separately for each
z, from 1 to n, but p # i.

Figure 4 shows the differential mechanism for choosing
the neighbor student for (34). This assumes that the dimen-
sion of the considered problem is 5 and the student size,
which is the population size, is 6 during the progress of the
search. Once the neighbor students are identified using the
sensing distance, the ith individual position will be updated
(with all neighbor students) as shown in Figure 4. This is in
an effort to avoid premature convergence and explore a large
promising region in the prior run phase to search the whole
space extensively.

5. The Pseudocode of the Proposed Refined
TLBO Algorithm

The following steps enumerate the step-by-step procedure of
the teaching-learning based optimization algorithm refined
using the differential operator scheme.

(1) Initialize the number of students (population), range
of design variables, iteration count, and termination
criterion.

(2) Randomly generate the students using the design
variables.

(3) Evaluate the fitness function using the generated
(new) students.

//Teacher Phase//

(4) Calculate the mean of each design variable in the
problem.

(5) Identify the best solution as teacher amongst the
students based on their fitness value. Use differential
operator scheme to fine-tune the teacher.

(6) Modify all other students with reference to the mean
of the teacher identified in step 4.

//Learner Phase//

(7) Evaluate the fitness function using the modified
students in step 6.

(8) Randomly select any two students and compare their
fitness. Modify the student whose fitness value is
better than the other and use again the differential
operator scheme. Reject the unfit student.

(9) Replace the student fitness and its corresponding
design variable.
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TABLE 2: Best, worst, and mean production cost produced by the various methods for Case 1.

Method Maximum Minimum Mean Average time (min) Minimum time (min)
Conventional NA 46.5392 NA NA NA

GA 46.6932 46.6653 46.6821 3.2 3

PSO 46.6752 46.5212 46.6254 1.8 1.7

ABS 46.6241 46.5115 46.6033 2.5 2.3

TLBO 46.5214 46.3221 46.4998 2.2 2

DTLBO 46.4322 46.3012 46.3192 2.4 2.2

(10) Repeat (test equal to the number of students) step 8,
until all the students participate in the test, ensuring
that no two students (pair) repeat the test.

(11) Ensure that the final modified students strength
equals the original strength, ensuring there is no
duplication of the candidates.

(12) Check for termination criterion and repeat from step
4.

6. Results and Discussions

In this section, simulation experiments for the above three
optimization problems are done. For the sake of comparison
of results of the proposed TLBO based method, this research
also adopts the four nature-inspired optimization methods,
namely, GA [11], PSO [12], ABC [13], and TLBO [14]
methods. All the four methods are original versions without
any modification.

Parameter Settings of the Algorithms

Genetic Algorithm. Population size is 100; crossover
probability is 0.80; mutation probability is 0.010; number of
generations is 3000.

Particle Swarm Optimization. Particle size is 30; w,,,, = 1.1,
Whin = 0.7, and ¢; = ¢, = 2; number of generations is 3000.

Artificial Bee Colony. Population size is 50; employed bees
are 50; onlooker bees are 50; number of generations is 3000.

Teaching-Learning Based Optimization. Population size is 50;
number of generations is 3000.

For the proposed TLBO based algorithm also the same
parameter values are used as above (Tables 2 and 3). As
detailed above, these optimization methods require algo-
rithm parameters that affect the performance of the algo-
rithm. GA requires crossover probability, mutation rate, and
selection method; PSO requires learning factors, variation
of weight, and maximum value of velocity; ABC requires
number of employed bees, onlooker bees. On the other
hand, the TLBO requires only the number of individuals and
iteration number (Figures 5, 6, 7, and 8).

A comparison is made of the results obtained by GA with
the published results and is given in Table 6. These results are
summarized based on the 50 independent trial runs of each
technique. It is observed that optimal values obtained by GA

TaBLE 3: Comparison of the results obtained by GA with the
published results (Case 2).

Results obtained

Optimal val Published It
ptimal values by GA ublished resu
Outer dia hallow shaft, cm 11.0928360 10.9000
Ratio of inner dia to outer dia ~ 0.9699000 0.9685
Weight of hallow shaft, kg 2.3704290 2.4017
100
2 | 7]
o 80 h
=
g
2 70 f -
L
g
£ 60f i
501 |
40 + y * * *
0 500 1000 1500 2000 2500 3000
Iterations
— TLBO —— ETLBO
— ABC — PSO

F1GURE 5: Convergence plot of the various methods for Case 1.

are slightly better as compared to the published results. It is
important to highlight that the performance of a GA depends
upon its parameter selection. Thus, there is still a chance for
further improvement of results, although the GA parameters
are selected after a careful study (Tables 4 and 5).

Figure 9 shows the 50 different trial run results of the
proposed technique for all the three cases to show the
robustness in producing the optimum values.

7. Conclusion

In the paper, three different mechanical component opti-
mization problems, namely, weight minimization of a hollow
shaft, weight minimization of a belt-pulley drive, and volume
minimization of a closed coil helical spring, have been inves-
tigated. A new teaching-learning based optimization (TLBO)
algorithm with differential operator is proposed to solve
the above problems and checked for different performance
criteria, such as best fitness, mean solution, average number
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TABLE 4: Best, worst, and mean production cost produced by the various methods for Case 2.

Method Maximum Minimum Mean Average time (min) Minimum time (min)
Conventional NA 46.5392 NA NA NA
GA 46.6932 46.6653 46.6821 3.2 3
PSO 46.6752 46.5212 46.6254 1.8 1.7
ABS 46.6241 46.5115 46.6033 2.5 2.3
TLBO 46.5214 46.3221 46.4998 2.2 2
DTLBO 46.4322 46.3012 46.3192 2.4 2.2
55 110
"l 109
53t
o 527 108 |
E 3
g olr § 107}
g sor 2
g L L 106
z 49 E
48 | 105 4
47
104 | ]
46 | -
45 L L L L L 103 L L L L L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Iterations Iterations
— TLBO —— ETLBO — TLBO — ETLBO
—— ABC —— PSO — ABC — PSO
F1GURE 6: Convergence (magnified) plot of the various methods for F1GURE 8: Convergence plot of the various methods for Case 3.
Case 1.
TaBLE 5: Comparison of the results obtained by GA with the
5 T T T T T published results (Case 3).
4> 1 Optimal values Results obtained Published result
by GA
. A 1 Pulley dia (d,), cm 20.957056 2112
=1
e 351 . Pulley dia (d,), cm 72.906562 73.25
é Pulley dia (d',), cm 42.370429 42.25
£ 3 ] Pulley dia (d',), cm 36.453281 36.60
25t 4 Pulley width (b), cm 05.239177 05.21
5 Pulley weight, kg 104.533508 105120
0 500 1000 1500 2000 2500 3000
Iterations
Nomenclature
— TLBO — ETLBO
—— ABC —— PSO b: Width of the pulley, cm
C:  Ratio of mean coil dia to wire dia
FIGURE 7: Convergence plot of the various methods for Case 2. 4 Dia of spring wire, cm
d,:  Diaofany pulley, cm
d,:  Dia of the first pulley, cm
of function evaluations required, and convergence rate. The dl:  Dia of the third pulley, cm
results show the better performance of the proposed TLBO d,:  Dia of the second pulley, cm
based algorithm over other nature-inspired optimization d):  Diaof the fourth pulley, cm
methods for the design problems considered. Although this d;:  Inner dia of hollow shaft, cm
research focuses on three typical mechanical component dy:  Outer dia of hollow shaft, cm
optimization problems that too with minimum number of 4, : Minimum wire dia, cm
constraints, this proposed method can be extended for the D:  Mean coil dia of spring, cm
optimization of other engineering design problems, which D, .x: Maximum outside dia of spring, cm
will be considered in a future work. E:  Young’s modulus, kgf/cm,
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TABLE 6: Best, worst, and mean production cost produced by the various methods for Case 3.

Method Maximum Minimum Mean Average time (min) Minimum time (min)
Conventional NA 105.12 NA NA NA
GA 104.6521 104.5335 104.5441 4.6 4.2
PSO 104.4651 104.4215 104.4456 2.1 1.9
ABS 104.5002 104.4119 104.4456 31 2.9
TLBO 104.4224 104.3987 104.4222 2.9 2.8
DTLBO 104.3992 104.3886 104.3912 33 31
46.6 T T T T T T T T T 2.375
§ 46.5 | & 237}
& 5
£ 464t <
& 2 2365 1
[5) =]
2 463} =
2 el S 236}
El 5
= =
= 461t s 200
46 2.35
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Trial runs Trial runs
(a) Casel (b) Case 2
104.44
104.43
—~ 104.42
vy
< 10441}
=)
'g 104.4
& 104.39 f
=
A 104.38 +
104.37 +
104.36
0 5 10 15 20 25 30 35 40 45 50
Trial runs
(c) Case3

FIGURE 9: Final cost of the optimization obtained for all test cases using DTLBO method.

N,: rpm of the second pulley G:  Shear modulus, kgf/cm

N,: rpm of the fourth pulley J:  Polar moment of inertia, cm*
N.:  Number of active coils k:  Ratio of inner dia to outer dia
N,: rpm ofany pulley K:  Spring stiffness, kgf/cm

P:  Power transmitted by belt-pulley drive, hp ly: Freelength, cm

q Any nonnegative real number I e Maximum free length, cm

S Allowable shear stress, kgf/cm® L:  Length of shaft, cm

t,:  Thickness of the belt, cm N;: rpm of the first pulley

t;:  Thickness of the first pulley, cm N}: rpm of the third pulley

tl:  Thickness of the third pulley, cm W,: Weight of shaft, kg

t,:  Thickness of the second pulley, cm W,: Weight of pulleys, kg

ty:  Thickness of the fourth pulley, cm V:  Tangential velocity of pulley, cm/s
T:  Twisting moment on shaft, kgf-cm U:  Volume of spring wire, cm
Fax: Maximum working load, kgf u: A random number

F,:  Preload compressive force, kgf T,: Tension at the tight side, kgf
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T,: Tension at the slack side, kgf

T..: Critical twisting moment, kgf-cm.
Greek Symbols

>

=

& DI

o>
N

AR P>

.

R

Spread factor
Poisson’s ratio
Cumulative probability
Perturbance factor
Deflection under preload, cm
: Maximum perturbance factor
: Allowable maximum deflection under preload, cm
Deflection from preload to maximum load, cm
Deflection under maximum working load, cm
Angle of twist, degree
Density of shaft material, kg/cm’
Allowable tensile stress of belt material, kg/cm®.
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