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The dynamics of a simple autonomous jerk circuit previously introduced by Sprott in 2011 are investigated. In this paper, themodel is
described by a three-time continuous dimensional autonomous systemwith an exponential nonlinearity. Using standard nonlinear
techniques such as time series, bifurcation diagrams, Lyapunov exponent plots, and Poincaré sections, the dynamics of the system
are characterized with respect to its parameters. Period-doubling bifurcations, periodic windows, and coexisting bifurcations are
reported. As a major result of this work, it is found that the system experiences the unusual phenomenon of asymmetric bistability
marked by the presence of two different attractors (e.g., screw-like Shilnikov attractor with a spiralling-like Feigenbaum attractor)
for the same parameters setting, depending solely on the choice of initial states. Among few cases of lower dimensional systems
capable of such type of behavior reported to date (e.g., Colpitts oscillator, Newton–Leipnik system, and hyperchaotic oscillator
with gyrators), the jerk circuit/system considered in this work represents the simplest prototype. Results of theoretical analysis are
perfectly reproduced by laboratory experimental measurements.

1. Introduction

The phenomenon of multistability (i.e., the occurrence of
multiple attractors for the same parameters setting depending
solely on the choice of initial conditions) has captivated the
attention of most researchers in recent years. They have done
many works in various fields of science and engineering such
as electrical circuits [1–5], laser systems [6, 7], biological
systems [8], and chemical reactions [9]. Systems with only
one attractor are called monostable systems. In such systems,
the basin of attraction (i.e., the set of initial conditions for
which the asymptotic dynamics converge to the underlined
attractor) is the whole state space. In contrast, in amultistable
system, each attractor has its own basin of attraction. Corre-
spondingly, the basin boundaries can have a simple structure
(simple demarcation) or a very complex structure (i.e., non-
trivial or fractal basin boundaries). A physical implication of
fractal basin boundaries is random jump between coexisting
attractors in experiment. Various types of attractors can

coexist such as fixed points, period-n limit cycles, toruses,
and strange attractors. Multistability makes a system offer a
great flexibility [10]. In particular, the coexistence of infinitely
many attractors is called extreme multistability and has been
reported in two unidirectionally coupled Lorenz systems
[11], two bidirectionally coupled Rossler oscillators [12, 13],
and very recently a memristor oscillator [14]. Multistability
can be advantageously exploited for image processing [10]
or taken as an additional source of randomness which is
particularly suited for information engineering applications
[15]. In general, the phenomenon of multiple attractors is
mostly observed in symmetric dynamical systems [16]. Such
systems exhibit pairs of mutually symmetric attractors that
merge to form a single symmetric one via the well-known
attractor merging crisis as a parameter is varied. However,
asymmetric multistability (i.e., coexistence of nonsymmetric
attractors) is also reported in systems without any symmetry
such as Colpitts oscillator [3], Newton–Leipnik system [17],
and hyperchaotic oscillator with gyrators [4].
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Figure 1: Electronic circuit realization of the simple chaotic jerk system under consideration.The simplicity of the circuit is remarkable: only
RC components, a diode, and a quadruple op. amplifier (TL084) are involved. The circuit has been built using the sets of element values as
shown in the figure. 𝑅3 is tuneable element used as bifurcation control parameter. OA1, OA2, OA3, and OA4 are TL084 type or equivalent
operational amplifiers.𝐷 is a general purpose diode; here𝐷 = 1N4148 (𝜂 = 1.9,𝑉𝑇 = 26mV, and 𝐼𝑆 = 2.682 nA).𝐶1 = 𝐶2 = 𝐶3 = 𝐶 = 10 nF;𝑅1 = 𝑅2 = 𝑅4 = 𝑅5 = 𝑅6 = 𝑅 = 10 kΩ.

In the present contribution, we consider the dynamics of
an extremely simple chaotic jerk circuit recently introduced
by Sprott [18] with particular attention on the chaos mecha-
nism as well as the possibility of multiple coexisting attrac-
tors. In this particular jerk circuit, the exponential nonlinear-
ity is implemented by a single semiconductor diode. There-
fore, the model is nonsymmetric and thus generic. Further-
more, the circuit cannot support symmetric attractors. How-
ever, as mentioned above, the possibility of multiple coexist-
ing attractors is not excluded. To begin, considering results of
[18–20], we recall that jerk systems are third-order differential
equations of the form ...𝑥 = 𝐽(𝑥̈, 𝑥̇, 𝑥). The term 𝐽(⋅) is the
nonlinear function and designated the “jerk.” It indicates the
third-time derivative of 𝑥which corresponds to the first-time
derivative of acceleration inmechanical system. In the studies
undertaken by Eichhorn et al. [21] on multistability behavior
of simple asymmetric jerk systems, the authors explore the
dynamics of two simplest polynomial jerky dynamics (JD1:
...𝑥 = 𝑘1𝑥̈+𝑘2𝑥+𝑥𝑥̇+𝑘3 and JD2: ...𝑥 = 𝑘1𝑥̈+𝑘2𝑥+𝑥2+𝑘3) known
to experience chaotic behavior in some parameter ranges.
The authors, by numerical estimation of Lyapunov spectra,
also establish dependence of long-time dynamical behavior
on the system parameters. Forward and backward bifurcation
diagrams have been used to study some parameters of the
dependence on initial conditions (e.g., coexistence of two
stable attractors, hysteresis). In both (JD1 and JD2) cases not
more than two coexisting attractors are found due to the
absence of any symmetry. Very recently, a series of works
concerning the issue of coexisting multiple attractors in

simple jerk dynamical systems were carried out by Kengne
et al. [2, 22]. Motivated by the outcomes we have mentioned
above, this paper studies the dynamics of the simple jerk
circuit previously introduced by Sprott [18] with the following
key objectives: (a) to carry out a systematic analysis of the
novel jerk circuit and explain the chaos mechanism; (b) to
precise the region in parameter space, in which the proposed
model exhibits multiple coexisting attractors and hysteretic
dynamics; (c) to realize an experimental study of the system
to support the theoretical predictions. More importantly, we
provide some design tools (i.e., bifurcation diagrams) that are
of precious utility for a practical circuit design of this type of
oscillators in relevant engineering applications.

The rest of the paper is organised as follows. Section 2
deals with modeling process. The electronic structure of the
novel jerk circuit is described and an appropriate mathemat-
ical model is derived. In Section 3 the complex dynamics of
the oscillator are investigated from normalized mathematical
model. Basic properties of the model are also discussed. The
stability of the single equilibrium point is analyzed and con-
ditions for the occurrence of Hopf bifurcation are obtained.
In Section 4, the bifurcation structures of the system are
investigated numerically showing period-doubling, periodic
windows, and coexisting bifurcations. Some windows (in
the parameter space) corresponding to the occurrence of
multiple coexisting attractors (for the same parameters set-
tings) are uncovered. Correspondingly, basins of attraction of
various competing attractors are depicted showing nontrivial
basin boundaries. Section 5 is devoted to the laboratory
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experimental study. In this section, an appropriate analog
computer is proposed for the investigation of the dynamic
behavior of the jerk system. The physical implementation
of the oscillator is carried out using electronic components.
Laboratory experimental measurements show a very good
agreement with the theoretical analysis. Finally some con-
cluding remarks and proposal for future work are presented
in Section 6.

2. Circuit Description and State Equation

2.1. Circuit Description. Figure 1 shows the electronic struc-
ture of the jerk circuit under consideration [18].

The circuit can be decomposed in an oscillating part
(linear elements) consisting of three successive integrators in
a multiple feedback loop and a nonlinear (velocity) feedback
loop involving a negative gain amplifierwith a semiconductor
diode. The simplicity of the circuit is remarkable: only
RC components, a diode, and a quadruple op. amplifier
(TL084) are involved. The circuit can be scaled over a
wide range of frequencies provided an appropriate choice
of capacitors’ values. In contrast to the original circuit [18]
with equal values components, different values of resistors
are introduced to addmore control parameters.The values of
electronic components are listed in the caption of Figure 1.We
would like to stress that the presence of the semiconductor
diode (with exponential nonlinearity) is responsible for the
complex behavior experienced by the complete electronic
circuit. One should also notice that the circuit in Figure 1 is
relatively simple compared to the jerk circuit with nonlinear
position feedback recently studied by Kengne et al. [2].

2.2. State Equation. In order to derive the state equations for
the novel jerk system, some key assumptions are adopted.
First, we assume linear capacitors and ideal op. amps oper-
ating in their linear working zone. Second, the current-
voltage characteristic (𝐼𝑑 − 𝑉𝑑) of the semiconductor diode(𝐷) is obtained from the Shockley diode equation [23, 24] as
follows:

𝐼𝑑 = 𝐼𝑆 (exp( 𝑉𝑑𝜂𝑉𝑇) − 1) , (1)

where 𝐼𝑆 is the saturation current of the junction,𝑉𝑇 = 𝑘𝑏𝑇/𝑞
is the thermal voltage with 𝑘𝑏, the Boltzmann constant, 𝑇 is
the absolute temperature expressed inKelvin, 𝑞 is the electron
charge, and 𝜂 is the ideality factor (1 < 𝜂 < 2).With the above
simplifying assumptions, using Kirchhoff current and voltage
laws, it can be easily shown that the voltages 𝜐1, 𝜐2, and 𝜐3
satisfy the following set of three coupled first-order nonlinear
differential equations:

𝑑𝜐1𝑑𝑡 = − 𝜐2𝑅1𝐶1 ,
𝑑𝜐2𝑑𝑡 = − 𝜐3𝑅2𝐶2 ,
𝑑𝜐3𝑑𝑡 = − 𝜐1𝑅6𝐶3 −

𝜐3𝑅𝑐𝐶3 −
𝐼𝑠𝐶3 (exp(

𝜐2𝜂𝑉𝑇) − 1) ,
(2)

with the adoption of the following change of variables and
parameters:

𝑥 = V1𝑉Re𝑓 ;
𝑦 = − V2𝑉Re𝑓 ;
𝑧 = V3𝑉Re𝑓 ;
𝜇 = 𝑅𝑅3 ;
𝛼 = 𝑅𝑅2 ;
𝜌 = 𝑅𝑅6 ;
𝜀 = 𝑅𝐼𝑠𝑉Re𝑓 ;𝜂 ⋅ 𝑉𝑇 = 𝑉Re𝑓;
𝑡 = 𝜏𝑅𝐶.

(3)

The nondimensional circuit equations are expressed by the
following nonlinear third-order differential equations conve-
nient for numerical analysis:

𝑥̇ = 𝑦,
̇𝑦 = 𝑎𝑧,
𝑧̇ = −𝜌𝑥 − 𝜇𝑧 − 𝜀 (exp (𝑦) − 1) ,

(4)

where the dot denotes differentiation with respect to the
dimensionless time 𝜏. First of all, notice that the vector field
(4) is of𝐶∞ (i.e., infinitely differentiable) type due to the pres-
ence of the exponential nonlinearity. Also remark that only
one state variable, namely, 𝑦, is involved in the hyperbolic
nonlinearity of the model and hence the nonlinear velocity
feedback of the system. The presence of this nonlinearity is
responsible for the complex behaviors experienced by the
whole system. Four parameters can be identified in system
(4). One of them (namely, 𝜀) depends on intrinsic diode
parameters and thus will be kept constant during all the
numerical experiment: 𝜀 = 5.4291 × 10−4. Therefore, the
bifurcation analysis of the system will be performed with
respect to the control parameters 𝜌, 𝛼, and 𝜇 (i.e., in terms of𝑅6,𝑅2, and𝑅3, resp.). Two of these parameters (namely, 𝜌 and𝛼) will be kept constant during all the numerical experiment:𝜌 = 1 and 𝛼 = 1. Only the parameter 𝜇 is tuneable.The values
of electronic components used for both the numerical and
experimental analyses are provided in the caption of Figure 1.
It is obvious that system (4) can be written equivalently in the
general jerk form as follows:

...𝑥 = 𝐽 (𝑥̈, 𝑥̇, 𝑥) = −𝜇𝑥̈ − 𝛼𝜌𝑥 − 𝛼𝜀 (exp (𝑥̇) − 1) . (5)

This latter expression shows that our model belongs to the
larger class of “elegant” jerk dynamical systems described
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in [25]. More interestingly, our model (4) represents one
of the simplest autonomous 3D systems reported to date,
capable of exhibiting asymmetric double strange attractors
(see Sections 4 and 5) depending uniquely on the choice of
initial conditions [3, 4, 17].

3. Analysis of the Model

3.1. Dissipation and Existence of Attractors. The existence of
attractors in our model could be examined by estimating the
volume contraction rate [26–28] of the oscillator described
in (4). We can recall that the volume of contraction rate of
a continuous-time dynamical system is given by 𝑥̇ = 𝜑(𝑋),
where 𝑋 = (𝑥, 𝑦, 𝑧)𝑇 and 𝜑(𝑋) = (𝜑1(𝑋), 𝜑2(𝑋), 𝜑3(𝑋))𝑇,
and is given by

Υ = ∇ ⋅ 𝜑 (𝑋) = 𝜕𝜑1𝜕𝑥 + 𝜕𝜑2𝜕𝑦 + 𝜕𝜑3𝜕𝑧 . (6)

We note that if Υ is a constant, then the time evolution in
phase space is determined by 𝑉(𝑡) = 𝑉0𝑒Υ𝑡, where 𝑉0 =𝑉 (𝑡 = 0). Thus, a negative value of Υ leads to a fast
exponential shrink (i.e., damped) of the volume in state space,
and the dynamical system is dissipative and can experience
or develop attractors. For Υ = 0, phase-space volume is
conserved and the dynamical system is conservative. WhenΥ is positive, the volume in phase space stretches out and
therefore there exist only unstable fixed points or cycles or
possibly repellors [26–28]; in other words, as time increased
(i.e., for 𝑡 → ∞) the dynamics diverge if the initial conditions
do not coincide exactly with one of the fixed points or
stationary states. Considering our model, we have found thatΥ = −𝜇 < 0 independently of the position 𝑋 = (𝑥, 𝑦, 𝑧)𝑇
in state space; hence, system (4) is dissipative and thus can
support attractors.

3.2. Fixed Point Analysis. The equilibrium points [26–28] of
(4) can be obtained by setting to zero the left-hand side.
Obviously, 𝑃0(0, 0, 0) is the only fixed point of system (4). As
mentioned above, system (4) possesses a single equilibrium
point located at the origin of the system coordinates inde-
pendently of the values of control parameters. The Jacobian
matrix evaluated at the equilibriumpoint𝑃0 has the following
expression:

𝐽 = [[
[
0 1 0
0 0 𝛼
−𝜌 −𝜀 −𝜇

]]
]
. (7)

Thus the stability of the trivial equilibrium point 𝑃0(0, 0, 0) is
determined according to the real parts of the eigenvalues of
the following characteristic equations:

det (𝐽 − 𝜆𝐼) = 0, (8a)

𝜆3 + 𝜇𝜆2 + 𝜀𝛼𝜆 + 𝜌𝛼 = 0, (8b)

where 𝐼 represents the 3 × 3 identity matrix and 𝜆 is the
eigenvalue. A set of necessary and sufficient conditions for all

the roots of (8a) and (8b) to have negative real parts is given
by the well-known Routh–Hurwitz criterion expressed in the
following form:

𝜀, 𝛼, 𝜌, 𝜇 > 0, (9a)

𝜀𝜇 − 𝜌 > 0. (9b)

𝑃0 was examined regarding the Routh–Hurwitz stability
criterion and we have found that 𝑃0 is stable only for𝜇 > 𝜇𝑐 = 𝜌/𝜀 ≈ 1841.909. Meanwhile if the control
parameter 𝜇 decreased beyond the critical value 𝜇𝑐, the state
of nonoscillation can change. Therefore, Hopf bifurcation
conditions have been deduced as follows:

𝜔Hopf = √𝜀𝛼,
𝜇𝑐 = 𝜌𝜀 ,

(10a)

Re 𝑎𝑙( 𝑑𝜆𝑑𝜇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇=𝜇
𝑐

) = 12 −𝜀3𝛼(𝜀3𝛼 + 𝜌2) ̸= 0. (10b)

Equation (10a) defines the frequency of stable oscillations
as well as the critical value of 𝜇 corresponding to the Hopf
bifurcation of the system. From (10b), it can be noted that
the transversality condition is always met since 𝜇 is positive
control parameter. From the above discussion, it follows that,
in the regime of regular or chaotic oscillations, the single fixed
point𝑃0 is unstable, and thus the systemgenerates self-excited
oscillations [29, 30]. For instance, considering the particular
case of 𝜇 = 1.100 for which the system displays a strange
attractor (see Section 4) the eigenvalues evaluated at 𝑃0 are𝜆1 = −1.5280 and 𝜆2,3 = 0.2140 ± 𝑗0.7802. This clearly shows
that the fixed point𝑃0 is unstable in the chaotic regime, which
is typical of self-excited oscillations.

4. Numerical Study

4.1. Route to Chaos. To define different scenarios/routes to
chaos in ourmodel and to investigate the rich variety of bifur-
cation modes that can be observed in the jerk system, system
(4) has been numerically solved using standard fourth-
order Runge-Kutta integration scheme technique. Dynamical
study of the system begins by analyzing possible states of
fixed points, their stability, and bifurcations which happen
under the control of corresponding parameters of system
components. For this paper, the time step is chosen such thatΔ𝑡 ≤ 0.005 for each set of parameters and the computations
are carried out using variables and constant parameters in
extended mode. For each parameters setting, the system
is integrated for a sufficiently long time and the transient
is discarded. Two indicators are exploited to characterize
the type of transition leading to chaos. The first indicator
is the bifurcation diagram, the second indicator being the
graph of Lyapunov exponents’ spectra. Regarding the last
tool, the dynamics of the system are categorized using its
Lyapunov exponents which are computed numerically with
the help of the algorithm described in [31]. The investigation
of the sensitivity of the system, with respect to a single
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Figure 2: Bifurcation diagrams (a) showing local maxima of the coordinate 𝑥(𝜏) versus 𝜇 of the jerk attractor in two directions (red dot
indicates first direction from down to up and the blue dot indicates the second direction from up to down) and the corresponding graphs (b)
of 1D largest numerical Lyapunov (𝜆max) exponent plotted in the range 0.1 ≤ 𝜇 ≤ 1.7. A positive exponent (𝜆max > 0) indicates chaos, while
regular states are characterized with negative values of Lyapunov exponent (𝜆max < 0).

control parameter 𝜇, has been carried out by varying 𝜇
within the interval range from 0.1 to 1.7. As the control
parameter is varying, we have discovered that very abundant
and remarkable bifurcation scenarios were exhibited by the
jerk systemunder our consideration. In Figures 2(a) and 2(b),
respectively, sample findings exhibiting bifurcation diagram
for different value of 𝜇 and the corresponding spectrum
of Lyapunov exponents are presented. The bifurcation dia-
gram is obtained by graphing local maxima of coordinate𝑥 versus control parameter (two directions: increasing and
decreasing) inside narrow steps interval 0.1 ≤ 𝜇 ≤ 1.7.
The ultimate state for every iteration of the control param-
eter is used as initial state for subsequent iteration. Two
categories of data corresponding, respectively, to increasing
(red) and decreasing (blue) values of 𝜇 are superimposed in
Figure 2.Thismethod of gathering curves represents a simple
way to localize the window in which the system develops
multiple coexisting attractors’ behavior (see Section 4.2).
Chaos motion is achieved progressively within the chaotic
oscillator with respect to the control parameter 𝜇. Period-
doubling bifurcations, reverse period-doubling sequence,
and periodic windows can easily be identified in the graphs of
Figures 2(a) and 2(b). Using the same parameters settings in
Figure 2, various numerical computations of phase portraits
(Figure 3) of the oscillator and corresponding time series
(Figure 3) were obtained confirming different transitions
depicted previously.

The Hopf type bifurcation and the period-doubling sce-
nario to chaos are observed when using 𝛼 and 𝜌, respectively,
as bifurcation control parameters for 𝜇 = 0.5 (see Figure 4).
To observe the phenomenon of period-doubling scenario to
chaos, we fix 𝜇 = 0.5 and plot the bifurcation diagram.

4.2. Coexistence of Attractors. As mentioned above, the sys-
tem behavior is different depending on whether the control
parameter is swept in upward and downward direction,
expressing the hysteretic behavior of the model. To provide
a better illustration, we show in Figure 5 two zooms of the
bifurcation of Figure 2.

One can remark that for 1.1 ≤ 𝜇 ≤ 1.31 the system
displays two different attractors depending solely on choice of
the initials conditions. This is perfectly illustrated in Figure 6
where some sample pair of coexisting solutions are presented:
(a) coexistence of a pair of asymmetric strange attractors, (b)
coexistence of a period-2 limit cycle with a chaotic attractor,
(c) coexistence of period-3 cycle with a period-1 cycle, (d)
coexistence of a chaotic attractor with a period-1 cycle, and
(e) a period-4 cycle with a period-1 cycle (see Table 1).

To gainmore insight about the complexity of the attractor
depicted in Figure 6(a), various three-dimensional projec-
tions are presented in Figure 7(a). In the same line as
Figure 7(b), time traces of the coordinate 𝑥(𝜏) to illustrate
the crisis induced intermittency experienced by the system.
Furthermore, the Poincaré section of the attractor computed
is shown in Figures 7(c) and 7(d). The shape of this Poincaré
section is characteristic of chaotic attractors in Figures 6(a(i))
and 6(a(ii)). Briefly recall that the Poincaré plot contains
points at the intersections between the phase-space trajectory
and Poincaré (plane). An appropriate location of the plane in
the state space is chosen in order to obtain details of structure
of the attractor [28].

The basin of attraction is the set of initial conditions
whose trajectories converge to the given attractor, and it
is usually exploited to provide more information about the
coexisting attractors. The structure of the basin boundaries
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Figure 3: Continued.
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Figure 3: Numerical phase portraits in 𝑋𝑍 plane (left) of the system showing routes to chaos (in terms of the control parameter 𝜇) and
corresponding time traces (right) of the coordinate 𝑥(𝜏) for varying 𝜇: (a) period-1 cycle for 𝜇 = 0.165; (b) period-2 cycle for 𝜇 = 0.381; (c)
period-4 cycle for 𝜇 = 0.385; (d) spiralling-like (Feigenbaum) chaotic attractor for 𝜇 = 0.406; (e) screw-like (Shilnikov) chaotic attractor for𝜇 = 0.420; (f) another screw-like (Shilnikov) chaotic attractor for 𝜇 = 1.100.

Table 1: Sample forms of coexisting attractors in terms of control parameter 𝜇.
Value of control parameter Initial conditions(𝑥(0), 𝑦(0), 𝑧(0)) Figure 6

𝜇 = 1.100 (1, 0, 0) a(i): screw-like (Shilnikov) chaotic attractor
(1.167, 0, 0) a(ii): spiralling- like (Feigenbaum) chaotic attractor

𝜇 = 1.130 (5, 0, 0) b(i): screw-like (Shilnikov) chaotic attractor
(1.417, 0, 0) b(ii): period-2 cycle

𝜇 = 1.200 (5, 0, 0) c(i): period-3 cycle
(−1, −1, −1) c(ii): period-1 cycle

𝜇 = 1.250 (5, 0, 0) d(i): screw-like (Shilnikov) chaotic attractor
(−3.917, 0, 0) d(ii): period-1 cycle

𝜇 = 1.310 (5, 0, 0) e(i): period-4 cycles
(−3.917, 0, 0) e(ii): period-1 cycle
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Figure 4: Bifurcation diagrams. (a): local maxima of the coordinate 𝑥(𝜏) versus 𝛼 of the jerk attractor for 𝜇 = 0.5 and the corresponding
graphs of 1D largest numerical Lyapunov (𝜆max) exponent plotted in the range 0.5 ≤ 𝛼 ≤ 4; (b): local maxima of the coordinate 𝑥(𝜏) versus𝜌 of the jerk attractor for 𝜇 = 0.5 and the corresponding graphs (b) of 1D largest numerical Lyapunov (𝜆max) exponent plotted in the range0.5 ≤ 𝜌 ≤ 3.5.
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Figure 5: Enlargement of the bifurcation diagram of Figure 2 showing the region in which the system exhibits multiple coexisting attractors.
This region corresponds to values of 𝜇 in the range: 1 ≤ 𝜇 ≤ 1.4. Two sets of data corresponding, respectively, to (a) increasing (upward sweep
in red) and (b) decreasing (downward sweep in blue) values of the bifurcation control parameter are superimposed.
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Figure 6: Numerical phase portraits showing the coexistence of multiple (two) solutions for different values of the control parameter 𝜇. The
values of the control parameters as well as initial conditions are listed in Table 1.
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Figure 7: Three-dimensional view of the attractor projected onto the (𝑥, 𝑦, 𝑧) space of the system showing the coexistence of single-band
chaotic attractor (attractor (screw-like Shilnikov) a(i) in magenta with a different single-band chaotic attractor (spiralling-like Feigenbaum)
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Figure 8: Structure of the three cross sections of the basin of attraction with 𝑧(0) = 0 and (𝑥(0), 𝑦(0)) in the ranges −60 ≤ 𝑥(0) ≤ 50 and−25 ≤ 𝑦(0) ≤ 100 obtained for 𝜇 = 1.100. We present the basin of attraction for the chaotic coexistence (a): magenta regions correspond
to asymmetric single-band chaotic attractor (screw-like Shilnikov), while green ones are related to another single-band chaotic attractor
(spiralling-like Feigenbaum). Blue zones correspond to unbounded solutions. These regions represent initial conditions that lead to each
chaotic trajectory.

is clearly illustrated in Figure 8 where three cross sections of
the basins of attraction are depicted, respectively, for 𝑥(0) =0, 𝑦(0) = 0, and 𝑧(0) = 0, associated with the spiralling
or Feigenbaum strange attractors (green) and the screw or
Shilnikov strange attractors (magenta). Blue regions corre-
spond to unbounded dynamics. It should be mentioned that,
according to the best of the authors’ knowledge, the striking
phenomenon of coexisting asymmetric strange attractors also
found in some special cases of nonlinear systems such as the
Colpitts oscillator [3], Newton–Leipnik systems [17], and the
hyperchaotic oscillator with gyrators [4] has not yet been
reported in any other jerk system and thus represents an
enriching contribution related to the dynamic behavior of
this large class of nonlinear systems. Provided that the occur-
rence of multiple attractors represents an additional source
of randomness [32], some obvious potential applications
include, for instance, chaos based secure communication as
well as random signal generation. However, this singular type

of behavior is not desirable in general and justifies the need
for control. Detailed analysis on this line is beyond the scope
of this contribution. Therefore, interested readers are guided
to the interesting review paper on control of multistability
presented in [33].

5. Experimental Study

Following the above theoretical analysis, it is predicted that
the jerk system under investigation can display very rich and
complex behaviors. Our goal in this section is to validate
the theoretical results obtained previously by performing
an experimental study of the practical system [18]. To this
end, the schematic diagram of Figure 1 is constructed on a
breadboard. The circuit is built using TL084 op. amplifiers
type with a symmetric ±15 V DC voltage supply. The same
values of electronics components used for the numerical
study are kept here to enable the comparison process. The
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Figure 9: Experimental phase portraits (left) obtained from the circuit using a dual-trace oscilloscope in 𝑋𝑌; the corresponding numerical
phase portraits (right) showing the period-doubling routes to chaos in the system for varying 𝑅3 (i.e., 𝜇): (a) period-1 cycle for 𝑅3 =60.3 kΩ (i.e., 𝜇 = 0.165); (b) period-2 cycle for 𝑅3 = 26.2 kΩ (i.e., 𝜇 = 0.381); (c) period-4 cycle for 𝑅3 = 25.97 kΩ (i.e., 𝜇 = 0.385);
(d) spiralling-like (Feigenbaum) chaotic attractor for 𝑅3 = 24.60 kΩ (i.e., 𝜇 = 0.406); (e) screw-like (Shilnikov) chaotic attractor for𝑅3 = 23.81 kΩ (i.e., 𝜇 = 0.420); (f) another screw-like (Shilnikov) chaotic attractor for 𝑅3 = 9.09 kΩ (i.e., 𝜇 = 1.100).

experimental results are obtained by slowly increasing or
decreasing the control resistor 𝑅3 (i.e., parameter 𝜇) and
plotting phase-space trajectories (𝑌,𝑋) using a dual-trace
oscilloscope in the 𝑋𝑌 mode. When slowly monitoring the
control resistor 𝑅3, we found that the experimental jerk
circuit experiences various types of bifurcation as predicted
by theoretical results. For𝑅3 = 60, 3 kΩ, a period-1 limit cycle
is observed. When 𝑅3 is gradually decreased, the complete
sequence of bifurcation reported above is observed, that is,
sequence of period-doubling bifurcation to chaos followed
by the reverse period-doubling leading to a regular period-
1 motion (see Figure 9). This is clearly illustrated by sample
experimental phase portraits in Figure 9 showing the real
behavior of the jerk circuit under consideration. In light of
the pictures in Figure 9, it can be seen that the real circuit
demonstrates the same bifurcation sequences as observed
during the numerical study.

Those two-dimensional projections of asymmetric single-
band chaotic attractor in Figure 9 highlight the complexity
of the system. However, this attractor is simple chaotic. A
comparison between experimental (Figure 10) and numerical
results (Figure 6) related to the presence of five coexisting
attractors shows a perfect agreement. More interestingly,
the hysteretic behavior is observed in the experimental jerk
circuit by increasing the value of 𝑅3 in such a way that the
circuit moves from the state of period-1 motion to another
period-1 motion via the sequence of period-doubling and
reverse bifurcation and then decreasing the value of the same
resistor to move back to the original state of period-1 motion.
Thus the system follows a different path while 𝑅3 is decreased
rather than 𝑅3 being increased, reminiscent of a hysteresis.
Oncemore a very good qualitative agreement can be captured
between numerical and experimental results. However, a
slight discrepancy that may be attributed to the precision on
the values of electronic components as well as the simplifying
assumptions considered during the modeling process (i.e.,
ideal diode model, ideal op. amplifier) can be noted between
numerical and experimental results (see caption of Figure 10).
Similarly, we have also verified the dynamical behaviors, the
transitions from period-doubling bifurcation to chaos, the

reverse bifurcation sequence, and the coexistence of multiple
attractors evaluated through PSpice simulation when varying
the value of the control resistor𝑅3. However, we have avoided
the inclusion of the simulation results for the sake of brevity.

Some windows of periodic behaviors sandwiched within
chaotic domains are also noted in experiment. To experi-
mentally provide evidence of coexistingmultiple attractors in
the jerk circuit, the control resistor is fixed as follows: 𝑅3 =9.09 kΩ (i.e., 𝜇 = 1.100); 𝑅3 = 8.85 kΩ (i.e., 𝜇 = 1.130);𝑅3 = 8.33 kΩ (i.e., 𝜇 = 1.200); 𝑅3 = 8.00 kΩ (i.e., 𝜇 =1.250); 𝑅3 = 7.63 kΩ (i.e., 𝜇 = 1.310). When switching on
and off the power supply (and thereby randomly selecting ini-
tial states), one can obtain five pairs of coexisting asymmetric
solutions shown in Figure 10.

6. Concluding Remarks

A relatively simple chaotic jerk circuit, recently introduced by
[18], has been analyzed in this work. Using bifurcation dia-
grams as arguments, the dynamics of the systems have been
categorized in terms of their parameters. Period-doubling
bifurcations, periodic windows, and coexisting bifurcations
were found when monitoring the system parameters. More
interestingly a distinguishing feature of this jerk circuit not
previously observed in the pioneering work of Sprott [18]
is the possibility of double asymmetric strange attractors
(i.e., Shilnikov chaos and Feigenbaum chaos) for a wide
range of parameters, depending solely on the choice of
initial states. Also, we would like to stress that the jerk
circuit/system studied in this work according to the best of
our knowledge represents the simplest prototype among the
few cases of lower dimensional system capable of exhibiting
such type of behavior (e.g., Rossler system, Colpitts oscillator,
Newton–Leipnik system, and hyperchaotic oscillator with
gyrators) and thus deserves dissemination [34]. Laboratory
experimental measurements were in very good agreement
with the theoretical analyses. The presence of coexisting
strange attractors represents another source of randomness,
with potential utility in random signal generation, chaos
communication, and radar systems. It should be pointed
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e(i) e(ii)

Figure 10: Experimental phase portraits showing the coexistence of multiple (two) solutions for different values of the control parameter𝑅3 (i.e., 𝜇). We have five pairs of mismatch coexisting asymmetric solutions: (a) screw-like (Shilnikov) chaotic attractor a(i) coexisting with a
spiralling- like (Feigenbaum) chaotic attractor a(ii) for𝑅3 = 9.09 k (i.e., 𝜇 = 1.100); (b) screw-like (Shilnikov) chaotic attractor b(i) coexisting
with a period-2 cycle b(ii) for 𝑅3 = 8.85 k (i.e., 𝜇 = 1.130); (c) period-3 cycle c(i) coexisting with a period-1 cycle c(ii) for 𝑅3 = 8.33 k(i.e., 𝜇 = 1.200); (d) screw-like (Shilnikov) chaotic attractor d(i) coexisting with a period-1 cycle d(ii) for 𝑅3 = 8.00 k (i.e., 𝜇 = 1.250);
(e) period-4 cycles e(i) coexisting with a period-1 cycle e(ii) for 𝑅3 = 7.63 k (i.e., 𝜇 = 1.310). Each pair of solutions appears randomly in
experiment when switching on and off the power supply. The scales are 𝑋 = 0.2V/div and 𝑌 = 0.2V/div for all pictures. Note the perfect
similarity of those pictures with the numerical phase portraits of Figure 6.

out that an infinite number of equilibria could be obtained
in the jerk circuit under consideration via replacing the
semiconductor diode (the nonlinear component) with a flux
controlledmemristor [14, 35]. Such types of systems are more
suited to develop the phenomenon of extreme multistability
[11, 36, 37] involving the coexistence of an infinite number
of attractors for the same parameter setting, depending only
on the choice of initial conditions. Research along this line is
under consideration and the results will be the material of an
upcoming publication.
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Rössler oscillators,” Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics, vol. 89, no. 2, Article ID 022918, 2014.

[13] C. Hens, S. K. Dana, and U. Feudel, “Extreme multistability:
attractor manipulation and robustness,” Chaos. An Interdisci-
plinary Journal of Nonlinear Science, vol. 25, 053112.1-7, no. 5,
2015.

[14] B. Bocheng, X. Quan, B. Han, and C. Mo, “Extrememultistabil-
ity in amemristive circuit,” Electronics Letters, vol. 52, no. 12, pp.
1008–1010, 2016.

[15] J. Kengne, Z. Njitacke Tabekoueng, V. Kamdoum Tamba,
and A. Nguomkam Negou, “Periodicity, chaos, and multiple



16 Complexity

attractors in a memristor-based Shinriki’s circuit,” Chaos. An
Interdisciplinary Journal of Nonlinear Science, vol. 25, no. 10,
Article ID 103126, 2015.

[16] J. C. Sprott, “Simplest chaotic flows with involutional symme-
tries,” International Journal of Bifurcation and Chaos in Applied
Sciences and Engineering, vol. 24, no. 1, Article ID 1450009, pp.
1–9, 2014.

[17] R. B. Leipnik and T. A. Newton, “Double strange attractors in
rigid body motion with linear feedback control,” Physics Letters
A, vol. 86, no. 2, pp. 63–87, 1981.

[18] J. C. Sprott, “A new chaotic jerk circuit,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 58, no. 4, pp. 240–
243, 2011.

[19] J. C. Sprott, “Some simple jerk functions,” American Journal of
Physics, vol. 65, no. 6, pp. 537–543, 1997.

[20] J. C. Sprott, “Simple chaotic systems and circuits,” American
Journal of Physics, vol. 68, no. 8, pp. 758–763, 2000.

[21] R. Eichhorn, S. J. Linz, and P. Hänggi, “Simple polynomial
classes of chaotic jerky dynamics,” Chaos, Solitons & Fractals,
vol. 13, no. 1, pp. 1–15, 2002.

[22] J. Kengne, Z. T. Njitacke, and H. B. Fotsin, “Dynamical analysis
of a simple autonomous jerk system with multiple attractors,”
Nonlinear Dynamics. An International Journal of Nonlinear
Dynamics and Chaos in Engineering Systems, vol. 83, no. 1-2, pp.
751–765, 2016.

[23] M. P. Hanias, G. Giannaris, A. Spyridakis, and A. Rigas,
“Time series analysis in chaotic diode resonator circuit,” Chaos,
Solitons and Fractals, vol. 27, no. 2, pp. 569–573, 2006.

[24] D. W. Sukov, M. E. Bleich, D. J. Gauthier, and J. E. Socolar,
“Controlling chaos in a fast diode resonator using extended
time-delay auto-synchronization: Experimental observations
and theoretical analysis,” Chaos, vol. 7, no. 4, pp. 560–576, 1997.

[25] B. Munmuangsaen, B. Srisuchinwong, and J. C. Sprott, “Gen-
eralization of the simplest autonomous chaotic system,” Physics
Letters A, vol. 375, no. 12, pp. 1445–1450, 2011.

[26] S. H. Strogatz,Nonlinear Dynamics and Chaos, vol. 78, Reading,
Addison-Wesley, 1994.

[27] J. Argyris, G. Faust, and M. Haase, An exploration of chaos,
North-Holland Publishing Co., Amsterdam, 1994.

[28] A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynam-
ics: Analytical, Computational and Experimental Methods,
Wiley Series in Nonlinear Science, John Wiley & Sons, New
York, USA, 1995.

[29] G. A. Leonov and N. V. Kuznetsov, “Hidden attractors
in dynamical systems: from hidden oscillations in Hilbert-
Kolmogorov, Aizerman, and KALman problems to hidden
chaotic attractor in Chua circuits,” International Journal of
Bifurcation and Chaos in Applied Sciences and Engineering, vol.
23, no. 1, Article ID 1330002, 69 pages, 2013.

[30] G. A. Leonov, N. V. Kuznetsov, and T. N. Mokaev, “Homoclinic
orbits, and self-excited and hidden attractors in a Lorenz-
like system describing convective fluid motion,” The European
Physical Journal Special Topics, vol. 224, no. 8, pp. 1421–1458,
2015.

[31] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Deter-
mining Lyapunov exponents from a time series,” Physica D:
Nonlinear Phenomena, vol. 16, no. 3, pp. 285–317, 1985.

[32] X. Luo, M. Small, M.-F. Danca, and G. Chen, “On a dynamical
systemwithmultiple chaotic attractors,” International Journal of
Bifurcation and Chaos in Applied Sciences and Engineering, vol.
17, no. 9, pp. 3235–3251, 2007.

[33] A. N. Pisarchik and U. Feudel, “Control of multistability,”
Physics Reports. A Review Section of Physics Letters, vol. 540, no.
4, pp. 167–218, 2014.

[34] J. C. Sprott, “A proposed standard for the publication of new
chaotic systems,” International Journal of Bifurcation and Chaos,
vol. 21, no. 9, pp. 2391–2394, 2011.

[35] B. C. Bao, H. Bao, N. Wang, M. Chen, and Q. Xu, “Hidden
extreme multistability in memristive hyperchaotic system,”
Chaos, Solitons and Fractals, vol. 94, pp. 102–111, 2017.

[36] C. N. Ngonghala, U. Feudel, and K. Showalter, “Extreme
multistability in a chemical model system,” Physical Review
E—Statistical, Nonlinear, and Soft Matter Physics, vol. 83, no. 5,
Article ID 056206, 2011.

[37] C. Hens, R. Banerjee, U. Feudel, and S. K. Dana, “How to obtain
extreme multistability in coupled dynamical systems,” Physical
Review E, vol. 85, Article ID 035202, 2012.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

