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The renin-angiotensin aldosterone system (RAAS) plays a pivotal role in the development of hypertension. Angiotensin converting
enzyme 2 (ACE2), which primarily metabolises angiotensin (Ang) II to generate the beneficial heptapeptide Ang-(1-7), serves as a
negative regulator of the RAAS. Apelin is a second catalytic substrate for ACE2 and functions as an inotropic and cardiovascular
protective peptide. The physiological effects of Apelin are exerted through binding to its receptor APJ, a seven-transmembrane G
protein-coupled receptor that shares significant homology with the Ang II type 1 receptor (AT1R).The deregulation of microRNAs,
a class of short and small noncoding RNAs, has been shown to involve cardiovascular remodeling and pathogenesis of hypertension
via the activation of theAng II/AT1Rpathway.MicroRNAs are linkedwithmodulation of theACE2/Apelin signaling, which exhibits
beneficial effects in the cardiovascular system and hypertension.The ACE2-coupled crosstalk among the RAAS, the Apelin system,
and microRNAs provides an important mechanistic insight into hypertension. This paper focuses on what is known about the
ACE2/Apelin signaling and its biological roles, paying particular attention to interactions and crosstalk among the ACE2/Apelin
signaling, microRNAs, and hypertension, aiming to facilitate the exploitation of new therapeutic medicine to control hypertension.

1. Introduction

Hypertension is a complex cardiovascular disease and con-
tributes to worldwide morbidity and mortality, while its
pathogenesis is closely related to abnormalities of the renin-
angiotensin aldosterone system (RAAS) [1]. Angiotensin
converting enzyme 2 (ACE2) serves as a negative regulator of
RAAS and cleaves angiotensin (Ang) I to generate the inactive
Ang-(1-9) peptide, which can then be converted to Ang-(1-7)
by ACE [2, 3]. Meanwhile, ACE2 can directly metabolize Ang
II to generate the beneficial heptapeptide Ang-(1-7), whose
actions are often opposite to those attributed to theAng II and
its type 1 receptor (AT1R) signaling. Apelin, a second catalytic
substrate for ACE2, has powerful positive inotropic actions
and vasodilatation in an endothelium- and nitric oxide-
(NO-) dependent way [4]. Intriguingly, recent studies have
demonstrated that there is a link between the ACE2/Apelin
signaling and microRNAs (miRNAs) in the pathogenesis of
hypertension. The deregulation of miRNAs expression plays

a pivotal role in the development of hypertension. The
miRNAs are involved in the regulation of diverse biologi-
cal processes determining cell proliferation, differentiation,
migration, and apoptosis [5–7]. In this review, we focus on
the relationship among the ACE2/Apelin signaling, miRNAs,
and hypertension and aim to facilitate the exploitation of new
therapeutic medicine to control hypertension.

2. miRNAs and Hypertension

The miRNAs are small double-stranded, noncoding RNAs
that function as guide molecules in RNA silencing [5].
miRNAs may regulate gene expression by binding to the 3-
untranslated region (3-UTR) of target messenger RNA tran-
scripts, leading to suppression of protein synthesis or mRNA
degradation [5–7]. Previous studies have demonstrated that
the majority of miRNAs generate from introns of protein-
coding transcripts or noncoding genes in canonical pathways
[8]. In general, miRNAs are transcribed by RNA polymerase
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Table 1: The RAAS, Apelin/APJ signaling, and microRNAs in hypertension.

MicroRNAs Targets miRNA function References
miR-143/145 Klf4; Klf5 Regulation of VSMCs proliferation [7, 16, 17]
miR-365 Cyclin D1 Inhibition of VSMCs proliferation [18]

miR-221/222 p27(Kip1); p57(Kip2) Regulation of VSMCs
differentiation and proliferation [6, 7]

miR-126 VEGF; ICAM-1 Mediator of vascular dysfunction [7, 18]

miR-221/222 Ets-1; VCAM-1; MCP-1 Regulation of inflammation and
vascular remodeling [7, 18]

miR-130a GAX Regulation of VSMCs proliferation [11]
miR-145; -27a/27b; ACE Inhibition of ACE expression [20–23]
miR-421; -143; ACE2 Inhibition of ACE2 expression [23, 32, 33]

miR-19b; -29; -132/212; -181b; Ang II Promotion of fibrosis and
cardiovascular remodeling [24–27, 29]

miR-146a Ang-(1-7) Inhibition of inflammation [34]
miR-155 AT1R Inhibition of VSMCs proliferation [19, 30, 31]

miR-133a; -208; -1 Apelin/APJ Regulation of cardiovascular
hypertrophy and dysfunction [47]

miR-424; -503 FGF2; FGFR1 Inhibition of VSMCs proliferation [48]
RAAS: renin-angiotensin aldosterone system;Klf4: Krüppel-like factor4; Klf5: Krüppel-like factor5; p27(Kip1): cyclin-dependent kinase inhibitor 1B; p57(Kip2):
cyclin-dependent kinase inhibitor 1B; VEGF: vascular endothelial growth factor; Ets-1: E26 transformation-specific sequence 1; VCAM-1: vascular cell adhesion
molecule 1; MCP-1: monocyte chemoattractant protein 1; GAX: growth arrest-specific homeobox; ACE: angiotensin converting enzyme; ACE2: angiotensin
converting enzyme 2; AT1R: Ang II type 1 receptor; FGF2: fibroblast growth factor 2; FGFR1: fibroblast growth factor receptor 1; VSMCs: vascular smooth
muscle cells.

II as a pri-miRNA, which subsequently cleaved into mature
miRNA by two RNase enzymes, Drosha and Dicer, in the
nucleus and cytoplasm. miRNAs biogenesis is under strin-
gently control and their deregulation links to various diseases
[8]. The regulation of miRNAs occurs at multiple levels of
their biogenesis. In the process of miRNAs transcription,
miRNAs are controlled by RNA polymerase II-associated
transcription factors and epigenetic regulators, such as DNA
methylation and histone modifications, which are positively
or negatively correlated with miRNAs expression, while in
the posttranscriptional levels, the modification of miRNAs
processing, including RNA editing, methylation, uridyla-
tion, adenylation, and RNA decay, contributes to miRNAs
regulation. Several critical cell signaling systems have been
linked with regulating miRNAs biogenesis at posttranscrip-
tion levels, such as transforming growth factor-𝛽/bone mor-
phogenetic protein pathways and mitogen-activated protein
kinases signaling pathways, indicating the diverse possibili-
ties for the regulation of miRNAs biogenesis [8, 9].

miRNAs are abundant in all human cells, acting as critical
regulators formajor cellular functions andmiRNAs deregula-
tion associated with a variety of diseases [5, 6]. Recent studies
have demonstrated thatmiRNAs are associatedwith the path-
ogenesis of hypertension [7]. In spontaneously hypertensive
rats (SHR) model, the expressions of miR-155 and miR-
208 were downregulated and negative correlated with blood
pressure [10, 11]. Compared with healthy controls, the plasma
levels of miR-126, miR-133, miR-143, and miR-145 were
decreased in patients with essential hypertension, combined
with enhanced expression of miR-1, miR-296-5p, and miR-
let-7e [12–14]. Furthermore, expressions of miR-21, miR-143,

and miR-145 were negatively correlated with blood pressure
levels, while expressions ofmiR-9,miR-126, andmiR-133were
positively correlated with blood pressure levels [5, 12–14].

It is well established that vascular smooth muscle cells
(VSMCs) proliferation, differentiated phenotype, and migra-
tion are pivotal cellular events for the development of hyper-
tension [15]. miRNAs are highly expressed in vasculature and
modulate diverse vascular cell functions (Table 1) [5, 6].
Some specific miRNAs have been identified to be involved in
VSMCs biology.MiR-143 andMiR-145 are highly expressed in
VSMCs and promote VSMCs differentiation and phenotype
transformation via the activation of Krüppel-like factor4
(Klf4) and Klf5 (Table 1) [7, 16, 17]. MiR-143 and miR-145
are important stimuli to maintain vascular smooth muscle
contractile differentiation, while knockout of them would
decrease the blood pressure levels [16]. In addition, miR-365
exerts an antiproliferative role in VSMCs proliferation via the
cell cycle regulatory protein cyclinD1 (Table 1) [18]. p27(Kip1)
and p57(Kip2) were 2 target genes that were involved in
miR-221- andmiR-222-mediated effect on VSMC growth and
differentiation (Table 1) [6, 7]. These observations indicate
that various miRNAs in vasculature may be linked with
hypertension and provide novel pharmacologic implications
for the prevention and treatment of hypertension.

3. The ACE/Ang II/AT1R Signaling and
MicroRNAs in Hypertension

Activation of the ACE/Ang II/AT1R signaling promotes
inflammation, oxidative stress, and fibrosis linked to hyper-
tension, while inhibition of the ACE/Ang II/AT1R signaling
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Figure 1: The crosstalk between ACE2/Apelin signaling and miRNAs in hypertension. On one hand, the miR-145 and miR-27a/b suppress
the action of ACE/Ang II/AT1R, whereas miR-143 and miR-421 serve as negative regulators of ACE2 to modulate the balance between Ang
II degradation and Ang-(1-7) generation. Overexpression of miR-155 inhibits the effects mediated by Ang II/AT1R signaling while Ang II
regulatesmiR-138 andmiR-132/212 expression via its receptor AT1R, contributing to cardiovascular hypertrophy and remodeling and elevated
blood pressure. In contrast, Ang-(1-7) promotes the level of miR-146a, which blocks inflammation and cardiovascular remodeling. On the
other hand, the Apelin/APJ signaling regulates the expression of miR-133a, miR-208, andmiR-1, functioning as negative regulators for cardiac
hypertrophy and contractile function. Moreover, the Apelin/APJ ameliorates cardiovascular hypertrophy and remodeling by modulating
miR-424/-503-FGF signaling. ACE: angiotensin converting enzyme; ACE2: angiotensin converting enzyme 2; Ang II: angiotensin; AT1R:
angiotensin II type 1 receptor; miRNAs: microRNAs; FGF2: fibroblast growth factor 2; FGFR1: fibroblast growth factor receptor 1.

has been regarded as important pharmacological tools to
prevent and treat vascular diseases such as hypertension [1,
3, 19]. Recently, most researches have been focused on the
interactions between theACE/Ang II/AT1R axis andmiRNAs
in hypertension. The miR-145, miR-27a/27b, and miR-483-
3p have been shown to inhibit ACE expression by directly
targeting the putative binding sites in the 3-UTR of ACE
transcripts [20–23]. There exists a negative feedback loop
between miR-145 and ACE expression, mediating the switch
of VSMC phenotypic differentiation to dedifferentiation.The
ACE/Ang II signaling mediates various miRNAs expression
via the activation of AT1R and these miRNAs, thereby con-
tributing toVSMCs proliferation, cardiovascular remodeling,
and hypertension (Figure 1) [24, 25]. In hypertensive status,
Ang II-inducedmiR-130amediated VSMCs proliferation and
vascular remodeling by preventing the expression of growth
arrest-specific homeobox (GAX) [11]. In human microvas-
cular endothelial cells, exposure to Ang II increased the
stability of HIF1-𝛼 with consequent induction of miR-138,
which attenuated the bioavailability of NO and mediated the
proinflammatory signal transduction [26]. Eskildsen et al.
[27] reported that chronicAng II infusion enhanced the levels
ofmiR-132/-212 in hypertensive rats, whichwere prevented by
treatment with AT1R blocker. Moreover, they observed that
miR-132/-212 fine-tune multiple targets in Ang II signaling
led to cardiac hypertrophy and fibrosis [28]. Ang II-mediated
miRNAs have been identified to involve hypertension,
including miR-19b, miR-29, miR-129-3p, miR-181b, and miR-
483-3p (Table 1) [22–25, 29]. Kemp et al. [23] investigated

that the miR-483-3p could target some components of RAAS
directly. In their study, miR-483-3p regulated homeostatic
levels of ACE, ACE2, and AT2R, indicating that this miRNA
might function as an important regulator of manipulating
RAAS.The intrinsic regulation of Ang II-responsivemiRNAs
on RAS components suggests that the modulation between
Ang II andmiRNAs is complicated (Table 1). In another work
[30], miR-155 was found as a potent regulator of Ang II-
induced VSMCs proliferation by inhibiting AT1R (Figure 1).
In hypertensive patients, AT1R expression was negatively
correlatedwithmiR-155 expression and the interplay between
miR-155 and AT1R was associated with the polymorphism
(+1166A/C single-nucleotide polymorphism) located in the
3-UTR of the AT1R [31]. Although the specific downstream
targets of AT1R remain unclear, these findings suggest that
miR-155 involve the Ang II/AT1R signaling and relate to
vascular diseases.

4. The ACE2/Ang-(1-7)/Mas Signaling and
MicroRNAs in Hypertension

The classical pathway of the RAS involving the ACE-Ang
II-AT1 receptor axis is now antagonized by the second
arm constituted by the ACE2-Ang-(1-7)-Mas receptor axis,
exerting protective effects via modulating the inflammation,
fibrosis, and vascular remodeling in hypertension [1–3].
Recent studies have shown the link between the ACE2/Ang-
(1-7)/Mas signaling andmiRNAs in hypertension (Table 1 and
Figure 1) [32–34]. miRNA-targeting prediction algorithms
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revealed pupative binding sites for a variety of miRNAs in the
3-UTR of ACE2 transcript, while only several miRNAs have
been identified as regulators in inhibiting ACE2 expression
[23, 32, 33]. In SHRmodel [33], exercise training significantly
decreased the blood pressure levels and miR-143 expression
levels in aortas in association with a drastic augment in
circulating ACE2 and Ang-(1-7) levels, indicating the reg-
ulatory roles of miR-143 in the ACE2/Ang-(1-7) signaling
(Table 1 and Figure 1). By establishing luciferase report system
containing ACE2 3-UTR, both miR-421 and miR-483-3p
strikingly decreased ACE2 protein levels while loss of the two
miRNAs reversed these effects, implying that miR-421 and
miR-483-3p modulated ACE2 expression via translational
repression rather than degraded the transcripts (Table 1)
[23, 32]. In human aortic endothelial cells (Table 1), Ang-(1-7)
decreased glycated albumin-mediated vascular inflammation
and improved the vascular function through modulating
the expression of miR-146a [34]. In addition, treatment
with telmisartan modulated the level of miR-146a/b, along
with the improvement of the ACE2/Ang-(1-7) levels and
attenuation of vascular remodeling in hypertension [35–38].
Satoh et al. [39] reported that blockade of RAAS in coro-
nary artery disease patients decreased protein levels of
TLR4 and upregulated TLR4-responsive miRNAs expression
including miR-31, miR-181a, miR-16, and miR-145 compared
to controls. Although the related mechanism has not been
identified, these researches permit speculation that RAAS
blockades may exert cardiovascular protective effects by
modulating the ACE2/Ang-(1-7) signaling and miRNAs lev-
els. Taken together, there are potential interactions between
the ACE2/Ang-(1-7) signaling and miRNAs in hypertension.

5. The Apelin/APJ Signaling and
MicroRNAs in Hypertension

Apelin is a second catalytic substrate for ACE2 and functions
as an inotropic and cardioprotective peptide [4, 38, 40–43].
The physiological effects of Apelin are exerted through bind-
ing to its receptor APJ, a seven-transmembrane G protein-
coupled receptor that shares significant homology with the
AT1R. Intriguingly, there is 54% sequence homology of the
transmembrane regions between the APJ and AT1R and
the anatomical distribution of both receptors and peptides
overlaps in the cardiovascular system [42]. However, the
effects of Apelin is independent of AT1 receptor and Ang
II cannot bind to the APJ, although both of Ang II and
Apelin can be degraded by ACE2 [38, 43]. The Apelin/APJ
system has been shown to be involved in a wide range of
pathophysiology effects in cardiovascular system, which is a
necessary process in the initiation and development of vari-
ous cardiovascular diseases such as pulmonary hypertension
and essential hypertension [40, 41, 43]. Apelin levels were
reduced in patients with essential hypertension independent
of left ventricular systolic and diastolic dysfunction [44].
Treatment with Apelin has been shown to lower systolic
bloodpressure levels in hypertensive rats via aNO-dependent
signaling [45, 46]. miRNAs are involved in VSMCs prolif-
eration, cardiovascular remodeling, and the pathogenesis of

hypertension (Table 1) [7, 16–18]. Ceylan-Isik et al. [47] found
that treatment with Apelin strikingly prevented high fat diet-
induced cardiac hypertrophy and contractile dysfunction
associated with increased levels of miR-1, miR-208, and miR-
133a. In addition, Apelin treatment significantly reduced the
expression of fibroblast growth factor 2 (FGF2) and FGF
receptor 1 (FGFR1) by regulating miR-424 andmiR-503, con-
tributing to the attenuation of VSMCs proliferation (Table 1
and Figure 1). Conversely, Apelin deficiency resulted in a
marked increase in FGF2 expression and a reduction in
expression of miR-424 and miR-503 that worsen pulmonary
arterial hypertension in experimental models, suggesting the
regulatory roles of Apelin in maintaining vascular home-
ostasis via the miR-424/503-FGF signaling [48]. Intriguingly,
Apelin upregulated ACE2 in the failing hearts, coupled with
upregulation of miR-424 and miR-503, whereas Ang-(1-
7) administration improved cardiovascular dysfunction of
Apelin-deficient mice in vivo [40, 48]. Moreover, the Apelin-
APJ increased ACE2 activity and improved cardiovascular
remodeling independently of AT1R signaling [40]. Both
ACE2 andApelin exhibit beneficial effects in the cardiovascu-
lar system, and recombinant ACE2 has recently been shown
as a candidate therapeutic for treating hypertension in animal
models [38, 40, 41]. The crosstalk between the ACE2/Apelin
signaling and miRNAs provides an important mechanistic
insight into hypertension and may lead to the development
of new therapeutic regimens.

6. Conclusions, Limitations, and Perspectives

The discovery of the interaction between the ACE2/Apelin
signaling and miRNAs during hypertension is an exciting
affair in hypertensive research. ACE2 is a pleiotropic mono-
carboxypeptidase responsible for the conversion of Ang II
to Ang-(1-7), thereby functioning as a negative regulator of
the RAAS in cardiovascular system [3, 19, 38]. Apelin, as the
second substrate of ACE2, exerts a cardiovascular protective
effect including lowering blood pressure and improving car-
diac contractility [4, 38–41]. The ACE2/Apelin signaling
exhibits beneficial effects in the cardiovascular system and
hypertension [3, 4, 38, 40]. The ACE2-coupled crosstalk
among the RAAS, the Apelin system, and miRNAs provides
an important mechanistic insight into hypertension.

Although most researches indicate the interactions
among RAAS, ACE2/Apelin, and miRNAs in hypertension,
these correlations are just in statistic level. These researches
just found the linkage between the ACE2/Apelin and miR-
NAs in patients with hypertension or animal models of
hypertension or in vitroVSMCs. However, the ACE2/Apelin-
related miRNAs are really big families which contain “good”
or “bad” components andmay have additional control mech-
anisms beyond our current understanding. Thus, the corre-
sponding targets and functional roles of the ACE2/Apelin-
related miRNAs still need to be identified. The investigation
of the relationship between the ACE2/Apelin signaling and
miRNAs is just a beginning; there is still a long way to go.
Further studies will be needed to explore the interactions
and precise mechanisms of the ACE2/Apelin signaling and
evaluate the role of validated and predicted targets ofmiRNAs
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in hypertension. Targeting the ACE2/Apelin signaling and
miRNAs could lead to the development of a novel therapeutic
approach for patients with hypertension and other vascular
diseases related to cardiovascular remodeling.
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