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We mainly analyze the dynamic characteristics of electrostatically actuated shape optimized variable geometry microbeam. A
nonlinear dynamic model considering midplane stretching, electrostatic force, and electrical field fringing effects is developed.
Firstly, we study the static responses of the optimized microbeams under DC polarization voltage. The generalized differential
quadrature method (GDQM) is used. Secondly, the dynamic responses of the shape optimized microbeams driven by DC and AC
voltages are investigated using GDQM in conjunction with Levenberg-Marquardt optimization method. The results show that the
more gradual change inwidth, the larger the resonant frequency and themaximumamplitude at resonance.Thenwe further discuss
in detail how do the maximum width, midsection width, and curvature of the width function affect the frequency response of the
microbeams. We find that the amplitude and resonant frequency of the dynamic response are not monotonically increasing as the
curvature of the width function increases and there exists a critical curvature. This analysis will be helpful in the optimal design
of MEMS actuators. Finally, for more consideration, different residual stress, squeeze-film damping, and fringing effect models are
introduced into the governing equation of motion and we compare the corresponding dynamic response.

1. Introduction

Electrostatically actuated microbeams have been widely used
in microelectromechanical systems (MEMS) devices such
as capacitive MEMS switches [1] and gyroscope [2]. An
electrostatically actuated microbeam consists of a movable
electrode (microbeam) and a fixed electrode (substrate), with
dielectric medium filling the gap between them (Figure 1).
This structure is simple and well compatible with existing
microfabrication techniques. DC and AC voltages are com-
bined to drive the microbeam.The AC voltage value is much
smaller than that of the DC voltage. The DC voltage deflects
the microbeam to a new equilibrium position, while the AC
voltage creates oscillatory motion around this equilibrium
position.

However, electrostatic actuation has an intrinsic instabil-
ity situation, known as the pull-in phenomenon [3, 4]. When
the applied voltage exceeds a critical value, which is called the
pull-in voltage, the mechanical restoring force can no longer
resist the electrostatic force, thereby causing the collapse of

themicrobeam. Inmost cases, pull-in instability greatly limits
the stable operation range of the microbeam. However, a
large stable range can be extremely useful in a wide variety
of tuning applications. Many scientists therefore have done
much research to expand the stable range. A comprehensive
comparison of various methods of stable range extension has
been done by Zhang et al. [5].

Recently, researchers have paid their attention to variable
geometry microbeams [6]. Since the microbeam shape can
influence both the structural stiffness and the electrostatic
force, it would be a very effective method to improve the per-
formance of the microdevices by optimizing the microbeam
shape. More and more researchers have been devoted to
the optimization work, and the main optimization methods
are divided into two categories: topology optimization and
continuous geometry optimization.

Sigmund [7] studied an electrothermally drivenmicroac-
tuator with topology optimization method. They discussed
the differences between modeling and optimizing the actu-
ators using linear and nonlinear finite element analyses.
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Figure 1: Schematic of an electrostatically actuated variable width fixed-fixed microbeam.

Raulli and Maute [8] analyzed the design of electrostatically
actuated MEMS by topology optimization.They revealed the
advantages of varying simultaneously the interface topol-
ogy and the layout of the electrode versus conventional
approaches of optimizing only the structural layout. Lemaire
et al. [9] described how to utilize the topology optimization in
the multiphysics field of MEMS to maximize pull-in voltage
of an electromechanical device. Although these studies have
indeed improved the performance of the microdevice, the
resulting optimized structure using topology optimization
contains some closed holes, which is hard to realize with the
existing fabrication technology.Therefore, several researchers
turn to explore continuous geometry optimization. Abdalla
et al. [10] proposed a passive method to maximize the
pull-in voltage for an electrostatically actuated microbeam
by changing the microbeam shape in width and thickness.
Their results illustrated that width optimization seems to be
more beneficial than thickness optimization. However, they
ignored the fringing effects at the electrode edges and the
effects of geometric nonlinearity. Najar et al. [11, 12] investi-
gated the static and dynamic behavior of a variable section
microactuator. They first demonstrated the convergence of
the differential quadrature method (DQM) in conjunction
with the finite difference method (FDM) and successfully
used thismethod to analyze the effects of variations in the gap
size and microbeam width and thickness on the frequency
response. But they did not consider the fringing effect either.
Joglekar and Pawaskar [13] proposed a versatile parametric
width function which smoothly varies the width of the
fixed-fixed microbeam along its length. They optimized the
parameters of the proposed width function and enumerated
several cases to demonstrate their methodology. The goal of
their research is to enhance the static and dynamic pull-in
ranges of electrostatically actuated microbeams, but they did
not discuss the impact of the resulting optimized shape on the
dynamic response of the microbeam. Herrera-May et al. [14–
16] not only studied the resonant characteristic of the single
layer variable cross-section microbeam but also researched
the bending resonant frequency of multilayered microres-
onators with variable cross-section. So far, the research on
the dynamic characteristic of the optimized microbeam is

fewer. In this paper, we carry out the dynamic analysis of the
optimized microbeam and discuss the impact of adjusting
the geometric parameters on the frequency response of the
shaped microbeam.

This paper is organized as follows: in Section 2, we
introduce themathematicalmodel, accounting for the system
nonlinearities due to midplane stretching, electrostatic force,
and fringing effects. Then in Section 3, the static pull-in
parameters (voltage and travel range) and dynamic charac-
teristics of optimized microbeams are extracted. The results
of our calculation are compared with those reported in the
literature. The influences of varying the axial load, fringing
effect formulas, and microbeam shape on the dynamic
response of the optimizedmicrobeam are shown in Section 4.
Finally, Section 5 is the conclusion of the paper.

2. Mathematical Model

In this paper, we consider a variable cross-section fixed-fixed
microbeam (Figure 1) driven by a combination of DC andAC
voltages.Themicrobeam is suspended above a fixed electrode
with an initial gap 𝑑

0
. Both the movable and fixed electrodes

are good conductors of electricity and the permittivity of
free space between them is 𝜀. As combined driving voltages
are applied between the movable and the fixed electrodes,
a position-dependent electrostatic force is distributed and
deforms the movable electrode towards the fixed electrode.

In order to consider the influence of the fringing effects,
an extra term is introduced into the governing equation [12].
The partial differential integral equation for the transverse
deflection 𝑤 is written as
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The boundary conditions are given by

𝑤 (0, 𝑡) = 0,
𝜕𝑤

𝜕𝑥
(0, 𝑡) = 0,

𝑤 (𝑙, 𝑡) = 0,
𝜕𝑤

𝜕𝑥
(𝑙, 𝑡) = 0,

(2)

where 𝜌 is the material density, 𝐴(𝑥) and 𝐼(𝑥) represent the
cross-section area and the area moment of inertia, 𝐸 is the
effective Young’s modulus, and 𝑉

𝑝
and V(𝑡) are, respectively,

the DC and AC driving voltages.
Equation (1) considers residual stress through the param-

eter𝑁. The geometric nonlinearity due to midplane stretch-
ing is also taken into consideration by means of integral dif-
ferential term.The first term on the right side of (1) represents
the electrostatic force considering the fringing effects.

The following dimensionless variables and parameters are
introduced:
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12
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(3)

where 𝑏
0
and ℎ

0
represent, respectively, the width of the

microbeam at the clamped edge and the microbeam thick-
ness. �̂�(𝜉) is the variable width function along the axial direc-
tion.

Substituting (3) into (1) and (2), the dimensionless form
of the governing equation is rewritten as
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(4)

and the associated boundary conditions become

𝑤 (0, 𝜏) =
𝜕𝑤 (0, 𝜏)

𝜕𝜉
= 0, 𝑤 (1, 𝜏) =
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The parameters in (4) are defined as follows:
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(6)

3. Solution Method

Considering the nonlinearities present in (4), the GDQM
[17] is adopted to solve the governing equation. The GDQM
approximates the derivative of a function with respect to a
space variable at a given point by a weighted linear sum-
mation of all the discrete point values over the whole com-
putational domain. At a point 𝑥 = 𝑥

𝑖
, the 𝑟th order derivative

of a function 𝑤(𝑥) reads [18]
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One essential issue pertaining to this method is how to
efficiently and accurately choose the weighting coefficients
𝐴
𝑟

𝑖𝑗
. In general, a poor choice of such weights leads to a

numerical ill position of the problem. Based on the theory
of Lagrange interpolation, the GDQM uses a Lagrangian
interpolation polynomial in determining the weighting coef-
ficients:
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(8)

The weighting coefficients of higher order derivatives can
be determined by a recurrence relationship:
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where 𝑛 is the total number of discrete grid points. In order to
have more accurate solutions, the Chebyshev-Gauss-Lobatto
distribution is adopted:

𝜉
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=
1

2
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𝑛 − 1
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The integral terms in the governing equation are com-
puted by theNewton-Cotes formula and the cotes coefficients
are computed by
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Figure 2: Static normalized midpoint deflection 𝑤max with DC voltage 𝑉
𝑝
.

3.1. Static Solution. Neglecting all the time-dependent terms
in (4), the governing equation of static behavior of the mi-
crobeam is given by
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with

𝑤 (0) =
𝜕𝑤 (0)

𝜕𝜉
= 0, 𝑤 (1) =

𝜕𝑤 (1)

𝜕𝜉
= 0. (13)

In the following, three cases of prismatic microbeams
are considered. We calculate the pull-in parameters and the
comparison with the previous reference in literatures is listed
in Table 1.The results of present work shown in Table 1 closely
agree with those reported in the literature, which verifies the
accuracy of the method.

Figure 2 shows the maximum deflection-voltage rela-
tionship of the third case in Table 1, from zero up to the
pull-in voltage. The instability occurs when the slope of the
deflection-voltage curve becomes infinite. Our results are
in good agreement with those in [19], where they solved a
reduced order model [20] using Galerkin method.

In order to enhance the static pull-in travel range, Joglekar
and Pawaskar [13] proposed a novel versatile parametric
and continuous width function.They use energy-based tech-
niques to extract static pull-in parameters and use Nelder-
Mead method to optimize the parameters of the proposed
width function. Nine groups of optimized parameters were
put forward and it was pointed out that these nine cases are
applicable to any microbeam geometry having the ratio of

𝑏
0
/𝑙 = 0.15.This paper uses the abovemethod to compute the

static pull-in parameters and compares the results with those
reported in the literature.The comparison is listed in Table 2.
Above the oblique line are the results of our calculation,
while under the oblique line are the results reported in the
literature.

Compared with the prismatic microbeam, the pull-in
travel ranges are greatly improved after the shape opti-
mization (see Table 2). Among all the nine cases, the third
one improved the most (up to 19.66%). Some of the cases
have relative larger differences between our results and the
reference. This is caused by the approximate method we
adopted when dealing with the optimized microbeam with
sharp points (the profile is shown in next section). Because
the GDQM is based on the theory of Lagrange interpolation,
it has some drawbacks when handling the microbeam with
derivative discontinuous width function profile. To improve
the accuracy, we approximate the width function by high
order polynomial, and this approximation will introduce
several errors. Nevertheless, the results are acceptable.

The analysis above only illustrates the maximum deflec-
tion of the microbeam with voltages. It cannot intuitively
reflect the deflection of the whole microbeam. In order to
understand the overall deformation of the microbeam when
the driven voltage is close to the pull-in voltage, we also
extract the displacement of the other discrete points besides
the midpoint of the microbeam. Figure 3 displays the overall
deformation of the nine shape optimized microbeams.

3.2. Dynamic Solution. Some shape optimization results are
given in the literature [13] and these optimized microbeams
indeed greatly increase the travel range. But the literature
did not discuss such optimization shapes would have what
kind of influence on the dynamic response of themicrobeam.
Based on their research, we further analyze the dynamic
behavior of the shape optimization microbeams.
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Table 2: Comparison of pull-in parameters of the optimized microbeam (reference prismatic microbeam’s pull-in travel range: 0.4028/0.405,
pull-in voltage: 8.426/8.383).

Case Pull-in travel range Relative error (%) Pull-in voltage Relative error (%)
Present work/reference Present work/reference

S1 0.436/0.425 2.59 9.465/9.693 −2.35
S2 0.474/0.454 4.41 11.271/12.535 −10.08
S3 0.482/0.469 2.77 13.273/15.222 −12.80
S4 0.429/0.424 1.18 9.477/9.685 −2.14
S5 0.470/0.456 3.07 11.680/12.638 −7.58
S6 0.464/0.460 0.87 13.144/14.393 −8.68
S7 0.431/0.424 1.65 9.477/9.672 −2.01
S8 0.447/0.441 1.36 11.588/12.254 −5.43
S9 0.443/0.441 0.45 11.496/12.276 −6.35
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Figure 3: Deformation of the optimized microbeam: (a) S1–S3; (b) S4–S6; (c) S7–S9.
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Figure 4: Comparison of the frequency response curve: (a) in the hardening domain (𝑉dc = 2V,𝑉ac = 0.1V) and (b) in the softening domain
(𝑉dc = 3.5V, 𝑉ac = 0.1V).

For convenience, we rewrite the dimensionless governing
equation (4) as the following form. The prime denotes the
derivatives with respect to the space coordinate 𝑥 and the
overdot denotes the derivatives with respect to time 𝑡:
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Newton-Cotes formula and GDQM are applied, respec-
tively, to discretize the integral and derivative terms in (14).
Then the time of one period is discretized into 𝑚 points. In
order to solve the obtained ordinary differential equations,
finite differential method is used to compute the velocity and
the acceleration of themicrobeamand subsequentlymake the
results satisfy (15); finally utilizing the Levenberg-Marquardt
optimization method, the deflection 𝑤 with respect to 𝑥 and
𝑡 can be obtained:
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2
𝑏
𝑖

[𝑉
𝑝
+ V (𝜏
𝑡
)]
2

(1 − 𝑤
𝑖,𝑡
)
2

− 𝛼
3

[𝑉
𝑝
+ V (𝜏
𝑡
)]
2

(1 − 𝑤
𝑖,𝑡
)

− [

[

𝑁 − 𝛼
1

𝑛

∑

𝑗=1

𝐶
𝑗
𝑤
𝑗,𝑡

⋅ [𝐴


𝑗

𝑛

∑

𝑘=1

𝐴
(1)

𝑗𝑘
𝑤
𝑘,𝑡
+ 𝐴
𝑗

𝑛

∑

𝑙=1

𝐴
(2)

𝑗𝑙
𝑤
𝑙,𝑡
]]

]

⋅

𝑛

∑

𝑗=1

𝐴
(2)

𝑖𝑗
𝑤
𝑗,𝑡
]

]

𝑖 = 3, 4 . . . ,
1

2
(𝑛 + 1) 𝑡 = 1, 2, . . . 𝑚,

(15)

where 𝜏
𝑡
= 2𝜋𝑡/Ω(𝑚−1),Ω is the excitation frequency𝑤

𝑖,𝑡
=

𝑤(𝑥
𝑖
, 𝜏
𝑡
), and 𝑤V

𝑖,𝑡
= 𝑤

V
(𝑥
𝑖
, 𝜏
𝑡
) = �̇�(𝑥

𝑖
, 𝜏
𝑡
).

Using this method, we calculate a typical example of
microbeamproposed in [19] and obtain its dynamic behavior.
Figure 4 indicates that our estimates of the dynamic response
in both hardening and softening domains closely agree with
those reported in the literature, where Nayfeh and cowork-
ers got the similar results by a combination of two-point
boundary-value problem and shooting method [21]. This
comparison verifies the accuracy of the method we adopted.

As described in literature [22], Younis and Nayfeh found
that DC voltage affects the qualitative and quantitative nature
of the effective nonlinearity coefficient of the system, which
changes the dynamic response of the microbeam from a
hardening to a softening response. This is because, with
increasing of the DC voltage, the electric nonlinearity, which
tends to lower the response frequency, drastically dominates
the influence of the geometric nonlinearity, which tends to
increase the resonant frequency. They concluded that most
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Figure 5: Frequency response curve of different optimized shape: Case 1–Case 3.

of the models used in the literature neglect the effect of
the electric nonlinearity and particularly the quadratic one.
Usually, these models assume the nonlinearity of the system
to be solely cubic and positive, which predicts a hardening
behavior rather than the correct softening behavior.

In the following sections, we first assigned𝑉dc = 23V and
got the softening curves and then changed the DC voltage to
𝑉dc = 10V, getting the hardening curves.

Next, we adopt this method to analyze the dynamic
response of the shape optimization microbeams proposed
in [13]. The parametric width function (first put forward by
Joglekar and Pawaskar in [23]) for fixed-fixed microbeam is
shown as follows:

𝑤 (𝑥) = 𝛼 (𝑓 + (1 − 𝑓) ((1 − 2𝑥)
2
)
𝑚

)
𝑛

(16)

and the acceptable ranges of the four parameters are

0 < 𝑓 < 1,
𝑏min
𝑏
0

< 𝛼 <
𝑏max
𝑏
0

,

0 ≤ 𝑚 < ∞, 0 ≤ 𝑛 < ∞,

(17)

where 𝑏min and 𝑏max are constraints on the minimum and
maximum allowable width and 𝑏

0
is the width of the refer-

ential prismatic microbeam.
Table 3 shows the optimized parameters of dynamic

mode of actuation of fixed-fixedmicrobeam.Themain reason
for choosing dynamic mode parameters instead of static ones
is that our analysis target is dynamic response. In addition,
most of the optimization shapes of the static and dynamic
modes closely resemble each other. For more accuracy, the
optimized results of dynamic mode (Table 3) are chosen
as the basis of calculation. Table 3 is divided into three
groups:D1–D3,D4–D6, andD7–D9. Each group has the same
minimum constraints 𝑏min at themidpoint of themicrobeam.
All the nine cases are computed and the calculated frequency
response curves are shown in Figures 5–7.

The green curve in Figure 5 stands for the frequency
response of the reference prismaticmicrobeam, and the other

Table 3: Optimized parameters of dynamic mode of actuation of
fixed-fixed microbeam [13].

Case 𝛼 𝑓 𝑚 𝑛

D1 1.333 0.003 0.452 0.394
D2 2.000 0.001 1.317 0.393
D3 2.667 0.001 1.993 0.434
D4 1.333 0.001 0.763 0.233
D5 2.000 0.001 1.813 0.292
D6 2.146 0.001 2.024 0.302
D7 1.333 0.014 0.656 0.282
D8 1.872 0.001 2.156 0.223
D9 1.872 0.001 2.156 0.223

three are those of the optimized microbeams: from left to
right are in turn Case 1 to Case 3. The rectangular box
displays the schematic diagramof the optimizedwidth shapes
of the microbeam. The shape of the referential prismatic
microbeam is also drawn on each plot in order to facilitate a
visual comparison between the referential and the optimized
shape. All these three optimized microbeams have the same
minimum width value at the midpoint. Compared with
the prismatic microbeam, the amplitude of the frequency
response of Case 3 improves the most; that is to say, the
geometry shape of Case 3 is better than the other two. By
comparing the three different shapes, we can conclude that
the more gradual change in width, the larger the maximum
amplitude at resonance. And this conclusion is also applicable
to the following two groups. As can be seen from Figure 5,
the microbeam shape of Case 1 contains obvious stress con-
centration phenomenon.While in practical application, such
a shape of the microbeam always avoids being manufactured.

A constant volume constraint is taken into account during
the optimization procedure, which helps in comparing the
prismatic and optimized microbeams for their performance.
All the microbeams consume same amount of material dur-
ing their fabrication. The different shapes of the microbeam
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Figure 6: Frequency response curve of different optimized shape: Case 4–Case 6.
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Figure 7: Frequency response curve of different optimized shape:
Case 7–Case 9.

can be seen as a new distribution of the material. It can
be observed from Figure 6 that the midsection of Case 6
is longer than that of Case 5; meanwhile, the resonance
frequency and amplitude of Case 6 are also larger. Through
the comparison, it can be deduced that the longer the constant
width portion near the central, the larger the amplitude of the
frequency response.

The optimization parameters of Case 8 and Case 9 are
identical; thus, the frequency responses overlap together. We
can see from Figures 5–7 that the amplitude and resonance
frequency of the optimized microbeams are all increased
compared to the reference prismatic microbeam. Among the
nine optimal shapes, the third one is the best, which agrees
with the results of the static solution. The shape of Case 1,
Case 4, and Case 7 all contains stress concentration parts, and
these structures only make sense in mathematical analysis
and they will never be put into practical application.

Table 4: Dimension and physical parameters of a typical fixed-fixed
microbeam.

𝑙 𝑏
0

ℎ 𝑑
0

80𝜇m 20𝜇m 1 𝜇m 0.5 𝜇m
𝐸 𝑉 𝑏max 𝑏min

169GPa 0.06 40 𝜇m 8 𝜇m

4. Numerical Analysis

There are four variable parameters in the width function (16).
Different parameters have different effects on the microbeam
shape, and the changes in the shape will further affect the
dynamic behavior of the microbeam. Joglekar et al. put
forward a set of optimized parameters, but they did not
discuss the influence of each parameter on the dynamic
response of the microbeam. In this section, we emphasize on
studying the influence of different shape parameter changes
of the microbeam on the dynamic response. Then, for
comprehensive consideration, we also consider the impact
of different axial loads, squeeze-film damping, and different
fringing effect models on the frequency response.

Without loss of generality, a typical example of fixed-fixed
microbeam proposed in [13] has been selected. The physical
parameters, material properties, and constraints are listed in
Table 4. Figure 8 depicts the optimized width shape of this
microbeam as well as the referential prismatic microbeam.

4.1. Geometry Effects. This subsection discusses the effect of
varying the geometric shapes on the microbeam frequency
response. The maximum width (𝛼), midsection width (𝑓, 𝑛),
and curvature (𝑚) are varied.We study the dynamic behavior
of the microbeam under 𝑉dc = 23V and 𝑉ac = 0.5V. The
results are shown, respectively, in Figures 9–13.

The acceptable ranges of 𝛼 are 𝑏min/𝑏0 ≤ 𝛼 ≤ 𝑏max/𝑏0.
As for this microbeam, 0.4 ≤ 𝛼 ≤ 2. Figure 9 shows the
frequency responses with respect to different 𝛼. We choose
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Figure 9: Comparison of dynamic response curves of differentmax-
imum width 𝛼.
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Figure 10: Comparison of dynamic response curves of different
midsection width 𝑓.
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Figure 11: Comparison of dynamic response curves of differentmid-
section width 𝑛.
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Figure 12: Comparison of dynamic response curves of different
curvature𝑚 (0.8–1.2).
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Figure 13: Comparison of dynamic response curves of different
curvature𝑚 (1.2–1.8).



Shock and Vibration 11

four values of 𝛼, and the difference between each of them is
0.5. In the bottom left corner of Figure 9, a schematic diagram
of the optimized microbeams with different 𝛼 is displayed.
While at the top right corner is the partial enlargement of the
response curves. It can be seen that with the increase of 𝛼,
the response amplitude increases. However, the discrepancy
between the curves is very small. This is because augmenting
the maximum width (𝛼) not only renders the microbeam
stiffer but also increases the electrostatic force due to the
increase of the overlap area of the electrode plates. It can be
found that the discrepancy of the response tends to be smaller
with the increase of 𝛼.

Parameters 𝑓 and 𝑛 control the midsection width of the
microbeam. We can see from Figures 10 and 11 that increas-
ing the value of 𝑓(𝑛) decreases (increases) the resonance
frequency and maximum amplitude at resonance. From the
perspective of physical analysis, increasing 𝑓 (decreasing
𝑛) not only expands the width of the microbeam (enhanc-
ing the stiffness and mechanical restoring force), but also
augments the overlap area of the capacitor (enhancing the
electrostatic force). With this kind of shape change, the
narrower the microbeam, the smaller the equivalent stiffness
and mass of the microbeam, but the descent velocity of the
mass is larger than that of the stiffness; thus, the natural
frequency becomes larger as the microbeam width narrows
down. When expanding the frequency sweep range, we also
find superharmonic resonance phenomenon (Figure 10).The
superharmonic resonance shows almost linear behavior and
this agrees with the conclusions of [24].

Changes of𝑚 do not change the width of the microbeam
at themidpoint. Augmenting𝑚 increases the curvature of the
microbeam’s width curve. When 𝑚 is small, augmenting 𝑚
increases the resonance frequency as well as the maximum
amplitude at resonance (Figure 12). However, when 𝑚 con-
tinues to increase (larger than 1.4), the trend becomes just the
opposite, the response begins to shift to the lower frequency,
and themaximumamplitude also begins to decrease, which is
shown in Figure 13.This is becausewhen𝑚 is smaller than 1.4,
increasing 𝑚 renders the descent velocity of the equivalent
stiffness of the microbeam smaller than that of mass, just
like the change regularity of parameter 𝑛. When 𝑚 is larger
than the critical value 1.4, as the increasing of 𝑚, the rate
of decline of equivalent stiffness of the microbeam becomes
faster than the microbeam mass, thus obtaining the opposite
change trend. This kind of shape change is very interesting
and it is beneficial to the optimal design of MEMS resonators
because of the wide adjustable range.

4.2. Residual Stress Effects. During the process of microman-
ufacturing, it is inevitable to produce residual stress along the
axial direction of the microbeam.The stress can be tensile or
compressive, which will accordingly increase or decrease the
microsystem structural stiffness. To ensure accuracy, we take
into account this effect through the parameter𝑁.

Midplane stretching is by far the most important source
of geometric nonlinearity in MEMS and it increases the
structural stiffness of the microbeam in a nonlinear way that
resembles a cubic effect [21]. In contrast, electrostatic force
softens the modal stiffness of the structure. In addition, the
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Figure 14: Frequency response curve of different values of residual
stress.𝑁 = 0means no residual stress is applied to the microbeam.

softening effect gets stronger with the increase of the DC
voltage. So when the driving voltage is large, the influence
of midplane stretching is weaker than electrostatic force;
thus, all the frequency response curves in Figures 5, 6,
7, 9, 10, 11, 12, and 13 show softening behavior. For more
comprehensive consideration, in this subsection, we choose
a smaller DC voltage 𝑉dc = 10V; meanwhile, AC voltage
remains constant. In this case, the softening effect caused by
the electrostatic force becomes weaker, so the system has a
hardening effective nonlinearity [24]. The microbeam shape
is still the optimization shape shown in Figure 8.

Figure 14 shows the frequency response of the midpoint
of the fixed-fixed optimized microbeam for five different
cases of axial load. The 𝑁 in Figure 14 is a nondimensional
quantity, positive value represents the axial tensile stress, and
negative value represents the axial compressive stress. It can
be seen from Figure 14 that augmenting the tensile stress
increases the resonance frequency and reduces themaximum
amplitude at resonance, while augmenting the compressive
stress reduces the resonance frequency and increases the
maximum amplitude at resonance. Here also find superhar-
monic resonance phenomenon as outlined in Figure 14.

4.3. Squeeze-Film Damping Effects. In MEMS, due to the
scale effect of the microstructure, air damping has obvious
influence on the dynamic behavior of the microdevice. So
in this subsection, we discuss the influence of the squeeze-
film damping on the dynamic behavior of variable geometry
microbeam.We adopt the following function as squeeze-film
damping force [25]:

𝑓
𝑑
=

𝜇eff𝑏
3
(𝑥) 𝑙

(𝑑
0
− 𝑤 (𝑥, 𝑡))

3

𝜕𝑤 (𝑥, 𝑡)

𝜕𝑡
, (18)

where 𝜇eff is the effective viscosity coefficient.
Here we also choose small voltage 𝑉dc = 10V and 𝑉ac =

0.5V.The response curves show hardening behavior.
Figure 15 shows the difference of dynamic behavior of

the variable geometry microbeam between no gas damping
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Figure 15: Frequency response curve of different initial gaps under
squeeze-film damping.

and considering the squeeze-film damping. It can be found
that the effect of the squeeze-film damping on the dynamic
behavior of the microbeam is obvious. If the device is
not working under vacuum, modeling should consider the
influence of the damping. Meanwhile, by adjusting the initial
gap between the microbeam and the substrate, we find that
the influence of the initial gap on the squeeze-film damping is
also obvious. When the initial gap increases, the electrostatic
force decreases. If not, consider the effect of squeeze-film
damping, and the amplitude of the dynamic response of the
microbeam should decrease. However, as shown in Figure 15,
under the circumstance of considering the squeeze-film
damping, the amplitude of the dynamic response of the
microbeam increases slightly.This is because augmenting the
initial gap makes the decrease velocity of the squeeze-film
damping quicker than that of the electrostatic force. So the
trend shows like that in Figure 15.

4.4. Fringing Effects. For a prismatic fixed-fixed microbeam,
the fringing effect has always been neglected. But for the
variable geometry microbeam, we should take the fringing
effect into consideration because as the midsection of the
microbeam becomes narrower, the influence of the fringing
effect increases accordingly. This can be seen from Figure 16.
The electric field energy leakage in the midsection of the
variable geometry microbeam is larger than the counterpart
prismatic beam and the fringing effect is more obvious.
Thus, it is necessary to consider the influence of the fringing
effect when calculating the dynamic characteristics of the
variable geometry microbeam. Many different formulas for
computing fringing fields have been proposed in [26, 27]
and we compared the difference of dynamic behavior of the
microbeam among four typical fringing effect models. The
revised formulas of electrostatic force 𝐹 of different models
are depicted in appendix.

Palmer’s model is a classical one, which considered firstly
the flux passing between the backsides of the plates. He
adopted the Schwarz-Christoffel transformationmethod. But
when applied to a narrowmicrobeam, the result of thismodel
is poor. Fokkema’s model took the effect of both the finite

width and finite thickness of the microbeam into consider-
ation. It can provide more accurate estimation for narrow
microbeams. However, it also has limitations. When the gap
size is larger than the beam width, the estimate is worse.
Batra’s model recalculated and optimized the parameters
of empirical formula for the capacitance. It has a broader
scope than Fokkema’smodel, especially for those significantly
narrow microbeams. On the basis of Yang [28] and Palmer’s
research, Leus et al. proposed a new modified formula (A.4).
This modified estimate is much more accurate than those in
[28] and the relative error is very small compared with finite
elements.

Figure 17 shows the response curves of forward and back-
ward frequency sweeps. Among all these cases, the amplitude
of the parallel-plate approximation (without regard to the
fringing effects) is the maximum. Others, from high to low,
are in turns Leus’s model, Palmer’s model, Batra’s model, and
Fokkema’s model. As mentioned above, Batra and Fokkema’s
models are more suitable for narrow microbeam. However,
the microbeam used in this work cannot be completely
regarded as narrow microbeam because only the midsection
is narrow enough. Meanwhile, the response results of Palmer
and Leus’s models are similar. Considering the calculation
time, Palmer’s model is selected as the compute model in this
work.

5. Conclusions

Generalized differential quadrature method is an effi-
cient method for the analysis of electrostatically actuated
microbeam based devices. In this paper, a set of optimized
variable geometry microbeams, accounting for the system
nonlinearities due to midplane stretching, electrostatic force,
and fringing effects, are analyzed to study their static and
dynamic characteristics. We find that the more gradual
change in width, the larger the maximum amplitude at res-
onance. Axial stress has prominent effect on the resonant
frequency tunability characteristics.

The influence of different geometry shapes on the
dynamic response is investigated. We find that the amplitude
of the frequency response and the value of parameter 𝛼

are positive correlation, but the discrepancy between the
response curves is very small andwith the increasing of 𝛼, the
discrepancy tends to be smaller. Augmenting 𝑛 increases both
the amplitude and resonant frequency of the microbeam,
while the amplitude and the values of 𝑓 are negative cor-
relation. When 𝑚 is small, the change of 𝑚 has the similar
trend with 𝛼, but when the value of 𝑚 is larger than 1.4,
the trend becomes the opposite. In summary, 𝑚, 𝑛, and 𝑓

should be changed when requiring an obvious frequency
shift, while 𝛼 can be used in fine tuning. In particular, when
𝑚 is chosen as the variable, the designer should consider the
special phenomenon mentioned above.

In the end, we discussed the influence of the squeeze-film
damping and different fringing effect models on the dynamic
behavior of the variable geometry microbeam. We found
that, under the circumstance of considering the squeeze-
film damping, the amplitude of the dynamic response of the
microbeam increases slightly as the increase of the initial gap.
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Figure 16: Electric field distribution and the corresponding contour of electric potential: (a) electric field distribution of prismatic beam; (b)
electric field distribution of variable geometrymicrobeam; (c) contour of electric potential of prismatic beam; (d) contour of electric potential
of variable geometry microbeam.
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Figure 17: Frequency response curves of different fringing effect
models under 𝑉dc = 23V and 𝑉ac = 0.5V (W/O means without
fringing effect and Wmeans with fringing effect).

Appendix

Revised Formulas of Electrostatic Force 𝐹 of
Different Models

(1) Palmer’s model [29] is

𝐹 =
𝜀𝑏 (𝑥)𝑉

2

2 (𝑑
0
− 𝑤 (𝑥, 𝑡))

2
[1 +

2 (𝑑
0
− 𝑤 (𝑥, 𝑡))

𝜋𝑏 (𝑥)
] . (A.1)

(2) Fokkema’s model [30] is

𝐹 =
𝜀𝑏 (𝑥)𝑉

2

2 (𝑑
0
− 𝑤 (𝑥, 𝑡))

2

⋅ [1 + 0.265 (
𝑑
0
− 𝑤 (𝑥, 𝑡)

𝑏 (𝑥)
)

0.75

+ 0.53
ℎ

𝑏 (𝑥)
(
𝑑
0
− 𝑤 (𝑥, 𝑡)

ℎ
)

0.5

] .

(A.2)
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(3) Batra’s model [31] is

𝐹 =
𝜀𝑏 (𝑥)𝑉

2

2 (𝑑
0
− 𝑤 (𝑥, 𝑡))

2

⋅ [1 + 0.204 (
𝑑
0
− 𝑤 (𝑥, 𝑡)

𝑏 (𝑥)
)

0.76

+ 0.6
ℎ

𝑏 (𝑥)
(
𝑑
0
− 𝑤 (𝑥, 𝑡)

ℎ
)

0.76

] .

(A.3)

(4) Leus’s model [32] is

𝐹 =
𝜀𝑏 (𝑥)𝑉

2

2 (𝑑
0
− 𝑤 (𝑥, 𝑡))

2

⋅
[
[

[

1 +
𝑑
0
− 𝑤 (𝑥, 𝑡)

𝜋𝑏 (𝑥)

+ (𝜋(1 +
2ℎ

𝑑
0
− 𝑤 (𝑥, 𝑡)

+ 2√
ℎ

𝑑
0
− 𝑤(𝑥, 𝑡)

+
ℎ
2

(𝑑
0
− 𝑤 (𝑥, 𝑡))

2
))

−1

⋅ (
2ℎ

𝑏 (𝑥)

+
1

√ℎ/ (𝑑
0
− 𝑤 (𝑥, 𝑡)) + ℎ2/ (𝑑0 − 𝑤 (𝑥, 𝑡))

2

⋅ (
ℎ

𝑏 (𝑥)
+

2ℎ
2

(𝑑
0
− 𝑤 (𝑥, 𝑡)) 𝑏 (𝑥)

))
]
]

]

.

(A.4)
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