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Perfect nonlinear (PN) functions have been an interesting subject of study for a long time and have applications in coding theory,
cryptography, combinatorial designs, and so on. In this paper, the planarity of the trinomials 𝑥𝑝𝑘+1 + 𝑢𝑥2 + V𝑥2𝑝𝑘 over GF(𝑝2𝑘) are
presented. This class of PN functions are all EA-equivalent to 𝑥2.

1. Introduction

Let 𝑝 be a prime and GF(𝑝𝑛) a finite field with 𝑝𝑛
elements. Let 𝑓 be a mapping from GF(𝑝𝑛) to itself.
Let 𝑁(𝑎, 𝑏) denote the number of solutions 𝑥 ∈ GF(𝑝𝑛)
of 𝑓(𝑥 + 𝑎) − 𝑓(𝑥) = 𝑏, where 𝑎, 𝑏 ∈ GF(𝑝𝑛), and let
Δ𝑓 = max{𝑁(𝑎, 𝑏) | 𝑎, 𝑏 ∈ GF(𝑝𝑛), 𝑎 ̸= 0}. Nyberg [1] defined
a mapping 𝑓 to be differentially 𝑘-uniform if Δ𝑓 = 𝑘. For
applications in cryptography, one would like to employ
functions for which Δ𝑓 is as small as possible. The
differentially 2-uniform function is called APN function.
And we know that APN functions are optimal over GF(2𝑛).
This concept is of interest in cryptography since differential
and linear cryptanalysis exploit the uniform property of
the functions which are used in many block ciphers, such
as DES. The differentially 1-uniform function is called PN
function. It is interesting to observe that PN functions have
also been studied under the name of planar functions which
are functions such that 𝑓(𝑥 + 𝑎) − 𝑓(𝑥) is a permutation
polynomial for all 𝑎 ∈ GF(𝑝𝑛)∗ = GF(𝑝𝑛) \ {0}. Planar
functions were introduced in [2] to describe projective planes
with certain properties. In recent papers [3, 4], PN functions
were used to describe new finite commutative semifields of
odd order. In [5, 6], it was shown that a PN function yields
either a skew Hadamard difference set or a Paley type partial

difference set depending on 𝑝𝑛(mod 4). PN function is one
of the most important cryptographic functions [7, 8] and has
extensive applications in cryptography and communication.
For example, PN and APN functions were used to construct
optimal constant-composition codes and signal sets [9, 10].

Since PN functions have many applications in coding
theory, cryptography, combinatorial designs, and so on, it
is interesting to find new PN functions. We call a function
“new” only if it is CCZ-inequivalent to the old ones. As
we know, there are only three classes of PN monomials.
Whether there exists another class of PN monomials is an
open problem. In [11], Coulter and Matthews introduced
the first family of PN polynomials. Ding and Yuan [5]
generalized their results and presented a new skewHadamard
difference set. Helleseth et al. [12] showed a family of PN
binomials 𝑢𝑥𝑝

𝑘
+1
+ 𝑥
2 over GF(𝑝2𝑘) which is equivalent to

themonomial 𝑥2. After that, some newmethodswere used to
construct newPN functions (please see [13–17] and references
therein), but it is still difficult to findmore new PN functions.
Many constructions of PN functions are used of the link
between quadratic PN functions and commutative semifields.
Bierbrauer [18] introduced a general projection method to
construct commutative semifields and generalized the known
PN functions. Pott and Zhou presented a switching con-
struction of PN functions in [19] and introduced a character
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theoretic approach to prove the planarity of a function in [20].
Recently, they presented new commutative semifields with
two parameters and then get new PN functions [21]. In their
paper [22], Kyureghyan and Özbudak constructed some new
PN functions by the products of two linearized polynomials.

In [12], the binomial composed with inequivalent
monomials 𝑥2 and 𝑥𝑞+1 was shown to be equivalent to the
monomial 𝑥2 over GF(𝑞2). What about the planarity of
trinomial composed with monomials 𝑥2, 𝑥2𝑞 and 𝑥𝑞+1? In
this paper, we will answer this question. In Section 2,
we recall some definitions and tools used later in the
paper. In Section 3, we characterize the planarity of the
trinomials 𝑥𝑝

𝑘
+1
+ 𝑢𝑥
2
+ V𝑥2𝑝

𝑘

over GF(𝑝2𝑘). These PN
trinomials are shown to be equivalent to monomial 𝑥2 in
Section 4. We then conclude this paper in Section 5 with
some future work.

2. Preliminaries

Let 𝑝 be an odd prime, and let 𝑛 be a positive inte-
ger. Let 𝜒(𝑥) be a function on GF(𝑝𝑛) defined by 𝜒(𝑥) =

𝑥
(𝑝
𝑛
−1)/2. Then, we get that 𝜒(𝑥) = 0 when 𝑥 = 0, 𝜒(𝑥) = 1

when 𝑥 is a square in GF(𝑝𝑛)\{0}, and 𝜒(𝑥) = −1 when 𝑥 is
a nonsquare in GF(𝑝𝑛) \ {0}.

The 𝑝-weight of a nonnegative integer 𝑚 is the sum of
the digits in its 𝑝-adic representation; that is, if 𝑚 = ∑𝑖 𝑏𝑖𝑝

𝑖

with 0 ≤ 𝑏𝑖 < 𝑝, then the 𝑝-ary weight of 𝑚 is ∑𝑖 𝑏𝑖 ∈ Z.
Recall that any mapping of GF(𝑝𝑛) can be represented by a
polynomial over GF(𝑝𝑛) of degree less than 𝑝𝑛. Moreover,
different such polynomials define different mappings. This
allows us to identify the set of mappings of GF(𝑝𝑛) with
the set of polynomials over GF(𝑝𝑛) with degree less than 𝑝𝑛.
The algebraic degree of a polynomial over GF(𝑝𝑛) is the
maximal 𝑝-weight of the exponents of its nonzero terms. A
polynomial is called quadratic if it has algebraic degree 2.The
following polynomials of algebraic degree 2

𝑛−1

∑

𝑖,𝑗=0

𝑎𝑖,𝑗𝑥
𝑝
𝑖
+𝑝
𝑗

, 𝑎𝑖,𝑗 ∈ GF (𝑝𝑛) (1)

are called Dembowski-Ostrom (DO) polynomials in [2].
Let 𝑐𝑖 ∈ GF(𝑝𝑛). A polynomial of the form 𝐿(𝑥) =

∑
𝑛−1

𝑖=0
𝑐𝑖𝑥
𝑝
𝑖

is called linearized or 𝑝-polynomial over GF(𝑝𝑛).
The sum of a linear mapping and a constant in GF(𝑝𝑛) is
called an affine mapping.

Two functions 𝑓, 𝑔 : GF(𝑝𝑛) → GF(𝑝𝑛) are called
extended affine (EA) equivalent, if 𝑔 = 𝐿1 ∘ 𝑓 ∘ 𝐿2 + 𝐿3 for
some affine permutations 𝐿1, 𝐿2 and affine function 𝐿3.
The functions 𝑓 and 𝑔 are called Carlet-Charpin-Zinoviev
(CCZ) equivalent if the graphs of 𝑓 and 𝑔 are affine equiv-
alent [23]. CCZ-equivalent functions have the same differen-
tial uniformity and the same extended Walsh spectrum. It is
showed in [24] that the CCZ-equivalence coincides with the
EA-equivalence for PN functions. For planar DO polynomi-
als, CCZ-equivalence coincides with linear equivalence [14].

In [3], Coulter and Henderson proved that planar DO
polynomials are equivalent to commutative semifields with
odd characteristic. Many new PN functions are defined

by corresponding commutative semifields with no explicit
function expressions, such as Dickson semifields and Cohen-
Ganley semifileds [4, 25, 26]. In the following, we just list
the known EA-inequivalent PN functions which have explicit
function expressions:

(a) 𝑥2 over GF(𝑝𝑛) (folklore);

(b) 𝑥𝑝
𝑘
+1 over GF(𝑝𝑛), where 𝑘 ≤ 𝑛/2 and 𝑛/(𝑘, 𝑛) is

odd ([2, 11]);
(c) 𝑥10 ± 𝑥6 − 𝑥2 over GF(3𝑛), where 𝑛 ≥ 5 is odd ([5,

11]);

(d) 𝑥𝑝
𝑠
+1
− V𝑥𝑝

2𝑘
+𝑝
𝑘+𝑠

over GF(𝑝3𝑘), where 𝑘1 = 𝑘/gcd(𝑘,
𝑠), 𝑠1 = 𝑠/gcd(𝑘, 𝑠), 𝑘1 is odd, ord(V) = 𝑞

2
+ 𝑞 + 1, and

at least one of the following conditions hold: 𝑘1+𝑠1 ≡
0 mod 3, 𝑝𝑘 ≡ 𝑝𝑠 ≡ 1 mod 3 ([13, 17]);

(e) 𝑥𝑝
𝑠
+1
− V𝑥𝑝

3𝑘
+𝑝
𝑘+𝑠

over GF(𝑝4𝑘), where 2𝑘/gcd(2𝑘, 𝑠)
is odd, ord(V) = 𝑞3 +𝑞2 +𝑞+ 1, and 𝑝𝑘 ≡ 𝑝𝑠 ≡ 1 mod
4 ([13]);

(f) 𝑥(3
𝑘
+1)/2 over GF(3𝑛), where 𝑘 ≥ 3 is odd and

(𝑘, 𝑛) = 1 ([11]);
(g) 𝑥𝑞+1 + 𝜔𝛽𝑥𝑝

𝑠
+1
+ 𝜔𝛽
𝑞
𝑥
𝑞(𝑝
𝑠
+1) over GF(𝑞2), where 𝑞 =

𝑝
𝑚, 𝜔, 𝛽 ∈ GF(𝑞2), 𝜔 + 𝜔

𝑞
= 0, 𝑠 is a positive

integer, 𝛽 is not a gcd(𝑞+1, 𝑝𝑠+1)th power, and there
is no 0 ̸= 𝑎 ∈ GF(𝑞2) such that 𝑎𝑞 + 𝑎 = 0 and 𝑎𝑝

𝑠

=

−𝑎 ([14, 18]);

(h) 𝑥2+𝑥2𝑞
𝑚

+𝐺(𝑥
𝑞
2
+1
) over GF(𝑞2𝑚), where 𝑞 is a power

of an odd prime 𝑝, 𝑚 = 2𝑘+1, and𝐺(𝑥) = ℎ(𝑥−𝑥𝑞
𝑚

)

with ℎ(𝑥) = ∑
𝑘

𝑖=0
(−1)
𝑖
𝑥
𝑞
2𝑖

+ ∑
𝑘−1

𝑗=0
(−1)
𝑘+𝑗
𝑥
𝑞
2𝑗+1

([18,
27]);

(i) 𝑥2 + 𝑥90 over GF(35) ([28]).

Below, we always let 𝑝 be an odd prime and 𝑞, 𝑛, 𝑘 positive
integers with 𝑛 = 2𝑘 and 𝑞 = 𝑝𝑘.

3. A New Family of PN Trinomials
over GF(𝑝2𝑘)

In this section, we propose a new family of PN trino-
mials over GF(𝑝2𝑘) which are composed of inequivalent
monomials 𝑥2 and 𝑥𝑝

𝑘
+1.

Theorem 1. Let 𝑢, V, 𝜃 ∈ GF(𝑞2) with 𝜃 = (V𝑞+1 − 𝑢𝑞+1)2 −
(𝑢 − V𝑞)𝑞+1, and let 𝑓 : GF(𝑞2) → GF(𝑞2) be given by 𝑓(𝑥) =
𝑥
𝑞+1
+𝑢𝑥
2
+ V𝑥2𝑞. Then, 𝑓(𝑥) is PN if and only if 𝜃(𝑞−1)/2 = 1.

Proof. Weneed to count the number of solutions of 𝑓(𝑥+𝑎)−
𝑓(𝑥) = 𝑏 under the conditions defined above for any 𝑎 ̸= 0, 𝑏

in GF(𝑞2). The equation 𝑓(𝑥 + 𝑎) − 𝑓(𝑥) = 𝑏 can be written
as

(𝑥 + 𝑎)
𝑞+1

+ 𝑢(𝑥 + 𝑎)
2
+ V(𝑥 + 𝑎)2𝑞

− 𝑥
𝑞+1

− 𝑢𝑥
2
− V𝑥2𝑞 = 𝑏.

(2)
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Let Δ = 𝑏 − 𝑓(𝑎). Then, (2) turns to

𝑎𝑥
𝑞
+ 𝑎
𝑞
𝑥 + 2𝑢𝑎𝑥 + 2V𝑎𝑞𝑥𝑞 = Δ. (3)

As (3) is affine, we just need to consider the case Δ =

0. When Δ = 0, for the function 𝑓(𝑥) to be PN, it is
necessary and sufficient that 𝑎𝑥𝑞 + 𝑎𝑞𝑥 + 2𝑢𝑎𝑥 + 2V𝑎𝑞𝑥𝑞 =
0 has 𝑥 = 0 as its only solution for any nonzero 𝑎 ∈ GF(𝑞2).
That is, say 𝑥𝑞−1 = −(𝑎

𝑞
+ 2𝑢𝑎)/(𝑎 + 2V𝑎𝑞) ̸= 0 has no

solution over GF(𝑞2).Therefore, 𝑓(𝑥) is PN if and only if the
equation (𝑎𝑞 + 2𝑢𝑎)𝑞+1 = (𝑎 + 2V𝑎𝑞)𝑞+1 is not true. It can be
written as

(𝑢 − V𝑞) 𝑎2 + 2 (𝑢𝑞+1 − V𝑞+1) 𝑎𝑞+1 + (𝑢𝑞 − V) 𝑎2𝑞 = 0. (4)

If 𝑢 − V𝑞 = 0, (4) is always true. We assume that 𝑢 − V𝑞 ̸= 0.
Let 𝑡 = 𝑎𝑞−1. Since 𝑎 ̸= 0, we can get

(𝑢
𝑞
− V) 𝑡2 + 2 (𝑢𝑞+1 − V𝑞+1) 𝑡 + 𝑢 − V𝑞 = 0 (5)

from (4). Then, we get 𝑡(V𝑞+1 − 𝑢𝑞+1 ± 𝜃1/2)/(𝑢𝑞 − V) with 𝜃 =
(V𝑞+1 − 𝑢𝑞+1)2 − (𝑢 − V𝑞)𝑞+1. As we know 𝑡

𝑞+1
= 1, then we

have

(V𝑞+1 − 𝑢𝑞+1)
2

± (𝜃
1/2
+ 𝜃
𝑞/2
) (V𝑞+1 − 𝑢𝑞+1) + 𝜃(𝑞+1)/2

(𝑢 − V𝑞)𝑞+1
= 1.

(6)

Since 𝜃𝑞 = 𝜃, then we get 𝜃𝑞/2 = ±𝜃1/2. If 𝜃(𝑞−1)/2 = 0 or −1,
we can obviously find that (6) is true. If 𝜃(𝑞−1)/2 = 1, then we
get

(V𝑞+1 − 𝑢𝑞+1)
2

± 2𝜃
1/2
(V𝑞+1 − 𝑢𝑞+1) + 𝜃

= (𝑢 − V𝑞)
𝑞+1

(7)

from (6). It leads to 𝜃1/2 = ±(V𝑞+1 − 𝑢
𝑞+1
) and 𝑢 −

V𝑞 = 0, which contradicts the first assumption 𝑢 − V𝑞 ̸= 0.
Therefore, 𝑓(𝑥) is PN if and only if 𝜃(𝑞−1)/2 = 1.

We can get the following corollary fromTheorem 1.

Corollary 2. Let 𝑓 : GF(𝑞2) → GF(𝑞2) be given by 𝑓(𝑥) =
𝑥
𝑞+1

+ 𝑢𝑥
2
+ V𝑥2𝑞, where 𝑢1+𝑞 = V1+𝑞. Then, 𝑓(𝑥) is PN if

and only if 𝑞 ≡ 1 (mod 4), 𝜒(𝑢𝑞 − V) = 1 or 𝑞 ≡ 3 (mod 4),
𝜒(𝑢
𝑞
− V) = −1.

Proof. From Theorem 1, we get that 𝑓(𝑥) is PN if and only
if ((V𝑞+1−𝑢𝑞+1)2−(𝑢−V𝑞)𝑞+1)(𝑞−1)/2 = 1. Since 𝑢1+𝑞 = V1+𝑞, we
just need (−(𝑢−V𝑞)𝑞+1)(𝑞−1)/2 = 1; that is, 0 ̸= −(𝑢−V𝑞)𝑞+1 is a
2(𝑞+1)th power. When 𝜒(𝑢𝑞 − V) = 1, −(𝑢− V𝑞)𝑞+1 is a 2(𝑞+
1)th power if and only if −1 is a 2(𝑞 + 1)th power, which is
equivalent to 𝑞 ≡ 1 (mod 4). When 𝜒(𝑢𝑞 − V) = −1, we get
that (𝑢−V𝑞)𝑞+1 is a (𝑞+1)th power and not 2(𝑞+1)th power.
In this case, −(𝑢 − V𝑞)𝑞+1 is a 2(𝑞 + 1)th power if and only
if 𝑞 ≡ 3 (mod 4).

Remark 3. If 𝑓(𝑥) is PN in Corollary 2, we have 𝑢(1+𝑞)/2 =
−V(1+𝑞)/2 for accuracy. Since ((𝑢−V𝑞)/(𝑢𝑞 −V)) ⋅ (V/𝑢) = (𝑢V−
V𝑞+1)/(𝑢𝑞+1 − 𝑢V) = −1, then we get (𝑢𝑞 − V)𝑞−1(V/𝑢) = −1.
Whether 𝑞 ≡ 1 (mod 4), 𝜒(𝑢𝑞 − V) = 1 or 𝑞 ≡ 3 (mod 4),
𝜒(𝑢
𝑞
− V) = −1, we get that V/𝑢 is a (𝑞 − 1)th power and not

a 2(𝑞 − 1)th power, which implies 𝑢(1+𝑞)/2 = −V(1+𝑞)/2.

The PN functions defined in Corollary 2 exist. For exam-
ple, the function 𝑥3

𝑘
+1
− 𝑥
2
+ 𝑥
2⋅3
𝑘

is PN over GF(32𝑘),
where 𝑘 is even.

4. The Linear Equivalence of the
New PN Trinomials

In this section, we will discuss the linear equivalence between
our newPN functions and the knownPNmonomial 𝑥2. First,
we give a simple proof to show that the PN functions defined
in Corollary 2 are equivalent to 𝑥2.

Theorem 4. The PN function 𝑓(𝑥) defined in Corollary 2 is
linear equivalent to 𝑥2.

Proof. Since 𝑢(1+𝑞)/2 = −V(1+𝑞)/2, we obtain (V/𝑢)1+𝑞 = 1 and
V/𝑢 is a (𝑞 − 1)th power. Let 𝜃2 = V/𝑢, and let 𝐿1(𝑥) =
((1 − 2𝜃V𝑞)/(𝑢 − V𝑞))𝑥 + ((2𝜃𝑢 − 1)/(𝑢 − V𝑞))𝑥𝑞, 𝐿2(𝑥) = 𝑥 +
𝜃𝑥
𝑞 be linear polynomials on GF(𝑞2).We can get 𝐿1(𝑓(𝑥)) =

𝐿2(𝑥)
2.

Assume that 𝐿2(𝑥 + 𝑎) = 𝐿2(𝑥), we obtain 𝑎 + 𝜃𝑎
𝑞
= 0,

which implies that 𝑎 = 0 or 𝑎𝑞−1 = −𝜃. If 𝑎𝑞−1 = −𝜃, we
get 𝑎2(𝑞−1) = V/𝑢. Since V/𝑢 is not a 2(𝑞 − 1)th power in
Corollary 2 thenwehave 𝑎𝑞−1 ̸= −𝜃 and 𝑎 = 0.Thus, 𝐿2(𝑥) =
𝑥 + 𝜃𝑥

𝑞 is a linear permutation.
If one of 1 − 2𝜃V𝑞 and 2𝜃𝑢 − 1 equals to 0, we can

get that 𝐿1(𝑥) is a linear permutation. If both of 1 − 2𝜃V𝑞
and 2𝜃𝑢 − 1 equal 0, we can get 𝑢𝑞 = V. This is not true
for 𝜒(𝑢𝑞 − V) ̸= 0. Otherwise, we assume 𝐿1(𝑥 + 𝑎) = 𝐿1(𝑥).
Then, we get 𝑎 = 0 or 𝑎𝑞−1 = (2𝜃V𝑞−1)/(2𝜃𝑢−1). If 𝑎 ̸= 0, we
get (2𝜃V𝑞 − 1)1+𝑞 = (2𝜃𝑢 − 1)1+𝑞. We can deduce that 𝜃𝑞(𝑢𝑞 −
V) = −𝜃(𝑢 − V𝑞). It leads to

(

V

𝑢

)

(𝑞+1)/2

= 𝜃
𝑞+1

= −

𝑢 − V𝑞

𝑢
𝑞
− V

⋅

V

𝑢

=

V𝑞+1 − 𝑢V

𝑢
𝑞+1

− 𝑢V
= 1. (8)

Then, we get that V/𝑢 is a 2(𝑞−1)th power which contradicts
the known result 𝑢(1+𝑞)/2 = −V(1+𝑞)/2. Therefore, 𝐿1(𝑥) =

((1 − 2𝜃V𝑞)/(𝑢 − V𝑞))𝑥 + ((2𝜃𝑢 − 1)/(𝑢 − V𝑞))𝑥𝑞 is also a linear
permutation. This completes the proof.

Inspired by the proof of Theorem 4, we get a generalized
result in the following theorem.

Theorem 5. The PN function 𝑓(𝑥) defined in Theorem 1 is
linear equivalent to 𝑥2.

Proof. If the PN function 𝑓(𝑥) = 𝑥
𝑞+1

+ 𝑢𝑥
2
+ V𝑥2𝑞 is

linear equivalent to 𝑥2 over GF(𝑞2), there must exist linear
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permutations 𝐿1(𝑥) = ∑
𝑛−1

𝑗=0
𝑏𝑗𝑥
𝑝
𝑗

and 𝐿2(𝑥) = ∑
𝑛−1

𝑗=0
𝑐𝑗𝑥
𝑝
𝑗

such that

𝑛−1

∑

𝑗=0

𝑏𝑗(𝑥
1+𝑞

+ 𝑢𝑥
2
+ V𝑥2𝑞)

𝑝
𝑗

=

𝑛−1

∑

𝑖,𝑗=0

𝑐𝑖𝑐𝑗𝑥
𝑝
𝑖
+𝑝
𝑗

. (9)

When 𝑖−𝑗 ̸= 0, 𝑘 ∈ Z2𝑘, there is no item of the type 𝑥𝑝
𝑖
+𝑝
𝑗

on
the left side of (9). Then, we can get that the coefficient
of 𝑥𝑝

𝑖
+𝑝
𝑗

equals to 0. It shows that 2𝑐𝑖𝑐𝑗 = 0. Assume that
𝑐𝑙 ̸= 0 for some 𝑙, we obtain that 𝑐𝑗 = 0 when 𝑗 ̸= 𝑙, 𝑙+𝑘 ∈ Z2𝑘.
Then, (9) can be written as

𝑛−1

∑

𝑗=0

𝑏𝑗(𝑥
1+𝑝
𝑘

+ 𝑢𝑥
2
+ V𝑥2𝑝

𝑘

)

𝑝
𝑗

= 𝑐
2

𝑙
𝑥
2𝑝
𝑙

+ 𝑐
2

𝑙+𝑘
𝑥
2𝑝
𝑙+𝑘

+ 2𝑐𝑙𝑐𝑙+𝑘𝑥
𝑝
𝑙
+𝑝
𝑙+𝑘

.

(10)

When 𝑗 ̸= 𝑙, 𝑙 + 𝑘, we can see that there is no item of type
𝑥
𝑝
𝑗
(1+𝑝
𝑘
) and 𝑥2𝑝

𝑗

on the right side of (10). Then, we have
𝑏𝑗 +𝑏𝑗+𝑘 = 0 and 𝑏𝑗𝑢

𝑝
𝑗

+𝑏𝑗+𝑘V
𝑝
𝑗+𝑘

= 0. This leads to 𝑏𝑗 = −𝑏𝑗+𝑘
and 𝑏𝑗(𝑢

𝑝
𝑗

− V𝑝
𝑗+𝑘

) = 0. Since 𝑢 − V𝑝
𝑘

̸= 0, then we obtain
that 𝑏𝑗 = 0 when 𝑗 ̸= 𝑙, 𝑙 + 𝑘. Therefore, (10) can be written
as

𝑏𝑙(𝑥
1+𝑝
𝑘

+ 𝑢𝑥
2
+ V𝑥2𝑝

𝑘

)

𝑝
𝑙

+ 𝑏𝑙+𝑘(𝑥
1+𝑝
𝑘

+ 𝑢𝑥
2
+ V𝑥2𝑝

𝑘

)

𝑝
𝑙+𝑘

= 𝑐
2

𝑙
𝑥
2𝑝
𝑙

+ 𝑐
2

𝑙+𝑘
𝑥
2𝑝
𝑙+𝑘

+ 2𝑐𝑙𝑐𝑙+𝑘𝑥
𝑝
𝑙
+𝑝
𝑙+𝑘

.

(11)

Comparing the coefficients of 𝑥2𝑝
𝑙

, 𝑥2𝑝
𝑙+𝑘

, and 𝑥𝑝
𝑙
(1+𝑝
𝑘
) of

(11), we can get the following equations:

𝑏𝑙 + 𝑏𝑙+𝑘 = 2𝑐𝑙𝑐𝑙+𝑘, (12)

𝑏𝑙𝑢
𝑝
𝑙

+ 𝑏𝑙+𝑘V
𝑝
𝑙+𝑘

= 𝑐
2

𝑙
, (13)

𝑏𝑙V
𝑝
𝑙

+ 𝑏𝑙+𝑘𝑢
𝑝
𝑙+𝑘

= 𝑐
2

𝑙+𝑘
. (14)

From (12) and (13), we obtain 𝑏𝑙+𝑘 = (𝑐
2

𝑙
− 2𝑐𝑙𝑐𝑙+𝑘𝑢

𝑝
𝑙

)/(V𝑝
𝑙+𝑘

−

𝑢
𝑝
𝑙

). We can also obtain 𝑏𝑙+𝑘 = (𝑐
2

𝑙+𝑘
− 2𝑐𝑙𝑐𝑙+𝑘V

𝑝
𝑙

)/(𝑢
𝑝
𝑙+𝑘

− V𝑝
𝑙

)

from (13) and (14). Then, we have

(𝑢
𝑝
𝑙+𝑘

− V𝑝
𝑙

)(

𝑐𝑙

𝑐𝑙+𝑘

)

2

+ 2 (V𝑝
𝑙
(1+𝑝
𝑘
)
− 𝑢
𝑝
𝑙
(1+𝑝
𝑘
)
)(

𝑐𝑙

𝑐𝑙+𝑘

)

+ 𝑢
𝑝
𝑙

− V𝑝
𝑙+𝑘

= 0.

(15)

We note that 𝐿2(𝑥) = 𝑐𝑙𝑥
𝑝
𝑙

+ 𝑐𝑙+𝑘𝑥
𝑝
𝑙+𝑘

is a permutation if
and only if 𝑐𝑙/𝑐𝑙+𝑘 is not a (𝑝

𝑘
− 1)th power. Comparing (5)

and (15), we have 𝑐𝑙/𝑐𝑙+𝑘 = −𝑡
𝑝
𝑙

. Under the conditions of
Theorem 1, 𝑡𝑞+1 = 1 is not true. Then, we get that 𝑐𝑙/𝑐𝑙+𝑘 is
not a (𝑝𝑘 − 1)th power and 𝐿2(𝑥) is a permutation.

From (12)–(14), we get 𝑏𝑙+𝑘 = (𝑐
2

𝑙
− 2𝑐𝑙𝑐𝑙+𝑘𝑢

𝑝
𝑙

)/(V𝑝
𝑙+𝑘

−

𝑢
𝑝
𝑙

) and 𝑏𝑙 = (2𝑐𝑙𝑐𝑙+𝑘V
𝑝
𝑙+𝑘

− 𝑐
2

𝑙
)/(V𝑝

𝑙+𝑘

− 𝑢
𝑝
𝑙

). If one of
𝑏𝑙 and 𝑏𝑙+𝑘 equals to 0, then 𝐿1(𝑥) = 𝑏𝑙𝑥

𝑝
𝑙

+ 𝑏𝑙+𝑘𝑥
𝑝
𝑙+𝑘

is

a monomial permutation. If both of 𝑏𝑙 and 𝑏𝑙+𝑘 equal to 0,
we get 𝑢 = V𝑝

𝑘

, which leads to a contradiction. Now, we
consider the case that both 𝑏𝑙 and 𝑏𝑙+𝑘 are not equal to 0. In
this case, 𝐿1(𝑥) = 𝑏𝑙𝑥

𝑝
𝑙

+𝑏𝑙+𝑘𝑥
𝑝
𝑙+𝑘

is a permutation if and only
if 𝑏𝑙/𝑏𝑙+𝑘 is not a (𝑝

𝑘
− 1)th power. We assume that 𝑏𝑙/𝑏𝑙+𝑘 =

(2𝑐𝑙+𝑘V
𝑝
𝑙+𝑘

− 𝑐𝑙)/(𝑐𝑙 − 2𝑐𝑙+𝑘𝑢
𝑝
𝑙

) is a (𝑝𝑘 − 1)th power. Then, we
have (2𝑐𝑙+𝑘V

𝑝
𝑙+𝑘

− 𝑐𝑙)
𝑝
𝑘
+1
= (𝑐𝑙 − 2𝑐𝑙+𝑘𝑢

𝑝
𝑙

)
𝑝
𝑘
+1, which implies

(𝑢
𝑝
𝑙

− V𝑝
𝑙+𝑘

)(

𝑐𝑙

𝑐𝑙+𝑘

)

𝑝
𝑘

+ (𝑢
𝑝
𝑘+𝑙

− V𝑝
𝑙

)

𝑐𝑙

𝑐𝑙+𝑘

+ 2 (V𝑝
𝑙
(1+𝑝
𝑘
)
− 𝑢
𝑝
𝑙
(1+𝑝
𝑘
)
) = 0.

(16)

From (15), we can get 𝑐𝑙/𝑐𝑙+𝑘 = (𝑢
𝑝
𝑙
(1+𝑝
𝑘
)
− V𝑝

𝑙
(1+𝑝
𝑘
)
± 𝜃
𝑝
𝑙
/2
)/

(𝑢
𝑝
𝑘+𝑙

− V𝑝
𝑙

) with 𝜃 defined in Theorem 1. Substituting the
value of 𝑐𝑙/𝑐𝑙+𝑘 into (16), we have

𝑢
𝑝
𝑙
(1+𝑝
𝑘
)
− V𝑝

𝑙
(1+𝑝
𝑘
)
± 𝜃
𝑝
𝑘+𝑙
/2
+ 𝑢
𝑝
𝑙
(1+𝑝
𝑘
)

− V𝑝
𝑙
(1+𝑝
𝑘
)
± 𝜃
𝑝
𝑙
/2
+ 2 (V𝑝

𝑙
(1+𝑝
𝑘
)
− 𝑢
𝑝
𝑙
(1+𝑝
𝑘
)
) = 0.

(17)

Since 𝜃(𝑝
𝑘
−1)/2

= 1, from (17), we get 𝜃𝑝
𝑙
/2
= 0, which is a

contradiction.Therefore, we get that 𝑏𝑙/𝑏𝑙+𝑘 is not a (𝑝
𝑘
−1)th

power and 𝐿1(𝑥) is a permutation. The proof is completed.

5. Conclusion

In this paper, we present a family of PN trinomials and
determine the necessary and sufficient conditions which
assure their planarity. All these PN functions are shown to
be equivalent to the known PN function 𝑥2 by using the
definition of linear equivalence. Our results give an answer
for the question presented in the introduction. It seems
hard to determine the planarity of the linear combination
of terms 𝑥𝑞

𝑖
+𝑞
𝑗

(0 ≤ 𝑖, 𝑗 < 𝑛) over GF(𝑞𝑛), where 𝑛 ≥ 3

and 𝑞 is an odd prime power. However, it may be possible to
determine them in some special cases (e.g., see [15]). We will
continue this study and try to findmore new PN functions in
the future work.
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