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The extracellular matrix (ECM) forms the basis of every phase in wound healing. Healing may be impaired if some of these
components are destroyed. Photobiostimulation has demonstrated a stimulatory response in biological processes. This study aimed
to evaluate various genes involved in the ECM, in response to laser irradiation. Isolated human skin fibroblasts were used in
three different cell models, namely, normal, normal wounded, and diabetic wounded. Cells were irradiated with 5 I/cm2 using
a continuous wave diode laser emitting at a wavelength of 660 nm and incubated for 48 h. Nonirradiated (0 J/cm?*) normal and
diabetic wounded cells served as the control. Real-time reverse transcription (RT) quantitative polymerase chain reaction (qQPCR)
was used to determine the expression of 84 genes in a PCR array. There was a significant upregulation of 29 genes in the normal cells,
32 genes in the normal wounded cells, and 18 genes in the diabetic wounded cells as well as a downregulation of 19 genes (normal),
6 genes (normal wounded), and 31 genes (diabetic wounded). Low intensity laser irradiation (LILI) stimulates gene expression in

various cell adhesion molecules (CAMs) and extracellular proteins at 660 nm in wounded fibroblasts in vitro.

1. Introduction

Components of the extracellular matrix (ECM) have been
shown to be useful in wound healing [1, 2]. They form the
core of every wound healing phase, and healing may be
impaired if any of these components is destroyed [3]. In
addition, they play a role in angiogenesis, tissue remodelling,
and rapid scaffold breakdown [4]. The interaction between
the ECM and various cells is very important for proper
functioning of the cell [5-8]. This interaction could be direct
or indirect. Directly, cellular receptors stimulate the ECM or
indirectly, through the structural components of the ECM
produced by glycoproteins. Cellular activities directed by
these interactions are required for wound healing.

Regulation of the wound healing process comprises
the interaction of various cell types, namely, neutrophils,
lymphocytes, macrophages, and fibroblasts, and regular
mediators such as growth factors and cytokines and ECM
components (fibronectin (FN); fibrin; collagen; and elastin
(EI)); laminin (LMN); proteoglycans (PG); glycosaminogly-
cans (GAG); matrix metalloproteinases (MMPs); and tissue
inhibitor of metalloproteinases (TIMPs) [2].

For proper cell survival and gene expression in normal
wound healing, the environment needs to be at equilibrium
with the activity of growth factors, fibroblast interaction,
and mechanical forces to ensure normal tissue remodelling
[9]. Fibroblasts produce most of the molecules in the ECM
including proteases, integrins, cytokines, and growth factors
during tissue repair which are responsible for late phase tissue
remodelling and eventually scarring [10, 11]. However, the
situation is different in chronic wounds due to the disruption
of the regular healing process because of tissue damage,
biochemical and cellular imbalances, or an underlying patho-
logical state such as diabetes and venous insufficiency. Venous
leg ulcers (VLUs) are amongst the major problems in public
health and have become an economic burden in most health
care services. It is commonly associated with pain, reduces
the quality of life, and is even associated with death. It may
also cause tiredness and depression [12-14]. The prevalence
of diabetic foot ulcers is approximately 1-2% worldwide [15];
it occurs at any age [16] with an incidence of 3-5% over 65
years [17].

Photobiostimulation, or photobiomodulation, is a non-
invasive type of treatment that modulates the treatment of
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TABLE 1: Laser parameters.

Laser parameters

Wavelength (nm) 660
Wave emission Continuous wave
Power output (mW) 92.5
Spot size (cm?) 9.1
Output density (mW/cm?) 10.22
Irradiation duration 8min9s
Fluence (J/cm?) 5

TABLE 2: Functional genes of the ECM and its adhesion molecules.

Pathway

Genes

Transmembrane molecules

Cell-cell adhesion

Cell-matrix adhesion

Other adhesion molecules

Cell adhesion molecules
CD44, CDHI, HASIL, ICAML, ITGAL ITGA2, ITGA3, ITGA4, ITGA5, ITGA6, ITGA7 ITGAS, ITGAL,
ITGAM, ITGAYV, ITGBI1, ITGB2, ITGB3, ITGB4, ITGB5, MMP14, MMPI15, MMP16, NCAM1, PECAM]1,
SELE, SELL, SELP, SGCE, SPG7, and VCAMI1

CD44, CDHI, COLI11AL, COLI4Al1, COL6A2, CTNND], ICAMI, ITGA8, and VCAMI1

ADAMTSI3, CD44, ITGAL ITGA2, ITGA3, ITGA4, ITGAS5, ITGA6, ITGA7, ITGAS, ITGAL, ITGAM,
ITGAYV, ITGBL, ITGB2, ITGB3, ITGB4, ITGB5, SGCE, SPP1, and THBS3

CNTNI, COLI2A1, COL15A1, COL16A1, COL5A1, COL6AL, COL7Al, COL8AIL, VCAN, CTGE CTNNAL,
CTNNBI, CTNND2, FN1, KALL, LAMAI1, LAMA2, LAMA3, LAMBI, LAMB3, LAMCI, THBSI1, THBS2,
CLEC3B, TNC, and VIN

Basement membrane
constituents

Collagens and ECM
structural constituents

ECM proteases

ECM protease inhibitors
Other ECM molecules

Extracellular matrix proteins
COL4A2, COL7Al, LAMA], LAMA2, LAMA3, LAMBI, LAMB3, LAMCI, and SPARC

COLI1A1, COLI2A1, COLI14Al, COL15A1, COL16Al1, COLIAL, COL4A2, COL5A1, COL6A1, COL6A2,
COL7Al, COL8AL, FN1, and KAL1

ADAMTSI1, ADAMTS13, ADAMTSS8, MMP1, MMP10, MMP11, MMP12, MMP13, MMP14, MMP15,
MMP16, MMP2, MMP3, MMP7, MMP8, MMP9, SPG7, and TIMP1

COL7Al, KAL1, THBSI, TIMP1, TIMP2, and TIMP3
VCAN, CTGE ECM1, HASI, SPP1, TGFBI, THBS2, THBS3, CLEC3B, TNC, and VIN

wounds through various cellular or biological processes. It is
effective in the visible and near infrared (NIR) spectral range.
It functions at wavelengths of 500-1100 nm and a power
output of 10-200 mW [18]. The use of photobiomodulation
in wound healing has greatly ameliorated various cellular
processes affecting different phases of wound healing. Studies
have demonstrated the stimulatory effects of photobiomodu-
lation in wounded cell models [19] at 660 nm [20]. Studies
have also shown that it enhances diabetic wound healing
in both rats and mice [21-23]. Photobiostimulation in the
visible and NIR spectral range has been demonstrated to
regulate gene expression in human and animal cell cultures,
even though its effect was not consistent in all irradiated cells
[24]. Studies from different areas showed variations in the
gene expression profile of 50 cultures of fibroblasts [25]. Few
studies have exploited the relationship of laser irradiation and
gene expression of the ECM in fibroblasts in vitro. Due to
previous studies which showed an increase in collagen type
I (Col-I) in response to laser irradiation at 660 nm [20], this
study aimed to determine the effect of laser irradiation at
660 nm on the gene expression profile of the ECM and its cell
adhesion molecules.

2. Methodology

2.1. Cell Culture. This study was performed on human skin
fibroblasts isolated from a consenting adult undergoing
abdominoplasty (Linksfield, Sandringham, Johannesburg)
(University of Johannesburg Academic Ethics Committee
Clearance Reference number 01/06). Cells were seeded into
3.4 cm diameter tissue culture flasks at a density of 6 x 10°
and routinely cultured according to standard techniques [26].
Different cell models, namely, normal (N), normal wounded
(NW), and diabetic wounded (DW), were used. To establish
an in vitro diabetic model, 17 mM/L D-glucose was added
to the media with a base concentration of 5.6 mM/L D-
glucose. Thirty minutes prior to irradiation, a sterile 1mL
disposable pipette was used to scratch the monolayer of cells
in a streaking motion (i.e., creating a central scratch (CS)).
This creates a cell-free zone on either side of the central
scratch [27, 28].

2.2. Laser Irradiation. Cells were irradiated with 5J/cm?
using a continuous wave diode laser emitting at a wavelength
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TABLE 3: Gene expression profile in normal (N) cells irradiated at 660 nm. Total RNA from nonirradiated N cells and irradiated N cells
were characterised in triplicate. A fold difference >1 is considered as gene upregulation, while a fold difference <1 is considered as gene
downregulation. Fold differences are indicated as upregulation (T) or downregulation (] ). X denotes the nonsignificant genes in that particular
cell model.

Gene symbol  Gene description Gene ID Fold difference Up/downregulation P value
ADAMTSI ADAM mgtallopeptidase with thrombospondin 9510 436 1 0.003
type 1 motif, 1
ADAMTSI3 ADAM mf:tallopeptidase with thrombospondin 11093 132 X 0.259
type 1 motif, 13
ADAMTSS ADAM mgtallopeptidase with thrombospondin 11095 277 1 0.003
type 1 motif, 8
CD44 CD44 molecule (Indian blood group) 960 4.85 1 0.012
CDHI Cadherin 1, type 1, E-cadherin (epithelial) 999 0.58 1 0.019
CLEC3B C-type lectin domain family 3, member B 7123 190 X 0.078
CNTNI1 Contactin 1 1272 1.14 X 0.547
COL11Al Collagen, type XI, alpha 1 1301 1.05 X 0.896
COLI12Al1 Collagen, type XII, alpha 1 1303 221 7 0.003
COLI14Al Collagen, type XIV, alpha 1 7373 0.56 X 0.116
COLI15A1 Collagen, type XV, alpha 1 1306 1.33 X 0.198
COLI6A1 Collagen, type XVI, alpha 1 1307 1.57 X 0.074
COLIAlL Collagen, type I, alpha 1 1277 1.88 7 0.001
COL4A2 Collagen, type IV, alpha 2 1284 1.78 T 0.022
COL5Al Collagen, type V, alpha 1 1289 4.23 ) 0.001
COL6A1 Collagen, type VI, alpha 1 1291 242 1 0.010
COL6A2 Collagen, type VI, alpha 2 1292 3.99 T 0.000
COL7AlL Collagen, type VII, alpha 1 1294 113 X 0.658
COLB8Al Collagen, type VIII, alpha 1 1295 3.07 1 0.000
CTGF Connective tissue growth factor 1490 0.43 1 0.002
CTNNAI Catenin (cadherin-associated protein), alpha 1, 1495 073 ! 0.039
102kDa
CTNNBI1 Catenin (cadherin-associated protein), beta 1, 1499 127 X 0153
88kDa
CTNND1 Catenin (cadherin-associated protein), delta 1 1500 2.21 T 0.001
CTNND2 Catenin (cadher.ir}—associated protein), delta 2 1501 0.09 ! 0.002
(neural plakophilin-related arm-repeat protein)
ECM1 Extracellular matrix protein 1 1893 0.47 l 0.000
FN1 Fibronectin 1 2335 2.29 T 0.005
HASI1 Hyaluronan synthase 1 3036 1.20 X 0.182
ICAM1 Intercellular adhesion molecule 1 3383 0.72 X 0.156
ITGA1 Integrin, alpha 1 3672 1.88 1 0.002
ITGA2 Integrin, alpha 2 (CD49B, alpha 2 subunit of 3673 0.99 X 0.650
VLA-2 receptor)
ITGA3 Integrin, alpha 3 (antigen CD49C, alpha 3 subunit 3675 .98 1 0.000
of VLA-3 receptor)
ITGA4 Integrin, alpha 4 (antigen CD49D, alpha 4 subunit 3676 0.81 X 0193
of VLA-4 receptor)
ITGAS Integrin, ‘alpha 5 (fibronectin receptor, alpha 3678 326 1 0.000
polypeptide)
ITGA6 Integrin, alpha 6 3655 121 X 0.085
ITGA7 Integrin, alpha 7 3679 0.92 X 0.780
ITGAS Integrin, alpha 8 8516 1.06 X 0.805
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TaBLE 3: Continued.

Gene symbol  Gene description Gene ID Fold difference Up/downregulation P value
Integrin, alpha L (antigen CD11A (p180),

ITGAL lymphocyte function-associated antigen 1; alpha 3683 106 X 0.540
polypeptide)

ITGAM Integrin, alpha M (complement component 3 3684 158 X 0.055
receptor 3 subunit)

ITGAV Integrin, ‘alpha V (vitronectin receptor, alpha 3685 117 X 0331
polypeptide, antigen CD51)
Integrin, beta 1 (fibronectin receptor, beta

ITGBI polypeptide, antigen CD29 includes MDF2, 3688 0.92 X 0.459
MSKI12)

ITGB2 Integrin, beta 2 (compl?ment component 3 3689 0.96 X 0792
receptor 3 and 4 subunit)

ITGB3 Integrin, beta 3 (platelet glycoprotein IIIa, antigen 3690 108 X 0.339
CDél)

ITGB4 Integrin, beta 4 3691 1.25 X 0.127

ITGB5 Integrin, beta 5 3693 1.05 X 0.672

KALL Kallmann syndrome 1 sequence 3730 1.53 1 0.030

LAMA1 Laminin, alpha 1 284217 0.52 1 0.001

LAMA2 Laminin, alpha 2 3908 0.52 1 0.008

LAMA3 Laminin, alpha 33909 3909 2.60 T 0.023

LAMBI1 Laminin, beta 1 3912 0.92 X 0.594

LAMB3 Laminin, beta 3 3914 0.55 X 0.069

LAMC1 Laminin, gamma 1 (formerly LAMB2) 3915 0.83 X 0.063

MMP1 Matrix metallopeptidase 1 (interstitial 4312 0.41 ! 0.001
collagenase)

MMP10 Matrix metallopeptidase 10 (stromelysin 2) 4319 0.81 X 0.198

MMP11 Matrix metallopeptidase 11 (stromelysin 3) 4320 1.53 T 0.015

MMP12 Matrix metallopeptidase 12 (macrophage elastase) 4321 0.48 l 0.010

MMP13 Matrix metallopeptidase 13 (collagenase 3) 4322 0.42 l 0.001

MMP14 Matrix metallopeptidase 14 (membrane-inserted) 4323 4.14 T 0.000

MMP15 Matrix metallopeptidase 15 (membrane-inserted) 4324 1.96 7 0.000

MMP16 Matrix metallopeptidase 16 (membrane-inserted) 4325 L1 X 0.186

MMP2 Matr‘ix metallopeptidase 2 (gelatinase A, 72 kDa 4313 334 1 0.000
gelatinase, 72 kDa type IV collagenase)

MMP3 Matrix metallopeptidase 3 (stromelysin 1, 4314 0.23 ! 0.007
progelatinase)

MMP7 Matrix metallopeptidase 7 (matrilysin, uterine) 4316 0.62 l 0.045

MMP8 Matrix metallopeptidase 8 (neutrophil 4317 075 X 0112
collagenase)

MMP9 Matr.ix metallopeptidase 9 (gelatinase B, 92kDa 4318 0.39 ! 0.013
gelatinase, 92 kDa type IV collagenase)

NCAM1 Neural cell adhesion molecule 1 4684 1.63 1 0.027

PECAMI Platelet/endothelial cell adhesion molecule 5175 0.81 X 0.503

SELE Selectin E 6401 0.93 X 0.568

SELL Selectin L 6402 0.99 X 0.961

SELP Selgctin P (granule membrane protein 140 kDa, 6403 135 e 0.469
antigen CD62)

SGCE Sarcoglycan, epsilon 8910 0.36 1 0.004

SPARC Secreted protein, acidic, cysteine-rich 6678 333 1 0.000

(osteonectin)
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TaBLE 3: Continued.
Gene symbol  Gene description Gene ID Fold difference Up/downregulation P value
SPG7 Spastic paraplegie_l 7 (pure and complicated 6687 512 1 0.000
autosomal recessive)
SPP1 Secreted phosphoprotein 1 6696 0.55 l 0.001
TGFBI Transforming growth factor, beta-induced, 68 kDa 7045 0.87 X 0.361
THBSI Thrombospondin 1 7057 1.87 1 0.006
THBS2 Thrombospondin 2 7058 2.65 T 0.003
THBS3 Thrombospondin 3 7059 1.20 X 0.235
TIMP1 TIMP metallopeptidase inhibitor 1 7076 1.43 T 0.035
TIMP2 TIMP metallopeptidase inhibitor 2 7077 117 T 0.025
TIMP3 TIMP metallopeptidase inhibitor 3 7078 0.43 l 0.008
TNC Tenascin C 3371 0.49 l 0.002
VCAMI1 Vascular cell adhesion molecule 1 7412 0.38 l 0.010
VCAN Versican 1462 0.46 1 0.008
VTN Vitronectin 7448 112 X 0.585

of 660nm (Fremont, CA, USA, RGBlase, TECIRL-100G-
650SMA); laser parameters are shown in Table 1. All lasers
were supplied and set up by the National Laser Centre
(NLC) of the Council for Scientific and Industrial Research
(CSIR), South Africa. Nonirradiated (0]/cm?) normal cells
(for irradiated normal and normal wounded) and diabetic
wounded cells (for irradiated diabetic wounded cells) served
as the control groups. Cells were irradiated from above, with
the culture dish lid off, in 1 mL culture media and in the dark
to omit nuisance variables suggestive of polychromatic light
that would interfere with the laser effect. The power output
was measured using a power meter (FieldMate, 0398D05) at
bench level prior to each irradiation, and the readings were
used to determine the irradiation time. The temperature of
the culture media during irradiation was measured every
2 min and remained less than 32°C. Cells were incubated for
48 h, and the profile of genes involved in the ECM and cell
adhesion molecules were assessed using a real-time reverse
transcription quantitative polymerase chain reaction (RT-
qPCR) array.

2.3. RNA Isolation and Purity. Isolation of total RNA from
the cells was performed on the Qiagen QIAcube (Whitehead
Scientific, Cape Town, South Africa) using the RNeasy Mini
Kit (Whitehead Scientific, Cape Town, South Africa, Qiagen,
74104) including QIAshredder homogenizers (Whitehead
Scientific, Cape Town, South Africa, Qiagen, 79654). After
incubation, cell cultures were detached with TrypLE Express
(1mL/25cm?) (Life Technologies, Gibco, Invitrogen, 12605-
021) and washed with phosphate buffered saline (PBS) to
eliminate traces of culture media and then resuspended in
600 uL of a guanidine-thiocyanate-containing buffer (RLT
buffer) to disrupt the cells, inactivate RNases, and release
cellular contents. Within 30 min, 30 uL of total RNA was
eluted and quantified. The concentration of RNA was estab-
lished using the Quant-iT RNA Assay Kits (Life Technolo-
gies, Johannesburg, South Africa, Invitrogen, Q32852) with
the Invitrogen Qubit 2.0 fluorometer (Life Technologies,

Johannesburg, South Africa). The ratio between absorbance
260 and 280nm (A,qnm/A,g,nm) was used to estimate
the sample purity using a UV/Vis spectrophotometer (Sep-
aration Scientific, Johannesburg, South Africa, PerkinElmer,
Victor?).

2.4. ¢DNA Synthesis. According to the protocol, a two-
step procedure was used to synthesise cDNA using the
QuantiTect Reverse Transcription Kit (Whitehead Scientific,
Cape Town, South Africa, Qiagen, 205311). Traces of possible
contaminating genomic DNA (gDNA) was eliminated from
1 ug purified RNA sample using the gDNA Wipeout Buffer
for 2 min at 42°C. RNA was then reverse-transcribed using a
reverse transcription (RT) master mix. Six microliters of RT
master mix was added to the reaction mixture to give a final
volume of 20 yL. The mixture was then incubated for 30 min
at 42°C and thereafter 3 min at 95°C to terminate the reaction.
One microliter of sample was used to estimate the purity as
stated earlier. Samples were stored on ice to proceed directly
with real-time qPCR or stored at —20°C.

2.5. Gene Expression Profiling. Real-time qPCR was per-
formed using the SABiosciences RT* profiler PCR array
(Whitehead Scientific, Cape Town, South Africa, PAHS-
01321Z) which profiled 84 genes (Table 2). Ninety-two micro-
liters of PCR water (Diethyl Pyrocarbonate, DEPC free) was
added to thawed ¢cDNA (19 yL) giving a final volume of
111 L. One hundred and two microliters of diluted cDNA
was added to the ready-to-use 2x SABiosciences RT* gPCR
master mix (330521), and then 1248 yuL of PCR water was
added to give a total volume of 2700 L. Components were
mixed and 25 pL of the experimental cocktail was dispensed
into each well of the 96-well plate. The sealed PCR plates were
centrifuged at 1000 g (Separation Scientific, Johannesburg,
South Africa, Thermo Scientific, Heraeus Labofuge 400) for
1 min to remove any bubbles and run in the preset real-time
thermocycler (Anatech, Randburg, South Africa, Stratagene
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TABLE 4: Gene expression profile in normal wounded (NW) cells irradiated at 660 nm. Total RNA from nonirradiated N cells and irradiated
NW cells were characterised in triplicate. A fold difference >1 is considered as gene upregulation, while a fold difference <1 is considered as
gene downregulation. Fold differences are indicated as upregulation (T) or downregulation (|). X denotes the nonsignificant genes in that
particular cell model.

Gene symbol  Gene description GeneID  Fold difference ~ Up/downregulation P value
ADAMTSI ADAM metallopeptidase with thrombospondin type 1 9510 186 1 0.045
motif, 1
ADAMTSI3 ADAM metallopeptidase with thrombospondin type 1 11093 739 1 0.003
motif, 13
ADAMTSS ADAM metallopeptidase with thrombospondin type 1 11095 1.85 1 0.001
motif, 8
CD44 CD44 molecule (Indian blood group) 960 1.25 X 0.356
CDH1 Cadherin 1, type 1, E-cadherin (epithelial) 999 1.23 X 0.205
CLEC3B C-type lectin domain family 3, member B 7123 L15 X 0.299
CNTNI1 Contactin 1 1272 1.25 X 0.068
COLI11A1 Collagen, type XI, alpha 1 1301 1.04 X 0.854
COLI12A1 Collagen, type XII, alpha 1 1303 1.69 ) 0.004
COL14A1 Collagen, type X1V, alpha 1 7373 0.81 X 0.370
COLI5A1 Collagen, type XV, alpha 1 1306 1.20 X 0.216
COLI6AL Collagen, type XVI, alpha 1 1307 1.05 X 0.749
COL1A1 Collagen, type I, alpha 1 1277 1.45 T 0.006
COL4A2 Collagen, type IV, alpha 2 1284 1.44 X 0.069
COL5A1 Collagen, type V, alpha 1 1289 1.61 T 0.005
COL6A1 Collagen, type VI, alpha 1 1291 1.27 X 0.170
COL6A2 Collagen, type VI, alpha 2 1292 1.36 X 0.105
COL7A1 Collagen, type VII, alpha 1 1294 1.42 1 0.005
COL8Al Collagen, type VIII, alpha 1 1295 1.36 T 0.011
CTGF Connective tissue growth factor 1490 0.95 X 0.284
CTNNA1 Catenin (cadherin-associated protein), alpha 1, 102kDa 1495 1.03 X 0.720
CTNNBI1 Catenin (cadherin-associated protein), beta 1, 88 kDa 1499 0.95 X 0.700
CTNND1 Catenin (cadherin-associated protein), delta 1 1500 136 X 0.105
CTNND2 Catenin .(.cadherin—associated protein}, delta 2 (neural 1501 0.63 L 0.019
plakophilin-related arm-repeat protein)
ECM1 Extracellular matrix protein 1 1893 0.75 l 0.017
FN1 Fibronectin 1 2335 1.63 T 0.012
HASI Hyaluronan synthase 1 3036 2.00 T 0.005
ICAM1 Intercellular adhesion molecule 1 3383 0.78 X 0.139
ITGA1 Integrin, alpha 1 3672 1.57 T 0.005
ITGA2 Integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 3673 0.86 X 0.073
receptor)
ITGA3 Integrin, alpha 3 (antigen CD49C, alpha 3 subunit of 3675 133 X 0121
VLA-3 receptor)
ITGA4 Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of 3676 119 X 0.057
VLA-4 receptor)
ITGA5 Integrin, .alpha 5 (fibronectin receptor, alpha 3678 146 1 0.021
polypeptide)
ITGA6 Integrin, alpha 6 3655 1.55 T 0.016
ITGA7 Integrin, alpha 7 3679 0.90 X 0.462
ITGAS Integrin, alpha 8 8516 2.94 T 0.012
ITGAL Integl.'in, alpha.L (antige.n CD11A (p180), lymPhocyte 3683 204 1 0.030
function-associated antigen 1; alpha polypeptide) 3683
ITGAM Integrin, alpha M (complement component 3 receptor 3 3684 159 1 0.027

subunit) 3684
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TaBLE 4: Continued.
Gene symbol  Gene description GeneID  Fold difference  Up/downregulation P value
ITGAV Integrin,.alpha V (vitronectin receptor, alpha 3685 143 1 0.013
polypeptide, antigen CD51)
mom  Iwn bl e i e s X e
ITGB2 Integrin, bet.a 2 (complement component 3 receptor 3 3689 117 X 0.259
and 4 subunit)
ITGB3 Integrin, beta 3 (platelet glycoprotein IIla, antigen 3690 153 1 0.007
CD61)
ITGB4 Integrin, beta 4 3691 1.42 X 0.062
ITGB5 Integrin, beta 5 3693 1.07 X 0.539
KALL Kallmann syndrome 1 sequence 3730 141 1 0.006
LAMA1 Laminin, alpha 1 284217 0.81 X 0.096
LAMA2 Laminin, alpha 2 3908 1.01 X 0.921
LAMA3 Laminin, alpha 33909 3909 1.33 X 0.546
LAMBI1 Laminin, beta 1 3912 1.18 X 0.113
LAMB3 Laminin, beta 3 3914 0.87 X 0.273
LAMCIL Laminin, gamma 1 (formerly LAMB2) 3915 0.94 X 0.419
MMPI1 Matrix metallopeptidase 1 (interstitial collagenase) 4312 0.53 l 0.011
MMPI10 Matrix metallopeptidase 10 (stromelysin 2) 4319 1.06 X 0.456
MMPI11 Matrix metallopeptidase 11 (stromelysin 3) 4320 1.60 7 0.009
MMP12 Matrix metallopeptidase 12 (macrophage elastase) 4321 0.75 X 0.019
MMPI13 Matrix metallopeptidase 13 (collagenase 3) 4322 0.78 X 0.075
MMP14 Matrix metallopeptidase 14 (membrane-inserted) 4323 0.97 X 0.909
MMP15 Matrix metallopeptidase 15 (membrane-inserted) 4324 2.66 T 0.000
MMP16 Matrix metallopeptidase 16 (membrane-inserted) 4325 1.00 X 0.963
MMP2 Matr.ix metallopeptidase 2 (gelatinase A, 72 kDa 4313 152 1 0.004
gelatinase, 72 kDa type IV collagenase)
MMP3 Matrix metallopeptidase 3 (stromelysin 1, progelatinase) 4314 0.33 ! 0.005
MMP7 Matrix metallopeptidase 7 (matrilysin, uterine) 4316 L15 X 0.499
MMP8 Matrix metallopeptidase 8 (neutrophil collagenase) 4317 1.53 T 0.049
MMP9 Matr?x metallopeptidase 9 (gelatinase B, 92kDa 4318 102 X 0.803
gelatinase, 92 kDa type IV collagenase)
NCAMI Neural cell adhesion molecule 1 4684 1.09 X 0.475
PECAM1 Platelet/endothelial cell adhesion molecule 5175 2.24 ) 0.009
SELE Selectin E 6401 1.39 ) 0.041
SELL Selectin L 6402 1.08 X 0.597
SELP Selectin P (granule membrane protein 140 kDa, antigen 6403 147 1 0.032
CD62)
SGCE Sarcoglycan, epsilon 8910 0.73 l 0.034
SPARC Secreted protein, acidic, cysteine-rich (osteonectin) 6678 1.59 T 0.001
SPG7 SpastiF paraplegia 7 (pure and complicated autosomal 6687 128 1 0.042
recessive)
SPP1 Secreted phosphoprotein 1 6696 0.84 X 0.118
TGFBI Transforming growth factor, beta-induced, 68 kDa 7045 1.10 X 0.317
THBSI Thrombospondin 1 7057 159 T 0.008
THBS2 Thrombospondin 2 7058 2.04 T 0.004
THBS3 Thrombospondin 3 7059 0.89 X 0.349
TIMP1 TIMP metallopeptidase inhibitor 1 7076 1.31 X 0.073
TIMP2 TIMP metallopeptidase inhibitor 2 7077 1.07 X 0.244
TIMP3 TIMP metallopeptidase inhibitor 3 7078 0.89 X 0.340
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TABLE 4: Continued.

Gene symbol  Gene description GeneID  Fold difference  Up/downregulation P value

TNC Tenascin C 3371 0.73 l 0.005

VCAMI1 Vascular cell adhesion molecule 1 7412 0.61 X 0.065

VCAN Versican 1462 0.87 X 0.252

VTN Vitronectin 7448 0.62 1 0.024

Mx3000p). The thermocycler profile setting was 10 min at
95°Cforlcycleand15sat 95°Cand 1 min at 60°C for 40 cycles.
The software was also programmed to do a melt or dissocia-
tion curve at the end of the run to ensure the amplification of
asingle product for each gene. The threshold cycle (C,) values
were imported into an Excel spreadsheet (Available from
the SABiosciences website: http://www.sabiosciences.com/)
which normalised the results against the 5 housekeeping
genes (ACTB, B2M, GAPDH, HPRTI, and RPLPO). In
addition, the relative gene expression (AAC,) and fold change
(2722C) were also calculated. Prior to data analysis, all the
C, values of the controls were examined to ensure proper
functioning of the PCR array and preceding steps (positive
PCR control, C, value of 20 + 2; genomic DNA control,
C, value of >35). A fold change of >1 was reported as fold
upregulation and a fold change <1 was reported as fold
downregulation.

2.6. Statistical Analysis. Experiments were repeated three
times (n = 3). Student’s ¢-test was analysed based on the
replicate fold change for each gene in both the test and
the control groups by the SABiosciences Excel-based data
analysis template and reported as significant if P < 0.05.
Results are represented in Tables 3 to 6.

3. Results

Irradiation of N cells with 660 nm resulted in the significant
upregulation of 29 genes and downregulation of 19 genes
(Table 3). Irradiation of NW cells with 660 nm resulted in
the significant upregulation of 32 genes and downregulation
of 6 genes (Table 4). Irradiation of DW cells with 660 nm
resulted in the upregulation of 18 genes and downregulation
of 31 genes (Table 5). A summary of the results is presented in
Table 6.

4. Discussion and Conclusion

ECM components are very useful in different aspects of
wound healing. The ECM interacts with various cells and
growth factors in cell proliferation, influencing migra-
tion, cell differentiation, and regulating several biological
responses [1, 5, 6, 29, 30]. The effects shown by different
ECM components depend on the stage of the wound and are
determined by the interactions between the cells and growth
factors [29]. There is great need for gene expression profiling
in the ECM following laser irradiation to be exploited. In
this study, 84 genes related to the ECM were studied in

various models. Photoirradiation was shown to stimulate
gene expression 48 h after incubation in irradiated N, NW,
and DW cells as compared to their respective controls. The
genes, either up- or downregulated, are functionally grouped
depending on their pathways in the ECM.

In the present study, four main CAM families were medi-
ated following irradiation at 660 nm. They include cadherins,
integrins, selectins, and immunoglobulin CAM (Ig-CAM).
The cadherin family are mainly calcium-dependent glycopro-
teins containing an extracellular domain, a transmembrane
domain, and an intracellular domain [31]. Cadherins and
integrins form the main cell-surface transmembrane recep-
tors and are involved in modulating cell-cell and cell-matrix
adhesion. They function in various cellular events, namely,
cell migration, proliferation, survival, differentiation, and
modulation of gene expression profiling [32, 33]. In irradiated
N cells, CTNND2 was upregulated and CDHI1, CTNNA],
and CTNNDI were downregulated at 660 nm; irradiated
NW cells showed downregulation of CTNND2; and DW
cells showed an upregulation of CDHI and CTNND2, while
CTNND1 was downregulated.

Integrins are the main receptor family in charge of
interactions in the ECM and consist of two noncovalent «
and f subunits; the specific combination of the subunits
determines the degree of cell signalling [34]. In irradiated N
cells, ITGAL ITGA3, ITGA5, and ITGAM were upregulated;
in irradiated NW cells, ITGAl, ITGA5, ITGA6, ITGAS,
ITGAL, ITGAM, ITGAYV, and ITGB3 were upregulated; and
in irradiated DW cells, ITGAS, ITGAL, and ITGB3 were
upregulated, while ITGA2, ITGA3, ITGAS, ITGA6, ITGBI,
and ITGB4 were downregulated.

Selectins consist of an extracellular domain with a
calcium-dependent lectin domain, an epidermal growth
factor domain, and a hydrophobic transmembrane domain
[35, 36]. Selectins expressed in response to laser irradiation
in N cells included CLEC3B, while NW cells showed an
upregulation in SELE, SELL, and SELP and in DW cells there
was an upregulation in SELL.

Ig-CAM contains an extracellular domain with FN
repeats, a transmembrane domain, and an intracellular
domain [31, 35]. These domains bind with proteins of the
ECM, namely, collagen, LMN, and FN, as well as certain inte-
gral cell-surface proteins [31]. Members of the Ig-CAM family
expressed in response to LILI were CD44, FN1, NCAM],
PECAMLI, SGCE, THBS], THBS2, SPP1, VIN, VCAM], and
CNTNL. In irradiated N cells, CD44, FN1, NCAM1, THBSI,
and THBS2 were upregulated, while SGCE, VCAMI, and
SPPI were downregulated following irradiation at 660 nm as
compared to nonirradiated N cells. In irradiated NW cells,
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TABLE 5: Gene expression profile in diabetic wounded (DW) cells irradiated at 660 nm. Total RNA from nonirradiated DW cells and irradiated
DW cells were characterised in triplicate. A fold difference >1 is considered as gene upregulation, while a fold difference <1 is considered as
gene downregulation. Fold differences are indicated as upregulation (T) or downregulation (|). X denotes the nonsignificant genes in that
particular cell model.

Gene symbol  Gene description GeneID  Fold difference ~ Up/downregulation P value
ADAMTSI ADAM metallopeptidase with thrombospondin type 1 9510 050 L 0.003
motif, 1
ADAMTSI3 ADAM metallopeptidase with thrombospondin type 1 11093 0.91 X 0.589
motif, 13
ADAMTSS ADAM metallopeptidase with thrombospondin type 1 11095 275 1 0.005
motif, 8
CD44 CD44 molecule (Indian blood group) 960 0.53 l 0.049
CDHI Cadherin 1, type 1, E-cadherin (epithelial) 999 212 1 0.051
CLEC3B C-type lectin domain family 3, member B 7123 L14 X 0.749
CNTNI1 Contactin 1 1272 2.19 ) 0.041
COLI1A1 Collagen, type XI, alpha 1 1301 3.68 T 0.002
COLI2A1 Collagen, type XII, alpha 1 1303 0.37 X 0.003
COLI14AlL Collagen, type X1V, alpha 1 7373 1.24 T 0.023
COLI5A1 Collagen, type XV, alpha 1 1306 0.67 X 0.082
COL16A1 Collagen, type XVI, alpha 1 1307 0.61 1 0.001
COLI1A1 Collagen, type I, alpha 1 1277 0.87 X 0.498
COL4A2 Collagen, type IV, alpha 2 1284 0.99 X 0.966
COL5A1 Collagen, type V, alpha 1 1289 0.56 1 0.036
COL6A1 Collagen, type VI, alpha 1 1291 0.64 1 0.015
COL6A2 Collagen, type VI, alpha 2 1292 0.58 ! 0.014
COL7A1 Collagen, type VII, alpha 1 1294 0.36 1 0.017
COL8A1 Collagen, type VIII, alpha 1 1295 0.71 X 0.271
CTGF Connective tissue growth factor 1490 110 X 0.521
CTNNA1 Catenin (cadherin-associated protein), alpha 1, 102kDa 1495 0.83 X 0.340
CTNNBI1 Catenin (cadherin-associated protein), beta 1, 88 kDa 1499 0.64 X 0.084
CTNND1 Catenin (cadherin-associated protein), delta 1 1500 0.36 l 0.005
CTNND2 Catenin .(.cadherin—associated protein}, delta 2 (neural 1501 272 1 0.052
plakophilin-related arm-repeat protein)
ECM1 Extracellular matrix protein 1 1893 0.74 X 0.076
FN1 Fibronectin 1 2335 0.58 l 0.008
HASI Hyaluronan synthase 1 3036 0.87 X 0.544
ICAM1 Intercellular adhesion molecule 1 3383 0.97 X 0.843
ITGA1 Integrin, alpha 1 3672 0.97 X 0.721
ITGA2 Integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 3673 052 L 0.015
receptor)
ITGA3 Integrin, alpha 3 (antigen CD49C, alpha 3 subunit of 3675 050 L 0.010
VLA-3 receptor)
ITGA4 Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of 3676 0.86 X 0.459
VLA-4 receptor)
ITGA5 Integrin, .alpha 5 (fibronectin receptor, alpha 3678 054 L 0.004
polypeptide)
ITGA6 Integrin, alpha 6 3655 0.76 1 0.012
ITGA7 Integrin, alpha 7 3679 111 X 0.513
ITGAS Integrin, alpha 8 8516 2.75 T 0.051
ITGAL Integl.'in, alpha.L (antige.n CD11A (p180), lymPhocyte 3683 1.89 1 0.003
function-associated antigen 1; alpha polypeptide) 3683
ITGAM Integrin, alpha M (complement component 3 receptor 3 3684 177 X 0.065

subunit)
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TaBLE 5: Continued.

Gene symbol  Gene description GeneID  Fold difference ~ Up/downregulation P value
ITGAV Integrin, .alpha V (vitronectin receptor, alpha 3685 050 ! 0.002
polypeptide, antigen CD51)
o bl (s i s os L e
ITGB2 Integrin, bet.a 2 (complement component 3 receptor 3 3689 158 e 0.083
and 4 subunit)
ITGB3 Integrin, beta 3 (platelet glycoprotein IIIa, antigen 3690 058 L 0.006
CD61)
ITGB4 Integrin, beta 4 3691 1.87 T 0.041
ITGB5 Integrin, beta 5 3693 0.97 X 0.879
KALL Kallmann syndrome 1 sequence 3730 0.41 ! 0.001
LAMALI Laminin, alpha 1 284217 0.60 1 0.014
LAMA2 Laminin, alpha 2 3908 1.17 X 0.396
LAMA3 Laminin, alpha 3 3909 2.25 T 0.031
LAMBI Laminin, beta 1 3912 0.95 X 0.609
LAMB3 Laminin, beta 3 3914 0.61 1 0.010
LAMCI Laminin, gamma 1 (formerly LAMB2) 3915 0.54 1 0.008
MMPI1 Matrix metallopeptidase 1 (interstitial collagenase) 4312 0.38 l 0.001
MMP10 Matrix metallopeptidase 10 (stromelysin 2) 4319 128 X 0.271
MMP11 Matrix metallopeptidase 11 (stromelysin 3) 4320 171 T 0.025
MMP12 Matrix metallopeptidase 12 (macrophage elastase) 4321 0.52 l 0.005
MMPI13 Matrix metallopeptidase 13 (collagenase 3) 4322 1.89 T 0.034
MMP14 Matrix metallopeptidase 14 (membrane-inserted) 4323 0.44 l 0.016
MMPI15 Matrix metallopeptidase 15 (membrane-inserted) 4324 1.24 X 0.157
MMPI6 Matrix metallopeptidase 16 (membrane-inserted) 4325 0.44 l 0.003
MMP2 Matr?x metallopeptidase 2 (gelatinase A, 72 kDa 1313 054 I 0.002
gelatinase, 72 kDa type IV collagenase)
MMP3 Matrix metallopeptidase 3 (stromelysin 1, progelatinase) 4314 2.42 T 0.009
MMP7 Matrix metallopeptidase 7 (matrilysin, uterine) 4316 1.86 T 0.024
MMP8 Matrix metallopeptidase 8 (neutrophil collagenase) 4317 0.63 l 0.029
MMP9 Matr.ix metallopeptidase 9 (gelatinase B, 92kDa 4318 147 1 0.009
gelatinase, 92 kDa type IV collagenase)
NCAM1 Neural cell adhesion molecule 1 4684 0.97 X 0.811
PECAMLI Platelet/endothelial cell adhesion molecule 5175 3.66 X 0.213
SELE Selectin E 6401 1.50 X 0.078
SELL Selectin L 6402 2.36 ) 0.013
SELP Selectin P (granule membrane protein 140 kDa, antigen 6403 1.90 X 0.249
CD62)
SGCE Sarcoglycan, epsilon 8910 0.93 X 0.657
SPARC Secreted protein, acidic, cysteine-rich (osteonectin) 6678 0.66 l 0.054
SPG7 Spasti'c paraplegia 7 (pure and complicated autosomal 6687 0.48 L 0.005
recessive)
SPP1 Secreted phosphoprotein 1 6696 0.58 l 0.009
TGFBI Transforming growth factor, beta-induced, 68 kDa 7045 0.79 X 0.099
THBS1 Thrombospondin 1 7057 0.35 ! 0.001
THBS2 Thrombospondin 2 7058 0.81 X 0.088
THBS3 Thrombospondin 3 7059 1.03 X 0.794
TIMP1 TIMP metallopeptidase inhibitor 1 7076 1.47 T 0.046
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Gene symbol  Gene description GeneID  Fold difference  Up/downregulation P value
TIMP2 TIMP metallopeptidase inhibitor 2 7077 0.93 X 0.788
TIMP3 TIMP metallopeptidase inhibitor 3 7078 1.05 X 0.825
TNC Tenascin C 3371 1.18 X 0.492
VCAM1 Vascular cell adhesion molecule 1 7412 1.79 T 0.002
VCAN Versican 1462 0.96 X 0.775
VTN Vitronectin 7448 1.20 X 0.240

ENI1, PECAMI, THBSI, and THBS2 were upregulated, while
SGCE and VTN were downregulated at 660 nm as compared
to nonirradiated N cells. In irradiated DW cells, CNTN1
and VCAMI were upregulated, while CD44, FNI1, THBS],
and SPP1 were downregulated at 660 nm as compared to
nonirradiated DW cells. Other adhesion molecules expressed
in response to LILI were HASI, VCAN, TNC, KALI, and
CTGE In this study, KALl was upregulated while TNC,
VCAN, and CTGF were downregulated in irradiated N cells.
In irradiated NW cells, HAS1 and KALL were upregulated
and TNC was downregulated. In irradiated DW cells, KALL
was upregulated at 660 nm as compared to nonirradiated DW
cells.

ECM proteins including collagen, LMN, EI, proteogly-
cans, and FN have both adhesive and structural functions.
The ECM maintains skin integrity and homeostasis and
interacts with several structural and extracellular proteins.
Collagen is encoded for by more than 42 genes [29, 37].
Some of the collagen molecules are formed through the
interaction between FN and integrins [38, 39]. Collagens
are extracellular proteins produced mainly by fibroblasts,
divided into two main classes, namely, the nonfibril forming
(collagens types IV, VI, VII, and XI) and the fibril forming
collagens distinguished by their triple helix (collagens types
I, IL, II1, V, and XI). Their main function is to maintain the
structural integrity of various tissues and to strengthen and
reorganise the ECM [40]. In this study, COL1A1, COL4A2,
COL5AIL, COL6AL, COL6A2, COL8AIL and COLI2A1 were
upregulated in irradiated N cells. In irradiated NW cells,
COLIAL COL5A1, COL7Al, COL8Al, and COLI2Al were
upregulated, while in DW cells COL11A1 and COLI4Al
were upregulated and COL5A1, COL6A1, COL6A2, COL7AL,
COLI2Al, and COL16A1 were downregulated.

LMNs are basement membrane proteins made up of three
nonidentical chains. They are associated with cell adhesion,
differentiation, migration, matrix organisation, and signal
transduction. LAMAI was upregulated in irradiated N cells,
while LAMA2 and LAMA3 were downregulated. In irradi-
ated DW cells LAMA3 was upregulated and LAMAL LAMB3,
and LAMCI were downregulated. Other matrix associated
proteins, such as secreted protein, acidic, and cysteine-rich
(encoded for by SPARC), spastic paraplegin 7 (encoded for by
SPG7), and extracellular matrix protein 1, were also evaluated.
SPARC is associated with cell structure organisation, cell
migration, and ECM synthesis [41, 42]. SPG7 is involved in
the breakdown of incorrectly folded proteins intracellular
motility, membrane trafficking, and organelle biogenesis [43].

ECMI is part of a cluster of genes involved in epidermal
differentiation. Irradiation of N and NW cells to 660 nm
resulted in an upregulation of SPARC and SPG7 and a
downregulation in ECMI. Analysis of the gene profile of
irradiated DW cells revealed a significant downregulation of
SPARC and SPGY. Significantly increased gene expression of
the constituents of the basement membrane was observed at
660 nm in N and NW cells, while DW cells showed a decrease
in gene regulation, with most of the genes downregulated.

MMPs are metalloproteases involved in the degradation
of the ECM and can be affected in normal or patholog-
ical tissue remodelling and wound healing with different
substrates, mostly collagen. MMPs are inhibited by TIMPs.
ADAMTS (a disintegrin and metalloproteinase with throm-
bospondin motifs) is a family of 19 peptidases that are
involved in the processing of procollagen, connective tissue
organization, and cell migration [44-48]. The gene profile
for ECM proteases and inhibitors in response to irradiation
at 660nm revealed an upregulation in MMP2, MMPI],
MMP14, MMP15, ADAMTS], ADAMTSS, TIMPI1, TIMP2,
and TIMP3 and a downregulation in MMP1, MMP3, MMP7,
MMP9, MMP12, and MMP13 in N cells. Irradiated NW
cells showed an upregulation of MMP2, MMP8, MMPI],
MMPI15, ADAMTS], ADAMTSS8, and ADAMTS13, while
MMP1, MMP3, and MMPI12 showed a downregulation as
compared to nonirradiated N cells. In irradiated DW cells,
MMP3, MMP7, MMP9, MMP11, MMP13, ADAMTSS, and
TIMPI1 were upregulated, while ADAMTS1, MMP1, MMP2,
MMP12, MMP14, and MMP16 were downregulated as com-
pared to nonirradiated DW cells.

These results demonstrated changes in gene expression
within the different irradiated N, NW, and DW cell models.
The genetic profile seen in the N cell model is a normal
response of fibroblast cells to laser irradiation at 660 nm
with 5 I/cm2 . On the other hand, cells in the NW and DW
models have been stressed and compromised in some way,
and the genetic profile seen in these cells is a response
of wounded/stressed fibroblast cells to laser irradiation at
660 nm. Mechanical modulation of these cells would increase
upregulation of ECM components, ECM-specific receptors,
and enhanced expression of several cytokines and growth
factors in a time-dependent manner [49-51]. The present
study showed that DW cells had a significantly downregu-
lated gene expression profile as compared to N and NW cells
when irradiated at 660 nm. The downregulation of most of
the genes in DW cells is probably due to the dysfunctioning
of the ECM exhibited in chronic wounds as a result of
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hyperglycaemia. Also in chronic wounds, the inflammatory
phase is normally delayed, which promotes increased levels
of proteases such as MMPs, causing destruction of the ECM,
and damages growth factors as well as receptors essential in
the healing process. This also results in a lack of integrins
which bind to FN to enhance migration, and hence the
decrease in migration [52, 53]. Furthermore MMP3, MMP?7,
MMP9, MMP1], and MMPI3 were upregulated in DW
cells irradiated at 660 nm. This is possibly due to the fact
that degraded collagen molecules do not interact properly
enabling a disorganised and weak ECM, increasing the levels
of some MMPs in chronic wounds [54]. This corresponds
with the decrease in Col-I seen in these cells [21]. However,
there was a significant upregulation of some of the collagens
and other essential ECM proteins, which is in line with the
increase in collagen seen in irradiated DW cells [20].

In conclusion, photobiomodulation at a wavelength of
660 nm enhances gene expression of proteins involved in the
ECM. The profile is dependent on the culture conditions and
stressors placed on the cells. Increased glucose concentration
in the culture media was associated with impaired gene
regulation, which could be accountable for the poor response
of these cells seen in wound healing. Previous studies have
not exploited the role of LILI in gene expression of proteins
in the ECM using fibroblast cells in vitro. This study was
able to show the gene profile in normal and diabetic wound
healing in vitro. The results also confirm the very important
role exhibited by cell adhesion molecules (CAMs), integrins,
ECM proteins, proteases, and inhibitors in wound healing.
Therefore LILI mediated gene expression in wounded fibrob-
lasts through paracrine and autocrine interactions to enhance
wound healing. Further work on the molecular advances
of gene modulation and their receptors will elucidate the
therapeutic importance of LILI.
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