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In recent years the trends were towards modeling of machining using artificial intelligence. ANN is considered one of the important
methods of artificial intelligence in the modeling of nonlinear problems like machining processes. Artificial neural networks
show good capability in prediction and optimization of machining processes compared with traditional methods. In view of the
importance of artificial neural networks in machining, this paper is an attempt to review the previous studies and investigations
on the application of artificial neural networks in the milling process for the last decade.

1. Introduction

The milling process is one of the important machining
processes besides turning. In the milling process the chips
are removed by feeding a work piece past a rotating multiple
tooth cutter. It is a complex process, where analytical
models cannot give the best accurate results in modeling.
Traditional methods like statistical regression and response
surface methodology approaches have been used by some
researchers in modeling the milling process. But these
methods cannot overcome the nonlinearity of relationships
between cutting conditions and the output response.

ANN models are able to solve these problems encoun-
tered in the machining process through its massive paral-
lelization to solve complex nonlinear problems. Artificial
neural networks are computational networks that have
the ability to simulate neurons in biological nerve centers
[1]. ANN consists of simple processing units in a parallel
sequence. The connections between these units will specify
the network function and performance. For the doing of
some tasks or functions ANN can be trained by adjusting
the connection strength (weights) between units [2]. Figure 1
illustrates what is mentioned above.

There is a comparison between the output and the target
in order to reach the target output. The network needs
input/output pairs for training and adjusting the connection
values. ANN shows capability in solving many problems

in many applications like pattern recognition, classification,
prediction, optimization, and control systems.

The following sections review some of the literature
concerned with surface roughness prediction, tool life and
wear estimation, and cutting force prediction using ANN.

2. Surface Roughness

Surface roughness plays an important role in determining
the quality of the machined parts through its impact on
fatigue resistance, lubrication, friction, and wear properties.
Recently, there have been many studies that have been con-
ducted for surface roughness prediction using the technique
of artificial neural networks. Their results were more accurate
compared to traditional statistical methods. Below is some
literature concerned with this field.

Tsai et al. [3] developed an in-process surface roughness
prediction system in end milling. Vibration and rotation
data were collected using an accelerometer and proximity
sensors. BP neural networks with four input and one output
neurons, which were spindle speed, feed rate, depth of cut,
and vibration average per revolution as inputs, and surface
roughness as output. The system accuracy was 96.99% under
various cutting conditions.

Benardos and Vosniakos [4] presented an ANN model for
prediction of surface roughness. The input parameters were
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depth of cut, feed rate, cutting speed, cutting tool wear,
cutting fluids, and three component cutting forces. BP
neural networks were trained with the Levenberg-Marquard
algorithm. The Taguchi method was used for design of the
experiments. The primary factors affecting surface roughness
were feed rate per tooth, Fx cutting force component, depth
of cut, cutting fluids, and cutting tool wear. The mean square
error was 1.86%.

Zuperl et al. [5] described an adaptive neural controller
that has the ability to adjust the feed rate for minimizing
tool wear and maintaining a high removal rate. BP neural
network was used with four input neurons represented
by cutting speed, feed rate, axial and radial depth of cut,
and three output neurons which were Fx, Fy, and surface
roughness. The system showed high stability and robustness.

Li et al. [6] presented a hybrid radial basis approach for
prediction of machining errors. According to the experimen-
tal results, the cutting speed, feed rate, axial and radial depth
of cut had an effect on machining errors. The authors com-
pared prediction models, which were radial basis function,
adaptive network-based inference system, and hybrid radial
basis function and found the former (radial basis) is the best
in prediction of machining errors in end milling.

Ozcelik et al. [7] integrated ANN with GA to optimize
cutting conditions with minimum surface roughness in end
milling of Inconel 718 alloy. Statistical design of experiments
was used with three-level full factorial designs. Good agree-
ment and effective performance of the mentioned method
was obtained.

Also, Oktem et al. [8] used GA supported with ANN
for optimization of cutting parameters with end milling of
AA 7075-T6. Feed forward backpropagation neural network
with a structure of 5-42-42-1 was used. The authors found
good accuracy and agreement between the experimental and
predictable results.

Tansel et al. [9] proposed a genetically optimized neural
network system for optimization cutting parameters in end
milling for two case studies, which were POCO-3 Graphite
material and AA6061 mold part alloy from experimental
data. Each case study had a purpose for optimization.
The first case study was to avoid tool breakage and keep
the cutting force in the target range and maximization
of the metal removal rate (MRR), and the second case
study was to obtain a compromise between machining time
and surface roughness without developing any analytical or
empirical solution model. GONNS was used with a BP neural
network. Good agreement was achieved between GONNS
and experimental data.

Erzurumlu and Oktem [10] developed two models for
surface roughness prediction in end milling of 7075-T6,
which were response surface methodology (RSM) and a
feed forward backpropagation neural network. The input
parameters for the two models were cutting speed, feed rate,
axial and radial depth of cut, and machining tolerance. The
output response was surface roughness. The ANN model was
slightly more accurate than the RSM model according to the
authors’ findings.

Huang et al. [11] applied ANN in an in-process poka-
yoke system in end milling of 6061-T6 in order to change
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adaptive surface roughness. This system adjusted the feed
rate if the surface roughness was larger than the desired
surface roughness during cutting. A BP neural network
with a 5-8-7-1 structure was used and trained with PCN
training software. The input parameters were spindle speed,
feed rate, average resultant peak force in the x-y plane,
absolute average force in the z-direction from in-process
neural network surface roughness prediction and the output
parameter was adaptive degree of current feed rate. The
system produced an accuracy of around 90%.

Hossain et al. [12] developed ANN to predict surface
roughness during high speed machining of Inconel 718
with a single-layer PVD TiAlN insert. A BP neural network
with two hidden layers having 15 neurons each, three input
neurons (cutting speed, feed rate, and depth of cut), and
one output neuron (surface roughness). The model had good
accuracy and was efficient enough.

El-Sonbaty et al. [13] predicted a surface roughness
profile using a feed forward backpropagation neural network
with four different structures: 5-5-1, 5-10-1, 5-15-1, and 5-
20-1. The input layer consisted of five neurons: spindle speed,
feed, depth of cut, and pre-tool wear vibration level. The
output layer had two neurons: fractal dimension parameters
D and vertical scaling parameter G, which characterize
the machined surface profile. Structure 5-5-1 was the best
structure among all the structures with an accuracy of 98%.

Liu et al. [14] developed an ANN model to predict
surface roughness. Different network structures were used in
order to select the best one with the minimum error. Cutting
speed, feed rate, axial depth of cut, and radial depth of cut
were considered as input parameters while surface roughness
was an output response. A BP neural network trained with
the Levenberg-Marquard algorithm was used. 4-9-9-1 was
the best structure and the predicted model showed good
agreement compared to the experimental results.

Quintana et al. [15] developed an adaptive controlled
system for inline surface roughness monitoring supported
with ANN. A feed forward trained with an algorithm was
used.

Öktem [16] developed an ANN model coupled with
GA for optimization of cutting conditions and prediction
of surface roughness with end milling of AISI 1040 plain
carbon steel. Also multiple regression and ANOVA were
used for studying the effect of cutting conditions on surface
roughness. The proposed integrated method (GA with feed
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forward BP neural networks) had reduced the machining
time to 20% with accuracy and a 3.27% error.

Zain et al. [17] compared multiple regressions, MR,
with ANN in prediction of minimum surface roughness.
Different backpropagation networks were used. Predicted
surface roughness value was below experimental and mul-
tiple regression values. Thus, the results show that the BPNN
model is more accurate than the MR model.

Also as in [17] Zain et al. [18] showed from their work the
capability of ANN in prediction of machining performance
Ra in the milling process. Four different BP neural networks
were applied. 3-7-1 was the best one where surface roughness
was reduced in amount of 0.0126 µm of the experimental
data.

Escamilla et al. [19] integrated ANN with particle
swarm optimization for prediction of surface roughness and
optimization of cutting process parameters. ANN predicted
surface roughness followed by PSO for optimization.

Extension to the works in [17, 18], Zain et al. [20]
presented ANN for surface roughness prediction using two-
level full factorial designs. The authors gave good informa-
tion and guides about how to select networks structures,
amount of training and testing data, normalizing of data, and
transfer, training, learning, and performance functions. The
authors recommend that minimum surface roughness can be
obtained with a high cutting speed, low feed rate, and rake
angle.

Rashid and Abdul Lani [21] used MR and ANN in
prediction of surface roughness in a CNC milling machine.
BPNN was performed. ANN was approved and provided
more accuracy than multiple regressions MR.

Brecher et al. [22] proposed a surface roughness mon-
itoring system based on NC kernel data. ANN was used
to predict surface roughness. Surface roughness could be
monitored on-line through this system in addition to
optimization of cutting parameters.

Razfar et al. [23] combined ANN with a harmony search
algorithm for prediction and optimization in face milling.
The approach was effective in finding the optimum surface
roughness.

Huang et al. [24] presented an in-process surface rough-
ness prediction. ANN was used for prediction. Both feed rate
and cutting speed were adjusted through an adaptive neural
controller to satisfy required surface roughness.

Topal [25] investigated the effect of stepover ratio in end
milling on surface roughness prediction through an ANN
model. Two BP neural networks with and without surface
roughness were applied. The ANN model with stepover ratio
gave accurate results.

Muñoz-Escalona and Maropoulos [26] developed three
artificial neural network models for surface prediction
in milling AA7075-T7351 alloy. The networks were feed
forward, radial basis, and generalized regression networks.
All the networks had five input neurons represented by
cutting speed, feed rate, axial depth of cut, chip width, and
chip thickness, with surface roughness as output. The mean
square error was used in comparing and selecting what was
the best network. The feed forward was the best one with
MSE of 5.5% but took more training time than the others.

The cutting speed had a significant effect on the surface
roughness.

Palani and Natarajan [27] proposed a noncontact
machine vision integrated with an artificial neural network
for surface roughness prediction. The surface feature was
extracted using spatial frequency based on a 2D Fourier
domain. A self-organized map neural network was used
with five inputs, which were cutting speed, feed rate, depth
of cut, and image variables, F1, F2, and Ga, where F1 is
the major peak frequency, F2 is the principal component
magnitude squared value, and Ga is the average gray level of
the surface image. The surface roughness was the output of
the network. The surface roughness values determined from
the system were compared with stylus surface roughness
tester readings and there was an error around 5.5% with a
prediction accuracy of the neural network at 97.53%.

3. Cutting Forces

Obtaining good quality and cheap parts are the main
objective of the machining processes. As cutting forces rise,
the power consumption and machining costs also increase.
Application of artificial neural network models for cutting
force prediction are presented as follow.

Tandon and El-Mounayri [28] developed an ANN model
for force prediction in flat end milling. The input layer had
eight neurons (Radial Depth of Cut, Axial Depth of Cut, Feed
Rate Spindle Speed, Cutter Diameter, Off Flutes, Rake Angle,
and Clearance Angle), and the output layer had two neurons
(maximum and mean forces). A feed forward network was
used and trained with the Levenberg-Marquard algorithm.
After that the model was tested in a real machining operation,
called pocket milling and showed good results compared to
experimental results.

Tandon et al. [29] proposed an ANN model to predict
cutting forces in end milling. Particle swarm optimization
used these forces predicted from ANN to optimize both the
feed rate and the cutting speed. There was a reduction in
machining time around 35%.

Briceno [30] estimated cutting force in milling with two
supervised feed forward backpropagation neural networks
and a radial basis model. Orthogonal design was used for
cutting experiment design. Radial basis model was superior
for feed forward backpropagation.

Zuperl and Cus [31] applied backpropagation neural
networks for predicting three components of cutting forces
in ball end milling. The accuracy of the ANN model was 4%
compared with the analytical model, which was 11%.

EL-Mounayri et al. [32] used a radial basis neural
network (RBNN) for prediction of cutting forces and
particle swarm optimization (PSO) for cutting conditions
optimization. The accuracy of this model was 95% and there
was a reduction in machining time up to 36% when PSO for
a slot milling case study.

Zuperl et al. [33] developed two supervised neural
network models for cutting force prediction system during
ball end milling which were a feed forward backpropagation
network and a radial basis network. The inputs for these
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two networks were: cutting fluids, hardness, material type,
cutting tool diameter, types of insert, cutting speed, radial
depth of cut, axial depth of cut, and flank wear. The outputs
were Fx, Fy, and Fz. The authors found that the radial basis
network is superior to the backpropagation network.

Aykut et al. [34] used ANN in face milling of satellite Co-
based alloy under dry conditions to predict cutting forces.
A feed forward backpropagation neural network was trained
with a scale conjugate gradient. The input layer consisted of
three neurons represented by cutting speed, feed rate, and
depth of cut while the output layer involved three cutting
force components. Different network structures were used
with single hidden layers to select the best one, which was
3-35-3. There was good agreement between the ANN model
experimental values.

Rai et al. [35] developed a mill-cut system to predict
cutting forces and shear plane temperature during end
milling. A feed forward backpropagation neural network
was used that had 15 neurons corresponding to cutting
tool geometrical parameters, cutting parameters, and work
piece material properties. The output layers consisted of four
neurons represented by three components of cutting forces
and shear plane temperature. The ANN model was compared
to the experimental and numerical results in the literature
and showed good agreement.

Chen et al. [36] applied a backpropagation neural
network for cutting forces prediction induced in end milling
of hardened steel. The predictive model had an accuracy of
around 5% error, except for some individual values.

Seong et al. [37] introduced a hybrid neural network
for cutting force signal detecting and classifying in end
milling. The hybrid networks have both a backpropagation
and self-organizing map. The model was validated using
experimental tests and was shown to be well matching.

Zuperl et al. [38] designed a robust neural force con-
troller for adjusting feed rate in end milling to minimize
tool wear while maintaining a high removal rate at the same
time. The cutting process parameters were optimized via
coupling adaptive controls with standard numerical controls.
Backpropagation neural networks were used for online
modeling. The adaptive controller showed high accuracy by
validating its applicability with cutting tests.

El-Mounayri et al. [39] developed an ANN model for
prediction of cutting forces in a ball end milling process.
Radial basis was applied for its advantages from the view
of convergence speed. The networks had four inputs and
outputs with single hidden layers. The input parameters were
spindle speed, feed rate, and axial, and radial depth of cuts
while the outputs were maximum force, minimum forces,
mean force, and standard deviation of force. The authors
applied this model in a real-life pocketing process and found
good agreement with experiments, where the error was only
3%.

Chen et al. [40] presented a cutting force prediction
model in milling operation based on an artificial neural
network. The input parameters were cutting velocity, feed
rate, and depth of cut, and the outputs were the three
components of cutting forces. There was a good correlation
between the predicted cutting forces and the validating test.

4. Tool Life and Wear

Tool wear degrades surface quality, increases power con-
sumption, and causes rejecting of machined parts. Many
attempts have been carried out to develop artificial neural
network models for estimation of tool wear.

Dutta et al. [41] investigated the ability of modified
backpropagation compared with the standard propagation,
in view of convergence speed and prediction accuracy in
tool condition monitoring. The momentum parameter had
greater effect on the convergence speed compared with the
learning rate.

Haber and Alique [42] proposed an intelligent supervi-
sion system based on the ANN model to estimate tool wear
in end milling in real time. The model can work properly in
a real milling process.

Jacob C. Chen and Joseph C. Chen [43] proposed an
online tool wear prediction system based on ANN. A feed
forward backpropagation was trained and tested with 100
and 9 experimental data, respectively. Average peak force in
Y axis, feed rate, and depth cut were the input parameters to
the network. The system gave an average error of±0.037 mm.

Dutta et al. [44] studied the capability of a modified
backpropagation neural network with a delta bar learning
rate from the view of fast convergence and prediction wear
accuracy of tungsten carbide inserts on face milling of steel.
The authors compared the effectiveness of the mentioned
modified network with BPNN, MBPNN, and FBPNN. There
was a reduction in training time as a result of selecting the
best process parameters and using multisensor-based tool
monitoring.

Zuperl et al. [45] integrated an offline feed rate optimiza-
tion and adaptive feed forward force neural controller system
in a CNC milling process. The system tends to maintain a
high metal removal while keeping the cutting in the desired
range. Also, the system adjusted feed rate according to
spindle speed and stopped the machining process when high
forces were detected. The system minimizes tool wear and
gave a good surface finish.

Ghosh et al. [46] developed a tool wear prediction model
based on sensor fusion using a BP neural network. Cutting
forces in X and Y directions, spindle vibration, spindle
current, and sound pressure levels were gathered for tool
wear estimation of the main cutting edge.

Chuangwen et al. [47] applied a backpropagation neural
network in tool wear monitoring in the milling process.
A 5-10-1 structure was used with five input neurons: tool
diameter, spindle speed, feed speed, the spindle cutting
power, feed cutting power, and the output was tool wear. The
model could monitor the tool wear accurately in milling.

Guo et al. [48] developed multisensor tool wear and
breakage detection by integrating two subnetworks that had
been trained and tested. The output of the multisensor
detection (CCD camera, acoustic emission AE, and cutting
force sensor) were input to the two subnetworks and
their outputs considered as inputs to an integrated neural
network. The accuracy of the system was within 5% error.

Palanisamy et al. [49] applied regression and the ANN
model for tool wear estimation when end milling AISI 1020
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steel with carbide cutters. Design of the experiment was used
with three full factorials having five levels. The inputs to
the models were cutting speed, feed rate, and depth of cut
while output response was flank wear. The authors found
that the ANN model was more accurate and efficient than
the regression model in prediction of flank wear.

Bruni et al. [50] proposed ANN and multiple regression
models for surface roughness and tool wear monitored with
cutting time when end milling AISI 420B stainless steel
under different cutting conditions and different lubricants
(dry, wet, and minimum lubricant quantity MQL). A feed
forward BP neural network was used. Using MQL gave
minimum surface roughness and tool wear, especially under
high cutting speeds.

Brezak et al. [51] proposed a flank weal estimation model
based on a radial basis neural network controller and a
modified dynamic neural network filter. The model was
analyzed with an analytical model.

5. Conclusions

According to the previous studies and investigations, the
following conclusions can be drawn. (1) Backpropagation
neural networks are the primary artificial neural network
applied by researchers. (2) The ANN model showed higher
accuracy than traditional statistical approaches. (3) Genetic
algorithms coupled with ANN are widely used for prediction
and optimization of the cutting process. (4) Some researchers
developed adaptive neural controllers supported by ANN
for online monitoring of either surface roughness, tool
wear, or cutting forces through adjusting cutting conditions
to minimize output response. (5) Most of the studies
concentrated on surface roughness prediction compared
with cutting forces and tool wear, due to the important role
played by surface integrity of the machine parts.

References

[1] D. Graupe, Principles of Artificial Neural Networks, World
Scientific, 2nd edition, 2006.

[2] M. H. Beal, M. T. Hagan, and H. B. Demuth, Neural Network
ToolboxTM 7, 2010.

[3] Y. H. Tsai, J. C. Chen, and S. J. Lou, “An in-process surface
recognition system based on neural networks in end milling
cutting operations,” International Journal of Machine Tools a&
Manufacture, vol. 39, no. 4, pp. 583–605, 1999.

[4] P. G. Benardos and G. C. Vosniakos, “Prediction of surface
roughness in CNC face milling using neural networks and
Taguchi’s design of experiments,” Robotics and Computer-
Integrated Manufacturing, vol. 18, no. 5-6, pp. 343–354, 2002.

[5] U. Zuperl, E. Kiker, and F. Cus, “Optimization in ball-end
milling by using adaptive neural controller,” in Proceedings
of the IEEE International Conference on Industrial Technology
(ICIT ’03), pp. 393–398, December 2003.

[6] X. Li, X. Guan, and Y. Li, “A hybrid radial basis function neural
network for dimensional error prediction in end milling,”
in Proceedings of the International Symposium on Neural
Networks, vol. 3174 of Lecture Notes in Computer Science, pp.
743–748, Dalian, China, August 2004.

[7] B. Ozcelik, H. Oktem, and H. Kurtaran, “Optimum surface
roughness in end milling Inconel 718 by coupling neural
network model and genetic algorithm,” International Journal
of Advanced Manufacturing Technology, vol. 27, no. 3-4, pp.
234–241, 2005.

[8] H. Oktem, T. Erzurumlu, and F. Erzincanli, “Prediction of
minimum surface roughness in end milling mold parts using
neural network and genetic algorithm,” Materials and Design,
vol. 27, no. 9, pp. 735–744, 2006.

[9] I. N. Tansel, B. Ozcelik, W. Y. Bao et al., “Selection of optimal
cutting conditions by using GONNS,” International Journal of
Machine Tools & Manufacture, vol. 46, no. 1, pp. 26–35, 2006.

[10] T. Erzurumlu and H. Oktem, “Comparison of response surface
model with neural network in determining the surface quality
of moulded parts,” Materials and Design, vol. 28, no. 2, pp.
459–465, 2007.

[11] B. P. Huang, J. C. Chen, and Y. Li, “Artificial-neural-networks-
based surface roughness Pokayoke system for end-milling
operations,” Neurocomputing, vol. 71, no. 4–6, pp. 544–549,
2008.

[12] M. I. Hossain, A. K. M. Amin, and A. U. Patwari, “Develop-
ment of an artificial neural network algorithm for predicting
the surface roughness in end milling of Inconel 718 alloy,”
in Proceedings of the International Conference on Computer
and Communication Engineering (ICCCE ’08), pp. 1321–1324,
Kuala Lumpur, Malaysia, May 2008.

[13] I. A. El-Sonbaty, U. A. Khashaba, A. I. Selmy, and A. I. Ali,
“Prediction of surface roughness profiles for milled surfaces
using an artificial neural network and fractal geometry
approach,” Journal of Materials Processing Technology, vol. 200,
no. 1–3, pp. 271–278, 2008.

[14] Z. Liu, D. Zhang, and H. Qi, “Surface roughness modeling of
high speed machining TC4 based on artificial neural network
method,” in Proceedings of the 1st International Symposium on
Systems and Control in Aerospace and Astronautics, pp. 920–
924, January 2006.

[15] G. Quintana, M. L. Garcia-Romeu, and J. Ciurana, “Surface
roughness monitoring application based on artificial neural
networks for ball-end milling operations,” Journal of Intelligent
Manufacturing. In press.
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