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This paper aims at deriving an efficient criterion for the robust stability analysis of discrete-time systems with time-varying delay.
In the derivation, to obtain a larger stability region under the requirement of less computational complexity, this paper proposes
a valuable method capable of establishing a less conservative stability criterion without using the free-weighting approach and
an extremely augmented state. In parallel, the stabilization problem of systems with time-delayed control input is addressed in
connection with the derived stability criterion.

1. Introduction

Over the last few decades, research on stability analysis of
time-delay systems has rapidly accelerated owing to twomain
reasons. One is that such systems offer suitable mathematical
models that can represent practical engineering systems
with finite but uncertain signal propagation delays, such as
biological systems, network systems, and nuclear reactors [1–
3].The other is that time-delay can often act as a critical factor
that leads to performance degradation and instability of
the systems under consideration [4–6]. Meanwhile, with the
growing interest, significant progress has been made toward
enlarging the feasible region of a stability criterion (referred
to here as “stability region”) and reducing its computational
complexity. In other words, numerous investigations and
research have been carried out to establish further improved
stability criteria for time-delay systems by taking one of
the following approaches with the use of a more attractive
Lyapunov-Krasovskii functional [7–11]: the free-weighting
matrix approach [11–13], the descriptor system approach [14–
16], the Jensen inequality approach [17–19], or the delay-
partitioning approach [20, 21].

Recently, the use of the Jensen inequality approach has
attracted great attention from the control community since
it requires fewer decision variables than other approaches

(see [18, 22, 23] and references therein). In addition, the
appearance of the reciprocally convex technique [22] has
promoted the use of such an approach as a way to reduce the
computational complexity and the conservatism of stability
criteria. However, as reported in [24], most of the results of
these studies have been confronted with a challenge to estab-
lish less conservative stability criteria in terms of performance
behavior. Thus, [24] has fully exploited the zero equality
terms, introduced by [25], in the process of deriving stability
criteria. After that, [10, 11] have widely extended the stabil-
ity criteria in accordance with the structure of Lyapunov-
Krasovskii functional containing triple summation terms.
However, since the use of such an augmented Lyapunov-
Krasovskii function with more terms poses significant com-
putational burdens, there is a need to explore a usefulmethod
capable of reducing the computational complexity as well as
improving the performance of stability criteria.

Motivated by the above concerns, this paper is focused
on deriving an efficient criterion for the robust stability
analysis of discrete-time systems with time-varying delay.
To be specific, the attention of this paper is paid for simul-
taneously achieving the following two goals: deceasing the
computational complexity and improving the performance of
a stability criterion. To accomplish such efficiency, this paper
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proposes a valuable method capable of deriving a less con-
servative stability criterion without using the free-weighting
approach and an extremely augmented state, which plays
an important role in reducing the computational complexity
caused by [10, 11]. As a result, under the requirement of
much less computational complexity, the stability region in
the present study is enlarged to the same size as those of
[10, 11]. Moreover, the stabilization problem of systems with
time-delay control input is addressed in connection with the
derived stability criterion. Finally, three numerical examples
are provided to illustrate the efficiency of the proposed
stability and stabilization criteria.

This paper is organized as follows. Section 2 provides
a system description and useful properties. Section 3 intro-
duces a Lyapunov-Krasovskii functional for deriving the
stability criterion of the time-delay system. Section 4 presents
the state-feedback controller for the system with delayed
control input. Section 5 shows simulation results for vali-
dating the proposed results. Finally, Section 6 presents the
conclusion along with a summary.

Notation. The notations 𝑋 ≥ 𝑌 and 𝑋 > 𝑌 mean that 𝑋 − 𝑌
is positive semidefinite and positive definite, respectively. In
symmetric block matrices, (∗) is used as an ellipsis for terms
that are induced by symmetry. For any square matrix Q,
He[Q] = Q + Q𝑇. For any discrete-time function 𝑔

𝑘
, Δ[𝑔
𝑘
]

denotes its forward difference as Δ[𝑔
𝑘
] = 𝑔
𝑘+1

− 𝑔
𝑘
.

2. System Description and Useful Properties

Let us consider the following time-delay system:

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐴
𝑑
𝑥
𝑘−𝑑(𝑘)

, (1)

where 𝑥
𝑘
∈ R𝑛𝑥 and 𝑥

𝑘−𝑑(𝑘)
∈ R𝑛𝑥 are the state and

the delayed state, respectively. Here, the state delay 𝑑(𝑘) is
assumed to be of an interval time-varying type integer: 𝑑 ≤
𝑑(𝑘) ≤ 𝑑, where 𝑑 and 𝑑 are known positive integers. To
facilitate the derivation of the main result, we set 𝑑

0
= 0,

𝑑
1
= 𝑑, 𝑑

2
= 𝑑(𝑘), and 𝑑

3
= 𝑑 and use the following

notations:

Φ
1

𝑝𝑞
(𝜂
𝑖
) =

𝑘−𝑑
𝑝
−1

∑

𝑖=𝑘−𝑑
𝑞

𝜂
𝑖
,

Φ
2

𝑝𝑞
(𝜂
𝑖
) =

𝑑
𝑞

∑

𝑗=𝑑
𝑝
+1

𝑘−1

∑

𝑖=𝑘−𝑗

𝜂
𝑖
,

(2)

where 𝑝 ∈ {0, 1, 2}, 𝑞 ∈ {1, 2, 3 | 𝑞 > 𝑝}, and 𝜂
𝑖
denotes any

scalar or vector-valued function.

Property 1. For (𝑝, 𝑞) ∈ {(0, 1), (0, 3), (1, 3)}, the following
properties hold:

Δ [Φ
1

𝑝𝑞
(𝜂
𝑖
)] = Φ

1

𝑝𝑞
(Δ𝜂
𝑖
) = 𝜂
𝑘−𝑑
𝑝

− 𝜂
𝑘−𝑑
𝑞

, (3)

Δ [Φ
2

𝑝𝑞
(𝜂
𝑖
)] = Φ

2

𝑝𝑞
(Δ𝜂
𝑖
) = Φ

1

𝑝𝑞
(1) 𝜂𝑘 − Φ

1

𝑝𝑞
(𝜂
𝑖
) , (4)

where Φ1
𝑝𝑞
(1) = 𝑑

𝑞
− 𝑑
𝑝
.

Property 2. Let us consider two time-varying parameters of
the following form:

𝜃
1
=
Φ
1

12
(1)

Φ
1

13
(1)

≥ 0,

𝜃
2
=
Φ
1

23
(1)

Φ
1

13
(1)

≥ 0.

(5)

Then, in the sense that Φ1
12
(1) + Φ

1

23
(1) = Φ

1

13
(1), it follows

that 𝜃
1
+ 𝜃
2
= 1.

Lemma 1 (see [10, 17]). For any vector-valued function 𝜒
𝑖
and

positive-definite matrix Q, the following inequalities hold:

−Φ
1

𝑝𝑞
(𝜒
𝑇

𝑖
Q𝜒
𝑖
) ≤ −

1

Φ1
𝑝𝑞
(1)
Φ
1

𝑝𝑞
(𝜒
𝑖
)
𝑇
QΦ
1

𝑝𝑞
(𝜒
𝑖
) . (6)

3. Stability Analysis

Let Δ𝑥
𝑖
= 𝑥
𝑖+1

− 𝑥
𝑖
and choose a Lyapunov-Krasovskii

functional of the following form:

𝑉
1,𝑘
=

[
[
[

[

𝑥
𝑘

Φ
1

01
(𝑥
𝑖
)

Φ
1

13
(𝑥
𝑖
)

]
]
]

]

𝑇

[
[

[

𝑃
1
𝑃
2
𝑃
3

(∗) 𝑃
4
𝑃
5

(∗) (∗) 𝑃6

]
]

]
≜P

[
[
[

[

𝑥
𝑘

Φ
1

01
(𝑥
𝑖
)

Φ
1

13
(𝑥
𝑖
)

]
]
]

]

,

𝑉
2,𝑘
= Φ
1

01
(𝑥
𝑇

𝑖
𝑄
1
𝑥
𝑖
) + Φ
1

03
(𝑥
𝑇

𝑖
𝑄
2
𝑥
𝑖
) ,

𝑉
3,𝑘
= Φ
1

01
(1)

⋅ Φ
2

01
([

𝑥
𝑖

Δ𝑥
𝑖

]

𝑇

[

𝑅
11

0

0 𝑅
12

]

≜R
1

[

𝑥
𝑖

Δ𝑥
𝑖

]) ,

𝑉
4,𝑘
= Φ
1

13
(1)

⋅ Φ
2

13
([

𝑥
𝑖

Δ𝑥
𝑖

]

𝑇

[

𝑅
21

0

0 𝑅
22

]

≜R
2

[

𝑥
𝑖

Δ𝑥
𝑖

]) ,

(7)

whereP,𝑄
1
,𝑄
2
,R
1
, andR

2
are taken to be positive definite.

To facilitate later steps, we define an augmented state 𝜁
𝑘
as

𝜁
𝑘
= [𝑥
𝑇

𝑘
𝑥
𝑇

𝑘−𝑑
1

𝑥
𝑇

𝑘−𝑑
2

𝑥
𝑇

𝑘−𝑑
3

Δ𝑥
𝑇

𝑘
Φ
1

01
(𝑥
𝑇

𝑖
) Φ
1

12
(𝑥
𝑇

𝑖
) Φ
1

23
(𝑥
𝑇

𝑖
)]
𝑇

∈ R
𝑛
𝜁 , 𝑛
𝜁
= 8𝑛
𝑥

(8)
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and establish block entry matrices e
𝑖
such that 𝑥

𝑘
= e
0
𝜁
𝑘
,

𝑥
𝑘−𝑑
1

= e
1
𝜁
𝑘
, 𝑥
𝑘−𝑑
2

= e
2
𝜁
𝑘
, 𝑥
𝑘−𝑑
3

= e
3
𝜁
𝑘
, Δ𝑥
𝑘
= e
4
𝜁
𝑘
,

Φ
1

01
(𝑥
𝑖
) = e
5
𝜁
𝑘
, Φ1
12
(𝑥
𝑖
) = e
6
𝜁
𝑘
, andΦ1

23
(𝑥
𝑖
) = e
7
𝜁
𝑘
.

Property 3 (see [25]). For symmetric matrices 𝑋
0
, 𝑋
1
, and

𝑋
2
, the following equalities hold:

0 = Φ
1

01
(1) ⋅ (𝜁

𝑇

𝑘
(e𝑇
0
𝑋
0
e
0
− e𝑇
1
𝑋
0
e
1
) 𝜁
𝑘

− Φ
1

01
(Δ𝑥
𝑖
𝑋
0
(Δ𝑥
𝑖
+ 2𝑥
𝑖
))) ,

0 = Φ
1

13
(1) ⋅ (𝜁

𝑇

𝑘
(e𝑇
1
𝑋
1
e
1
− e𝑇
2
𝑋
1
e
2
) 𝜁
𝑘

− Φ
1

12
(Δ𝑥
𝑖
𝑋
1
(Δ𝑥
𝑖
+ 2𝑥
𝑖
))) ,

0 = Φ
1

13
(1) ⋅ (𝜁

𝑇

𝑘
(e𝑇
2
𝑋
2
e
2
− e𝑇
3
𝑋
2
e
3
) 𝜁
𝑘

− Φ
1

23
(Δ𝑥
𝑖
𝑋
2
(Δ𝑥
𝑖
+ 2𝑥
𝑖
))) .

(9)

The following theorem presents the delay- and range-
dependent stability criterion for (1).

Theorem 2. Let 𝑑
1
= 𝑑 and 𝑑

3
= 𝑑 be prescribed and

define 𝛿 = 𝑑
3
− 𝑑
1
. System (1) is asymptotically stable for

any time-varying 𝑑(𝑘) satisfying 𝑑(𝑘) ∈ [𝑑, 𝑑], if there exist
matrices {𝑆

𝑖
}
𝑖=1,...,4

∈ R𝑛𝑥×𝑛𝑥 , {𝑍
𝑖
}
𝑖=0,4

∈ R𝑛𝑥×𝑛𝑥 and symmetric
matricesP ∈ R3𝑛𝑥×3𝑛𝑥 , {𝑄

𝑖
}
𝑖=1,2

∈ R𝑛𝑥×𝑛𝑥 , {𝑅
1𝑖
}
𝑖=1,2

∈ R𝑛𝑥×𝑛𝑥 ,
{𝑅
2𝑖
}
𝑖=1,2

∈ R𝑛𝑥×𝑛𝑥 , and {𝑋
𝑖
}
𝑖=0,1,2

∈ R𝑛𝑥×𝑛𝑥 such that

0 > Ψ
1
+ Ψ
2
+ Ψ
3
+ Ψ
4
+ Ψ
5
, (10)

0 ≤

[
[
[
[

[

𝑅
21

𝑋
1

𝑆
1

𝑆
2

(∗) 𝑅22 + 𝑋1 𝑆
3

𝑆
4

(∗) (∗) 𝑅
21

𝑋
2

(∗) (∗) (∗) 𝑅22 + 𝑋2

]
]
]
]

]

, (11)

where {Ψ
𝑖
}
𝑖=1,...,5

are defined in (13), (15), (18), (20), and (22),
respectively.

Proof. The forward difference of 𝑉
1,𝑘

becomes

Δ𝑉
1,𝑘
=

[
[
[
[
[

[

Δ𝑥
𝑘
+ 𝑥
𝑘

Φ
1

01
(Δ𝑥
𝑖
+ 𝑥
𝑖
)

Φ
1

13
(Δ𝑥
𝑖
+ 𝑥
𝑖
)

]
]
]
]
]

]

𝑇

P

[
[
[
[
[

[

Δ𝑥
𝑘
+ 𝑥
𝑘

Φ
1

01
(Δ𝑥
𝑖
+ 𝑥
𝑖
)

Φ
1

13
(Δ𝑥
𝑖
+ 𝑥
𝑖
)

]
]
]
]
]

]

−

[
[
[
[
[

[

𝑥
𝑘

Φ
1

01
(𝑥
𝑖
)

Φ
1

13
(𝑥
𝑖
)

]
]
]
]
]

]

𝑇

P

[
[
[
[
[

[

𝑥
𝑘

Φ
1

01
(𝑥
𝑖
)

Φ
1

13
(𝑥
𝑖
)

]
]
]
]
]

]

= 𝜁
𝑇

𝑘

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

e
4

e
0

e
0
− e
1

e
5

e
1
− e
3

e
6
+ e
7

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑇

⋅

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑃
1
𝑃
1
𝑃
2
𝑃
2
𝑃
3
𝑃
3

𝑃
1

0 𝑃
2

0 𝑃
3
0

𝑃
𝑇

2
𝑃
𝑇

2
𝑃
4
𝑃
4
𝑃
5
𝑃
5

𝑃
𝑇

2
0 𝑃
4

0 𝑃
5
0

𝑃
𝑇

3
𝑃
𝑇

3
𝑃
𝑇

5
𝑃
𝑇

5
𝑃
6
𝑃
6

𝑃
𝑇

3
0 𝑃
𝑇

5
0 𝑃
6
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

e
4

e
0

e
0
− e
1

e
5

e
1
− e
3

e
6
+ e
7

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝜁
𝑘
,

from (3)

= 𝜁
𝑘
Ψ
1
𝜁
𝑘
,

(12)

where

Ψ
1
= e𝑇
4
𝑃
1
e
4
+He [e𝑇

4
𝑃
1
e
0
+ e𝑇
4
𝑃
2
(e
0
− e
1
) + e𝑇
4
𝑃
2
e
5

+ e𝑇
4
𝑃
3
(e
1
− e
3
) + e𝑇
4
𝑃
3
(e
6
+ e
7
)]

+He [e𝑇
0
𝑃
2
(e
0
− e
1
) + e𝑇
0
𝑃
3
(e
1
− e
3
)] + (e

0

− e
1
)
𝑇
𝑃
4
(e
0
− e
1
) +He [(e

0
− e
1
)
𝑇
𝑃
4
e
5

+ (e
0
− e
1
)
𝑇
𝑃
5
(e
1
− e
3
) + (e
0
− e
1
)
𝑇
𝑃
5
(e
6
+ e
7
)]

+He [e𝑇
5
𝑃
5
(e
1
− e
3
)] + (e

1
− e
3
)
𝑇
𝑃
6
(e
1
− e
3
)

+He [(e
1
− e
3
)
𝑇
𝑃
6
(e
6
+ e
7
)] .

(13)

Letting 𝑥𝑇
𝑖
= [𝑥
𝑇

𝑖
Δ𝑥
𝑇

𝑖
], the forward differences of 𝑉

2,𝑘
, 𝑉
3,𝑘
,

and 𝑉
4,𝑘

are, respectively, given by

Δ𝑉
2,𝑘
= 𝑥
𝑇

𝑘
𝑄
1
𝑥
𝑘
− 𝑥
𝑇

𝑘−𝑑
1

𝑄
1
𝑥
𝑘−𝑑
1

+ 𝑥
𝑇

𝑘
𝑄
2
𝑥
𝑘

− 𝑥
𝑘−𝑑
3

𝑄
2
𝑥
𝑘−𝑑
3

= 𝜁
𝑇

𝑘
Ψ
2
𝜁
𝑘

from (3) ,

Δ𝑉
3,𝑘
= (Φ
1

01
(1))
2

⋅ 𝑥
𝑇

𝑘
R
1
𝑥
𝑘
− Φ
1

01
(1)

⋅ Φ
1

01
(𝑥
𝑖
R
1
𝑥
𝑖
) from (4) ,

Δ𝑉
4,𝑘
= (Φ
1

13
(1))
2

⋅ 𝑥
𝑇

𝑘
R
2
𝑥
𝑘
− Φ
1

13
(1)

⋅ Φ
1

13
(𝑥
𝑇

𝑖
R
2
𝑥
𝑖
) from (4) ,

(14)
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where

Ψ
2
= e𝑇
0
𝑄
1
e
0
− e𝑇
1
𝑄
1
e
1
+ e𝑇
0
𝑄
2
e
0
− e𝑇
3
𝑄
2
e
3
. (15)

Here, with the help of (9), Δ𝑉
3,𝑘

and Δ𝑉
4,𝑘

can be converted
into

Δ𝑉
3,𝑘
= (Φ
1

01
(1))
2

⋅ 𝑥
𝑇

𝑘
R
1
𝑥
𝑘
− Φ
1

01
(1)

⋅ Φ
1

01
(𝑥
𝑇

𝑖
R
1
𝑥
𝑖
) + Φ
1

01
(1)

⋅ 𝜁
𝑇

𝑘
(e𝑇
0
𝑋
0
e
0
− e𝑇
1
𝑋
0
e
1
) 𝜁
𝑘
− Φ
1

01
(1)

⋅ Φ
1

01
(Δ𝑥
𝑖
𝑋
0
(Δ𝑥
𝑖
+ 2𝑥
𝑖
)) ,

Δ𝑉
4,𝑘
= (Φ
1

13
(1))
2

⋅ 𝑥
𝑇

𝑘
R
2
𝑥
𝑘
− Φ
1

13
(1)

⋅ Φ
1

13
(𝑥
𝑇

𝑖
R
2
𝑥
𝑖
) + Φ
1

13
(1)

⋅ 𝜁
𝑇

𝑘
(e𝑇
1
𝑋
1
e
1
− e𝑇
2
𝑋
1
e
2
) 𝜁
𝑘
− Φ
1

13
(1)

⋅ Φ
1

12
(Δ𝑥
𝑖
𝑋
1
(Δ𝑥
𝑖
+ 2𝑥
𝑖
)) + Φ

1

13
(1)

⋅ 𝜁
𝑇

𝑘
(e𝑇
2
𝑋
2
e
2
− e𝑇
3
𝑋
2
e
3
) 𝜁
𝑘
− Φ
1

13
(1)

⋅ Φ
1

23
(Δ𝑥
𝑖
𝑋
2
(Δ𝑥
𝑖
+ 2𝑥
𝑖
)) .

(16)

In particular, by Lemma 1, the following inequality holds:

− Φ
1

01
(1) ⋅ Φ

1

01
(𝑥
𝑇

𝑖
R
1
𝑥
𝑖
) − Φ
1

01
(1)

⋅ Φ
1

01
(Δ𝑥
𝑖
𝑋
0
(Δ𝑥
𝑖
+ 2𝑥
𝑖
)) = −Φ

1

01
(1)

⋅ Φ
1

01
(𝑥
𝑇

𝑖

[
[

[

𝑅
11

𝑋
0

(∗) 𝑅12 + 𝑋0

]
]

]≜X
0

𝑥
𝑖
)

≤ −Φ
1

01
(𝑥
𝑖
)
𝑇
X
0
Φ
1

01
(𝑥
𝑖
)

= −𝜁
𝑇

𝑘

[
[

[

e
5

e
0
− e
1

]
]

]

𝑇

[
[

[

𝑅
11

𝑋
0

(∗) 𝑅12 + 𝑋0

]
]

]

[
[

[

e
5

e
0
− e
1

]
]

]

𝜁
𝑘
,

(17)

which implies Δ𝑉
3,𝑘
≤ 𝜁
𝑇

𝑘
Ψ
3
𝜁
𝑘
, where

Ψ
3
= 𝑑
2

1
(e𝑇
0
𝑅
11
e
0
+ e𝑇
4
𝑅
12
e
4
) + 𝑑
1
e𝑇
0
𝑋
0
e
0

− 𝑑
1
e𝑇
1
𝑋
0
e
1
− e𝑇
5
𝑅
11
e
5
−He [e𝑇

5
𝑋
0
(e
0
− e
1
)]

− (e
0
− e
1
)
𝑇
(𝑅
12
+ 𝑋
0
) (e
0
− e
1
) .

(18)

Likewise, we can obtain

− Φ
1

13
(1) ⋅ Φ

1

13
(𝑥
𝑇

𝑖
R
2
𝑥
𝑖
) − Φ
1

13
(1)

⋅ Φ
1

12
(Δ𝑥
𝑖
𝑋
1
(Δ𝑥
𝑖
+ 2𝑥
𝑖
)) − Φ

1

13
(1)

⋅ Φ
1

23
(Δ𝑥
𝑖
𝑋
2
(Δ𝑥
𝑖
+ 2𝑥
𝑖
)) = −Φ

1

13
(1)

⋅ Φ
1

12
(𝑥
𝑇

𝑖

[
[

[

𝑅
21

𝑋
1

(∗) 𝑅22 + 𝑋1

]
]

]≜X
1

𝑥
𝑖
)−Φ

1

13
(1)

⋅ Φ
1

23
(𝑥
𝑇

𝑖

[
[

[

𝑅
21

𝑋
2

(∗) 𝑅22 + 𝑋2

]
]

]≜X
2

𝑥
𝑖
)

≤ −
Φ
1

13
(1)

Φ
1

12
(1)

⋅ Φ
1

12
(𝑥
𝑖
)
𝑇
X
1
Φ
1

12
(𝑥
𝑖
) −

Φ
1

13
(1)

Φ
1

23
(1)

⋅ Φ
1

23
(𝑥
𝑖
)
𝑇
X
2
Φ
1

23
(𝑥
𝑖
)

= −
1

𝜃
1

Φ
1

12
(𝑥
𝑖
)
𝑇
X
1
Φ
1

12
(𝑥
𝑖
) −

1

𝜃
2

Φ
1

23
(𝑥
𝑖
)
𝑇

⋅X
2
Φ
1

23
(𝑥
𝑖
) from Property 2

= −
[
[

[

Φ
1

12
(𝑥
𝑖
)

Φ
1

23
(𝑥
𝑖
)

]
]

]

𝑇

[
[

[

X
1

S

(∗) X
2

]
]

]

[
[

[

Φ
1

12
(𝑥
𝑖
)

Φ
1

23
(𝑥
𝑖
)

]
]

]

−

[
[
[
[
[

[

√
𝜃
2

𝜃
1

Φ
1

12
(𝑥
𝑖
)

−√
𝜃
1

𝜃
2

Φ
1

23
(𝑥
𝑖
)

]
]
]
]
]

]

𝑇

⋅
[
[

[

X
1

S

(∗) X
2

]
]

]

[
[
[
[
[

[

√
𝜃
2

𝜃
1

Φ
1

12
(𝑥
𝑖
)

−√
𝜃
1

𝜃
2

Φ
1

23
(𝑥
𝑖
)

]
]
]
]
]

]

≤ −

[
[
[
[
[
[
[
[

[

e
6

e
1
− e
2

e
7

e
2
− e
3

]
]
]
]
]
]
]
]

]

𝑇

⋅

[
[
[
[
[
[
[
[
[

[

𝑅
21

𝑋
1

(∗) 𝑅22 + 𝑋1

[
[

[

𝑆
1
𝑆
2

𝑆
3
𝑆
4

]
]

]≜S

(∗)

𝑅
21

𝑋
2

(∗) 𝑅22 + 𝑋2

]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[

[

e
6

e
1
− e
2

e
7

e
2
− e
3

]
]
]
]
]
]
]
]

]

under (11) ,

(19)
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which implies Δ𝑉
4,𝑘
≤ 𝜁
𝑇

𝑘
Ψ
4
𝜁
𝑘
, where

Ψ
4

= 𝛿
2
(e𝑇
0
𝑅
21
e
0
+ e𝑇
4
𝑅
22
e
4
) + 𝛿e𝑇

1
𝑋
1
e
1
− 𝛿e𝑇
2
𝑋
1
e
2

+ 𝛿e𝑇
2
𝑋
2
e
2
− 𝛿e𝑇
3
𝑋
2
e
3
− e𝑇
6
𝑅
21
e
6

−He [e𝑇
6
𝑋
1
(e
1
− e
2
) + e𝑇
6
𝑆
1
e
7
+ e𝑇
6
𝑆
2
(e
2
− e
3
)]

− (e
1
− e
2
)
𝑇
(𝑅
22
+ 𝑋
1
) (e
1
− e
2
)

−He [(e
1
− e
2
)
𝑇
𝑆
3
e
7
+ (e
1
− e
2
)
𝑇
𝑆
4
(e
2
− e
3
)]

− e𝑇
7
𝑅
21
e
7
−He [e𝑇

7
𝑋
2
(e
2
− e
3
)]

− (e
2
− e
3
)
𝑇
(𝑅
22
+ 𝑋
2
) (e
2
− e
3
) .

(20)

Hence, the forward difference of 𝑉
𝑘
satisfies

Δ𝑉
𝑘
≤ 𝜁
𝑇

𝑘
(Ψ
1
+ Ψ
2
+ Ψ
3
+ Ψ
4
) 𝜁
𝑘
. (21)

Moreover, by adding 0 = 𝜁𝑇
𝑘
Ψ
5
𝜁
𝑘
to (21), where

Ψ
5
= He [(e𝑇

0
𝑍
0
+ e𝑇
4
𝑍
4
) (e
4
+ (𝐼 − 𝐴) e0 − 𝐴𝑑e2)] , (22)

we can obtain Δ𝑉
𝑘
≤ 𝜁
𝑇

𝑘
(Ψ
1
+Ψ
2
+Ψ
3
+Ψ
4
+Ψ
5
)𝜁
𝑘
. Therefore,

the stability criterion is given by (10) and (11).

Remark 3. For the given 𝑛
𝑥
, the number of scalar variables

(NSVs) used in Theorem 2 is given as 15𝑛2
𝑥
+ 6𝑛
𝑥
. Our

approach leads to a significant decrease in the computational
burden compared with [10], [11], and [24] that demand

27𝑛
2

𝑥
+ 9𝑛
𝑥
, 90.5𝑛2

𝑥
+ 14.5𝑛

𝑥
, and 16𝑛2

𝑥
+ 9𝑛
𝑥
scalar variables,

respectively.

Remark 4. To make up for the weakness in [10, 11, 24],
this paper proposes a valuable method capable of deriving
a less conservative stability criterion without using the free-
weighting approach and the inclusion of Δ𝑥

𝑘−𝑑
1

, Δ𝑥
𝑘−𝑑
2

, and
Δ𝑥
𝑘−𝑑
3

in the augmented state.

Remark 5. From (10), it follows that 0 > e
4
(Ψ
1
+Ψ
2
+Ψ
3
+Ψ
4
+

Ψ
5
)e𝑇
4
= 𝑃
1
+ 𝑅
12
+ 𝑅
22
+ He[𝑍

4
]. As a result, 𝑍

4
+ 𝑍
𝑇

4
< 0;

that is, 𝑍
4
is nonsingular since 𝑃

1
, 𝑅
12
, and 𝑅

22
are positive

definite.

As a by-product of Theorem 2, we can obtain a robust
stability criterion for

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐴
𝑑
𝑥
𝑘−𝑑(𝑘)

+ 𝐺𝑝
𝑘
,

𝑞
𝑘
= 𝐸𝑥
𝑘
+ 𝐸
𝑑
𝑥
𝑘−𝑑(𝑘)

,

(23)

where 𝑝
𝑘
∈ R𝑛𝑝 and 𝑞

𝑘
∈ R𝑛𝑞 such that 𝑝

𝑘
= Δ
𝑘
𝑞
𝑘
and

Δ
𝑇

𝑘
Δ
𝑘
≤ 𝐼.

Corollary 6. Let 𝑑
1
= 𝑑 and 𝑑

3
= 𝑑 be prescribed and

define 𝛿 = 𝑑
3
− 𝑑
1
. System (1) is asymptotically stable for

any time-varying 𝑑(𝑘) satisfying 𝑑(𝑘) ∈ [𝑑, 𝑑], if there exist
matrices {𝑆

𝑖
}
𝑖=1,...,4

∈ R𝑛𝑥×𝑛𝑥 , {𝑍
𝑖
}
𝑖=0,4

∈ R𝑛𝑥×𝑛𝑥 and symmetric
matricesP ∈ R3𝑛𝑥×3𝑛𝑥 , {𝑄

𝑖
}
𝑖=1,2

∈ R𝑛𝑥×𝑛𝑥 , {𝑅
1𝑖
}
𝑖=1,2

∈ R𝑛𝑥×𝑛𝑥 ,
{𝑅
2𝑖
}
𝑖=1,2

∈ R𝑛𝑥×𝑛𝑥 , and {𝑋
𝑖
}
𝑖=0,1,2

∈ R𝑛𝑥×𝑛𝑥 such that (11) and

0 > Ψ
1
+ Ψ
2
+ Ψ
3
+ Ψ
4
+ Ψ
5
+ Ψ
6
, (24)

where {Ψ
𝑖
}
𝑖=1,...,6

are defined in (13), (15), (18), (20), (26), and
(27), respectively.

Proof. Let us redefine the augmented state 𝜁
𝑘
as

𝜁
𝑇

𝑘
= [𝑥
𝑇

𝑘
𝑥
𝑇

𝑘−𝑑
1

𝑥
𝑇

𝑘−𝑑
2

𝑥
𝑇

𝑘−𝑑
3

Δ𝑥
𝑇

𝑘
Φ
1

01
(𝑥
𝑇

𝑖
) Φ
1

12
(𝑥
𝑇

𝑖
) Φ
1

23
(𝑥
𝑇

𝑖
) 𝑝
𝑇

𝑘
] (25)

and establish a block entry matrix e
8
such that 𝑝

𝑘
= e
8
𝜁
𝑘
.

Then, the term Ψ
5
is naturally converted into

Ψ
5
= He [(e𝑇

0
𝑍
0
+ e𝑇
4
𝑍
4
)

⋅ (e
4
+ (𝐼 − 𝐴) e0 − 𝐴𝑑e2 − 𝐺e8)] ,

(26)

and the uncertainty such that 0 ≤ 𝑞𝑇
𝑘
𝑞
𝑘
− 𝑝
𝑇

𝑘
𝑝
𝑘
is represented

as 0 ≤ 𝜁𝑇
𝑘
Ψ
6
𝜁
𝑘
, where

Ψ
6
= (𝐸e

0
+ 𝐸
𝑑
e
2
)
𝑇
(𝐸e
0
+ 𝐸
𝑑
e
2
) − e𝑇
8
e
8
. (27)

As a result, Δ𝑉
𝑘
≤ 𝜁
𝑇

𝑘
(Ψ
1
+ ⋅ ⋅ ⋅ + Ψ

5
+ Ψ
6
)𝜁
𝑘
; thus, the robust

stability criterion is given by (11) and (24).

4. Control Synthesis

Let us consider a linear system of the following form:

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐵𝑢
𝑘−𝑑(𝑘)

, (28)

where 𝑢
𝑘−𝑑(𝑘)

∈ R𝑛𝑢 denotes the delayed control input. Then,
under the state-feedback control law 𝑢

𝑘
= 𝐹𝑥
𝑘
, the closed-

loop control system is described as follows:

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐴
𝑑
𝑥
𝑘−𝑑(𝑘)

, (29)

where𝐴
𝑑
= 𝐵𝐹 and𝐹denotes the control gain to be designed.

Theorem 7. Let 𝑑
1
= 𝑑, 𝑑

3
= 𝑑, 𝜖 be prescribed and define 𝛿 =

𝑑
3
− 𝑑
1
. The closed-loop system in (29) is asymptotically stable

for any time-varying 𝑑(𝑘) satisfying 𝑑(𝑘) ∈ [𝑑, 𝑑], if there exist
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matrices {𝑆
𝑖
}
𝑖=1,...,4

∈ R𝑛𝑥×𝑛𝑥 , 𝑊 ∈ R𝑛𝑥×𝑛𝑥 , and 𝐹 ∈ R𝑛𝑢×𝑛𝑥

and symmetric matrices P ∈ R3𝑛𝑥×3𝑛𝑥 , {𝑄
𝑖
}
𝑖=1,2

∈ R𝑛𝑥×𝑛𝑥 ,
{𝑅
1𝑖
}
𝑖=1,2

∈ R𝑛𝑥×𝑛𝑥 , {𝑅
2𝑖
}
𝑖=1,2

∈ R𝑛𝑥×𝑛𝑥 , and {𝑋
𝑖
}
𝑖=0,1,2

∈

R𝑛𝑥×𝑛𝑥 such that

0 > Ψ
1
+ Ψ
2
+ Ψ
3
+ Ψ
4
+ Ψ
5
, (30)

0 ≤

[
[
[
[
[
[
[
[

[

𝑅
21

𝑋
1

𝑆
1

𝑆
2

(∗) 𝑅22 + 𝑋1 𝑆
3

𝑆
4

(∗) (∗) 𝑅
21

𝑋
2

(∗) (∗) (∗) 𝑅22 + 𝑋2

]
]
]
]
]
]
]
]

]

, (31)

where {Ψ
𝑖
}
𝑖=1,...,5

are defined in (34)–(38), respectively. More-
over, the control gain 𝐹 can be reconstructed by 𝐹 = 𝐹𝑊 −1.

Proof. First of all, let us consider a nonsingular matrixW of
the following form:

W

= [e𝑇
0
𝑊 e𝑇
1
𝑊 e𝑇
2
𝑊 e𝑇
3
𝑊 e𝑇
4
𝑊 e𝑇
5
𝑊 e𝑇
6
𝑊 e𝑇
7
𝑊] ,

(32)

which satisfies that e
𝑖
W = 𝑊e

𝑖
for all 𝑖. Further, define

P =

[
[
[

[

𝑊 0 0

0 𝑊 0

0 0 𝑊

]
]
]

]

𝑇

P
[
[
[

[

𝑊 0 0

0 𝑊 0

0 0 𝑊

]
]
]

]

=

[
[
[

[

𝑃
1
𝑃
2
𝑃
3

(∗) 𝑃
4
𝑃
5

(∗) (∗) 𝑃6

]
]
]

]

(33)

and let 𝑍
0
= 𝑊 and 𝑍

4
= 𝜖𝑊, where𝑊 = 𝑊

−1, and 𝜖 is a
scalar variable.Then, pre- and postmultiplyingΨ

𝑖
byW
𝑇

and
W yields Ψ

𝑖
= 𝑊
𝑇

Ψ
𝑖
𝑊:

Ψ
1
=
[
[

[

e
4
+ e
0

e
0
− e
1
+ e
5

e
1
− e
3
+ e
6
+ e
7

]
]

]

𝑇

P
[
[

[

e
4
+ e
0

e
0
− e
1
+ e
5

e
1
− e
3
+ e
6
+ e
7

]
]

]

−
[
[

[

e
0

e
5

e
6
+ e
7

]
]

]

𝑇

P
[
[

[

e
0

e
5

e
6
+ e
7

]
]

]

= e𝑇
4
𝑃
1
e
4

+He [e𝑇
4
𝑃
1
e
0
+ e𝑇
4
𝑃
2
(e
0
− e
1
) + e𝑇
4
𝑃
2
e
5

+ e𝑇
4
𝑃
3
(e
1
− e
3
) + e𝑇
4
𝑃
3
(e
6
+ e
7
)]

+He [e𝑇
0
𝑃
2
(e
0
− e
1
) + e𝑇
0
𝑃
3
(e
1
− e
3
)] + (e

0

− e
1
)
𝑇
𝑃
4
(e
0
− e
1
) +He [(e

0
− e
1
)
𝑇
𝑃
4
e
5

+ (e
0
− e
1
)
𝑇
𝑃
5
(e
1
− e
3
)

+ (e
0
− e
1
)
𝑇
𝑃
5
(e
6
+ e
7
)] +He [e𝑇

5
𝑃
5
(e
1
− e
3
)]

+ (e
1
− e
3
)
𝑇
𝑃
6
(e
1
− e
3
)

+He [(e
1
− e
3
)
𝑇
𝑃
6
(e
6
+ e
7
)] ,

(34)

Ψ
2
= e𝑇
0
𝑊
𝑇

𝑄
1
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑄
1

e
0
− e𝑇
1
𝑄
1
e
1
+ e𝑇
0
𝑊
𝑇

𝑄
2
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑄
2

e
0

− e𝑇
3
𝑄
2
e
3
,

(35)

Ψ
3
= 𝑑
2

1
(e𝑇
0
𝑊
𝑇

𝑅
11
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑅
11

e
0
+ e𝑇
4
𝑊
𝑇

𝑅
12
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑅
12

e
4
)

+ 𝑑
1
e𝑇
0
𝑊
𝑇

𝑋
0
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑋
0

e
0
− 𝑑
1
e𝑇
1
𝑋
0
e
1
− e𝑇
5
𝑅
11
e
5

−He [e𝑇
5
𝑋
0
(e
0
− e
1
)] − (e

0
− e
1
)
𝑇
𝑅
12
(e
0
− e
1
)

− (e
0
− e
1
)
𝑇
𝑋
0
(e
0
− e
1
) ,

(36)

Ψ
4
= 𝛿
2
(e𝑇
0
𝑊
𝑇

𝑅
21
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑅
21

e
0
+ e𝑇
4
𝑊
𝑇

𝑅
22
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑅
22

e
4
)

+ 𝛿e𝑇
1
𝑊
𝑇

𝑋
1
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑋
1

e
1
− 𝛿e𝑇
2
𝑋
1
e
2
+ 𝛿e𝑇
2
𝑊
𝑇

𝑋
2
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑋
2

e
2

− 𝛿e𝑇
3
𝑋
2
e
3
− e𝑇
6
𝑅
21
e
6
−He

[
[
[

[

e𝑇
6
𝑋
1
(e
1
− e
2
)

+ e𝑇
6
𝑊
𝑇

𝑆
1
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑆
1

e
7

]
]
]

]

−He
[
[
[

[

e𝑇
6
𝑊
𝑇

𝑆
2
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑆
2

(e
2
− e
3
)

]
]
]

]

− (e
1
− e
2
)
𝑇
𝑅
22
(e
1
− e
2
) − (e
1
− e
2
)
𝑇
𝑋
1
(e
1
− e
2
)

−He
[
[
[

[

(e
1
− e
2
)
𝑇
𝑊
𝑇

𝑆
3
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑆
3

e
7
+ (e
1
− e
2
)
𝑇

⋅ 𝑊
𝑇

𝑆
4
𝑊⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑆
4

(e
2
− e
3
)

]
]
]

]

− e𝑇
7
𝑅
21
e
7

−He [e𝑇
7
𝑋
2
(e
2
− e
3
)] − (e

2
− e
3
)
𝑇
𝑅
22
(e
2
− e
3
)

− (e
2
− e
3
)
𝑇
𝑋
2
(e
2
− e
3
) ,

(37)
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Ψ
5
= He [W𝑇 (e𝑇

0
𝑍
0
+ e𝑇
4
𝑍
4
)

⋅ (𝑊e
4
+ (𝐼 − 𝐴)𝑊e

0
− 𝐴
𝑑
𝑊e
2
)]

= He[[
[

(e𝑇
0
+ 𝜖e𝑇
4
)

⋅ (𝑊e
4
+ (𝑊 − 𝐴𝑊) e

0
− 𝐵𝐹𝑊⏟⏟⏟⏟⏟⏟⏟

=𝐹

e
2
)
]
]

]

.

(38)

In other words, the stabilization condition is given by

0 >

5

∑

𝑖=1

W
𝑇

Ψ
𝑖
W =

5

∑

𝑖=1

Ψ
𝑖
, (39)

which becomes (30). Here, (30) implies e
7
(∑
5

𝑖=1
Ψ
𝑖
)e𝑇
7
=

−𝑅
21
= −𝑊

𝑇

𝑅
21
𝑊 < 0; that is, 𝑊 is nonsingular and thus

W becomes also nonsingular. Next, pre- and postmultiply-
ing (11) by diag(𝑊𝑇,𝑊𝑇,𝑊𝑇,𝑊𝑇) and its transpose yields
(31).

5. Numerical Examples

Three numerical examples are considered in order to illus-
trate the effectiveness of the obtained results.

Example 1 (stability analysis). Let us consider a delayed
discrete-time system used in [17]:

𝑥
𝑘+1

= [

0.80 0.00

0.05 0.90
] 𝑥
𝑘
+ [

−0.1 0.0

−0.2 −0.1
] 𝑥
𝑘−𝑑(𝑘)

, (40)

where 𝑑 ≤ 𝑑(𝑘) ≤ 𝑑. For (40) with various 𝑑, Table 1
lists the maximum allowable upper bounds (MAUBs) of
𝑑(𝑘), obtained by Theorem 2 and different methods. From
Table 1, it can be seen that the stability criteria established
in [10, 11] and Theorem 2 offer the most improved of the
results. In particular, it is noteworthy thatTheorem 2provides
the same delay bounds (i.e., stability region) as those of
[10, 11] under the requirement of much less computational
complexity with respect to the number of scalar variables
(NSVs), as mentioned in Remark 3. That is, in contrast with
[10, 11, 24], Theorem 2 offers a more efficient approach in
terms of both performance and computational complexity.

Example 2 (robust stability analysis). Consider the following
uncertain discrete-time system with time-varying delay used
in [24]:

𝑥
𝑘+1

= [

0.8 0.0

0.0 0.9
] 𝑥
𝑘
+ [

−0.1 0.0

−0.1 −0.1
] 𝑥
𝑘−𝑑(𝑘)

+ [

𝛼

0
]𝑝
𝑘
,

𝑞
𝑘
= [1.0 0.0] 𝑥

𝑘
.

(41)

Table 1: Example 1: MAUB of 𝑑(𝑘) for various 𝑑.

𝑑 2 6 10 15 20 NSV
Theorem 1 [17] 13 14 17 21 25 21
Theorem 1 [18] 14 16 18 21 25 18
Proposition 1 [23] 17 18 20 23 27 38
Corollary 1 [24] 19 20 21 24 27 82
Corollary 3 [11] 22 22 23 25 28 391
Theorem 2 [10] 22 22 23 25 28 126
Theorem 2 22 22 23 25 28 72

Table 2: Example 2: MAUB of 𝛼 for various 𝑑(𝑘) ∈ [𝑑, 𝑑].

𝑑(𝑘) ∈ [𝑑, 𝑑] [2, 7] [5, 10] [10, 15] [20, 25] NSV
Theorem 1 [24] 0.2007 0.1554 0.1144 0.0957 82
Corollary 6 0.2013 0.1555 0.1155 0.0961 72

Table 3: Example 3: MAUB of 𝑑(𝑘) and control gains 𝐹when 𝑑 = 1.

Methods 𝑑 Control gains NSV
Theorem 3 [26] 4 𝐹 = [110.6827 34.6980] BMI problem
Theorem 3 [10] 7 𝐹 = [98.5858 24.0621] 131
Theorem 7 7 𝐹 = [100.5577 24.4503] 70

For each 𝑑 ≤ 𝑑(𝑘) ≤ 𝑑, the MAUBs of 𝛼 such that
(23) is robustly asymptotically stable are listed in Table 2,
obtained by Corollary 6 and different methods. That is, from
Table 2, we can see that the robust stability criterion given
in Corollary 6 is much more efficient than the ones in [24]
from the viewpoint of both performance and computational
complexity.

Example 3 (control synthesis). Consider the following
discrete-time system transformed from the continuous-time
model of an inverted pendulum (refer to [7]):

𝑥
𝑘+1

= [

1.0078 0.0301

0.5202 1.0078
] 𝑥
𝑘
+ [

−0.0001

−0.0053
] 𝑢
𝑘−𝑑(𝑘)

. (42)

The goal of this example is to design the control 𝑢
𝑘
= 𝐹𝑥
𝑘
that

stabilizes (42) with 1 ≤ 𝑑(𝑘) ≤ 𝑑, such that the closed-loop
system is asymptotically stable. Table 3 shows the MAUBs
of 𝑑(𝑘) and the corresponding control gains, obtained by
Theorem 7 (𝜖 = 100). From Table 3, we can see that the
proposed stabilization condition is significantly valuable in
the sense that it requires less computational complexity as
well as providing larger MAUB than that of [26]. Meanwhile,
based on the obtained control gain, Figure 1 shows the state
responses of (42) with 𝑥

𝑘
= [1 −1]

𝑇 for 𝑘 ∈ {−7, . . . , 0} and
𝑑(𝑘) = 6 ⋅ |⌈sin(𝜋𝑘/2)⌉| + 1 ∈ [1, 7]. Here, it can be found that
the state converges to zero as time goes to infinity.

Remark 8. In Example 3, the matrix𝑊 is given by

𝑊 = 𝑊
−1

= [

−24.0367 −5.9185

−5.7376 −1.5868
] , for 𝜖 > 0. (43)
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Figure 1: State responses 𝑥
𝑘
= [𝑥
1,𝑘

𝑥
2,𝑘
]
𝑇 and time-varying delay

𝑑(𝑘) = 6 ⋅ |⌈sin(𝜋𝑘/2)⌉| + 1.

Thus, as mentioned in Remark 4, the following relation is
satisfied:He[𝑍

4
] = He[𝜖𝑊] < 0.

6. Concluding Remarks

In this paper, the problem of deriving an efficient stability
criterion is investigated for discrete-time systems with time-
varying delay. The main feature herein is that the conser-
vatism of a stability criterion is reduced in spite of the
requirement of less computational complexity. In addition,
the stabilization problem of systems with time-delayed con-
trol input is addressed in the LMI framework.
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