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This paper mainly studies the state feedback stabilizability of a class of nonlinear stochastic systems with state- and control-
dependent noise. Some sufficient conditions on local and global state feedback stabilizations are given in linear matrix inequalities
(LMIs) and generalized algebraic Riccati equations (GAREs). Some obtained results improve the previous work.

1. Introduction

Stability and stabilization are two important topics inmodern
control theory, which are first of considered issues in the
systems analysis and synthesis. It is well known that stochastic
control has become a very popular research area, which has
been applied to mathematical finance [1], quantum systems
[2], and so forth; stochastic stability and stabilization have
been studied by many researchers; we refer the reader to the
celebrated book [1] for the discussions of various stabilities.
A series of works on robustly exponential stability can
be found in [3–6]. While the 𝑝th moment stability were
discussed in [7, 8], in particular, the asymptotic mean square
stability has been studied for a long time; see [9–13]. The
stabilizability of linear stochastic control systems has been
investigated by [9, 10, 12–17]. In recent years, the study for
stabilization of nonlinear stochastic systems has attracted
great attention; the methods appearring in studying this
topic can be summarized as follows: GARE-based method
[9, 12, 18, 19]; control Lyapunov function method [1, 3–6, 20];
passive system method [21], and spectral analysis method
based on generalized Lyapunov operators [13, 16, 17].We refer
the reader to [19] for the stabilization of general nonlinear
stochastic systems, where a class of new Hamilton-Jacobi
inequalities were presented.

It can be seen that most of the previous works
were on the systems with only the state-dependent noise.

In the present paper, we deal with a class of linearized systems
with both the state- and control-dependent noise. Some suffi-
cient conditions on local state feedback stabilization are given
via LMIs and GAREs, respectively, which not only generalize
but also improve the results of [18]. We also investigate the
global state feedback stabilization and a sufficient condition
is also given in terms of LMIs. A numerical example verifies
the effectiveness of our results.

2. Problem Setting

Consider the following stochastic control system governed by
Itô’s differential equation:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡 +

𝑙

∑

𝑖=1

𝜎𝑖 (𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑊𝑖 (𝑡) . (1)

In the above, 𝑥(𝑡) ∈ R𝑛 is called the system state and
𝑢(𝑡) ∈ R𝑚 the control input. {𝑊𝑖(𝑡), 𝑖 = 1, . . . , 𝑙} is the
standard Wiener process defined on the probability space
(Ω,F,P) with a natural filter F𝑡 = 𝜎(𝑊𝑖(𝑠), 0 ≤ 𝑠 ≤
𝑡; 𝑖 = 1, . . . , 𝑙). Without loss of generality, we can suppose
{𝑊𝑖(𝑡), 𝑖 = 1, . . . , 𝑙} are one-dimensional. Assume 𝑢(𝑡) is an
adapted andmeasurable processwith respect toF𝑡, 𝑓(0, 𝑢) ≡
0, 𝜎𝑖(0, 𝑢) ≡ 0; that is, 𝑥 ≡ 0 is an equilibrium point of (1).
Under very general conditions on 𝑓, 𝜎𝑖 (𝑖 = 1, . . . , 𝑙), and
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𝑢(𝑡), stochastic control system (1) has a unique strong solution
𝑥𝑠,𝜉(𝑡) for any 𝑡 ≥ 𝑠 ≥ 0 and the initial state 𝑥(𝑠) = 𝜉 ∈ R𝑛;
see [1, 22]. We first introduce the following definition.

Definition 1. We say that the equilibrium point 𝑥 ≡ 0 of
system (1) is locally asymptotically stabilizable via a linear
constant state feedback 𝑢(𝑡) = 𝐾𝑥(𝑡), if the solution 𝑥 ≡ 0
of the closed-loop system,

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝐾𝑥 (𝑡)) 𝑑𝑡 +

𝑙

∑

𝑖=1

𝜎𝑖 (𝑥 (𝑡) , 𝐾𝑥 (𝑡)) 𝑑𝑊𝑖 (𝑡) ,

(2)

is asymptotically stable in probability [1]; that is, for any 𝑠 ≥ 0
and 𝜀 > 0

lim
‖𝜉‖→0

P(sup
𝑡≥𝑠

󵄩󵄩󵄩󵄩󵄩
𝑥𝑠,𝜉 (𝑡)

󵄩󵄩󵄩󵄩󵄩
> 𝜀) = 0, (3)

lim
‖𝜉‖→0

P( lim
𝑡→∞
𝑥𝑠,𝜉 (𝑡) = 0) = 1, (4)

where 𝐾 is a constant matrix of suitable dimension. In
addition, if the solution 𝑥 ≡ 0 of the closed-loop system (2) is
asymptotically stable in the large (see, e.g., [1]), that is, if both
(3) and

P( lim
𝑡→∞
𝑥𝑠,𝜉 (𝑡) = 0) = 1 (5)

hold, then we say that the equilibrium point 𝑥 ≡ 0 of system
(1) is globally asymptotically stabilizable via a linear state
feedback 𝑢(𝑡) = 𝐾𝑥(𝑡).

It is well known [1] that if there exists a neighborhood 𝑈
of the origin, a Lyapunov function 𝑉(𝑡, 𝑥) ∈ 𝐶0

2
({𝑡 > 0} × 𝑈),

𝑉(𝑡, 𝑥) > 0 in domain {𝑡 > 0} × 𝑈, which has an infinitesimal
upper limit, that is,

lim
‖𝑥‖→0

sup
𝑡>0

𝑉 (𝑡, 𝑥) = 0, (6)

satisfying

L𝑉 (𝑡, 𝑥) =
𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡
+ 𝑓
󸀠
(𝑥, 𝐾𝑥)

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥

+
1

2

𝑙

∑

𝑖=1

𝜎
󸀠

𝑖
(𝑥 (𝑡) , 𝐾𝑥 (𝑡))

×
𝜕
2
𝑉 (𝑡, 𝑥)

𝜕𝑥2
𝜎𝑖 (𝑥 (𝑡) , 𝐾𝑥 (𝑡)) < 0,

(7)

then the solution 𝑥(𝑡) ≡ 0 of system (2) is asymptotically
stable in probability. If 𝑉(𝑡, 𝑥) also admits the following
property,

inf
𝑡>0
𝑉 (𝑡, 𝑥) 󳨀→ ∞, as ‖𝑥‖ 󳨀→ ∞, (8)

then the solution 𝑥(𝑡) ≡ 0 of system (2) is asymptotically
stable in the large. L is the so-called infinitesimal generator
of (2).

Now, suppose 𝑓(𝑥, 𝑢) and 𝜎𝑖(𝑥, 𝑢) can be linearized as

𝑓 (𝑥, 𝑢) = 𝐴𝑥 + 𝐵𝑢 + 𝐻0 (𝑥, 𝑢) , 𝐻0 (0, 𝑢) = 0,

𝜎𝑖 (𝑥, 𝑢) = 𝐶𝑖𝑥 + 𝐷𝑖𝑢 + 𝐻𝑖 (𝑥, 𝑢) , 𝐻𝑖 (0, 𝑢) = 0,

𝑖 = 1, . . . , 𝑙,

(9)

Respectively; then the linearized stochastic system of (1) is as

𝑑𝑥 = (𝐴𝑥 + 𝐵𝑢 + 𝐻0 (𝑥, 𝑢)) 𝑑𝑡

+

𝑙

∑

𝑖=1

(𝐶𝑖𝑥 + 𝐷𝑖𝑢 + 𝐻𝑖 (𝑥, 𝑢)) 𝑑𝑊𝑖,

(10)

where𝐴, 𝐵, 𝐶𝑖,𝐷𝑖, 𝑖 = 1, . . . , 𝑙, are constant matrices. In what
follows, we will discuss the stabilization of (10).

3. Locally Asymptotic Stabilization

3.1. Main Results. In this section, we obtain two theorems on
locally asymptotic stabilization of (10) as follows.

Theorem 2. Suppose

lim
‖𝑥‖→0

󵄩󵄩󵄩󵄩𝐻𝑖 (𝑥, 𝐾𝑥)
󵄩󵄩󵄩󵄩

‖𝑥‖
= 0, ∀𝐾 ∈R

𝑚×𝑛
,

𝑖 = 0, 1, . . . , 𝑙,

(11)

and the following LMI,

[
[
[
[
[
[
[
[
[

[

𝑃𝐴
󸀠
+ 𝐴𝑃 + 𝑌

󸀠
𝐵
󸀠
+ 𝐵𝑌 𝐶1𝑃 + 𝐷1𝑌 𝐶2𝑃 + 𝐷2𝑌 ⋅ ⋅ ⋅ 𝐶𝑙𝑃 + 𝐷𝑙𝑌

𝑃𝐶
󸀠

1
+ 𝑌
󸀠
𝐷
󸀠

1
−𝑃 0 ⋅ ⋅ ⋅ 0

𝑃𝐶
󸀠

2
+ 𝑌
󸀠
𝐷
󸀠

2
0 −𝑃 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

. ⋅ ⋅ ⋅
.
.
.

𝑃𝐶
󸀠

𝑙
+ 𝑌
󸀠
𝐷
󸀠

𝑙
0 0 ⋅ ⋅ ⋅ −𝑃

]
]
]
]
]
]
]
]
]

]

< 0, (12)
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has a solution 𝑃 > 0, 𝑌 ∈ R𝑚×𝑛; then the equilibrium point
𝑥 ≡ 0 of system (10) is locally asymptotically stabilizable in
probability with control law

𝑢 (𝑡) = 𝑌𝑃
−1
𝑥 (𝑡) . (13)

The following theorem is another description for locally
asymptotic stabilization in probability via GARE.

Theorem 3. Under the condition of (11), if for any 𝑅 > 0, 𝑄 >
0, GARE,

𝑃𝐴 + 𝐴
󸀠
𝑃 +

𝑙

∑

𝑖=1

𝐶
󸀠

𝑖
𝑃𝐶𝑖 − (𝑃𝐵 +

𝑙

∑

𝑖=1

𝐶
󸀠

𝑖
𝑃𝐷𝑖)

× (𝑅 +

𝑙

∑

𝑖=1

𝐷
󸀠

𝑖
𝑃𝐷𝑖)

−1

(𝐵
󸀠
𝑃 +

𝑙

∑

𝑖=1

𝐷
󸀠

𝑖
𝑃𝐶𝑖) + 𝑄 = 0,

(14)

has a positive solution 𝑃 > 0, then system (10) is locally
asymptotically stabilizable in probability with control law

𝑢 (𝑡) = −(𝑅 +

𝑙

∑

𝑖=1

𝐷
󸀠

𝑖
𝑃𝐷𝑖)

−1

(𝐵
󸀠
𝑃 +

𝑙

∑

𝑖=1

𝐷
󸀠

𝑖
𝑃𝐶𝑖)𝑥 (𝑡) . (15)

To prove our main results, we first consider the linear
constant coefficient stochastic control system

𝑑𝑥 = 𝐹𝑥𝑑𝑡 +

𝑙

∑

𝑖=1

𝐺𝑖𝑥𝑑𝑊𝑖. (16)

System (16) is said to be asymptotically mean square stable if,
for any 𝑥(𝑠) = 𝜉, lim𝑡→∞𝐸‖𝑥𝑠,𝜉(𝑡)‖

2
= 0.

Lemma 4 (see [23]). System (16) is asymptotically mean
square stable if and only if the following Lyapunov-type
inequality,

𝑃𝐹 + 𝐹
󸀠
𝑃 +

𝑙

∑

𝑖=1

𝐺
󸀠

𝑖
𝑃𝐺𝑖 < 0, (17)

has at least one solution 𝑃 > 0.

Lemma 5 (see [13]). System (16) is asymptotically mean
square stable if and only if its dual system,

𝑑𝑥 = 𝐹
󸀠
𝑥 𝑑𝑡 +

𝑙

∑

𝑖=1

𝐺
󸀠

𝑖
𝑥𝑑𝑊𝑖, (18)

is asymptotically mean square stable.

Proof of Theorem 2. By Schur’s complement, LMI (12) is
equivalent to the following inequality:

𝑃𝐴
󸀠
+ 𝐴𝑃 + 𝑌

󸀠
𝐵
󸀠
+ 𝐵𝑌

+

𝑙

∑

𝑖=1

(𝐶𝑖𝑃 + 𝐷𝑖𝑌)𝑃
−1
(𝐶𝑖𝑃 + 𝐷𝑖𝑌)

󸀠
< 0,

(19)

having a pair of solutions 𝑃 > 0, 𝑌 ∈ R𝑚×𝑛. Let 𝑌 = 𝐾𝑃;
then (19) becomes

(𝐴 + 𝐵𝐾)𝑃 + 𝑃(𝐴 + 𝐵𝐾)
󸀠

+

𝑙

∑

𝑖=1

(𝐶𝑖 + 𝐷𝑖𝐾)𝑃(𝐶𝑖 + 𝐷𝑖𝐾)
󸀠
< 0.

(20)

By Lemma 4, (20) implies

𝑑𝑥 = (𝐴 + 𝐵𝐾)
󸀠
𝑥𝑑𝑡 +

𝑙

∑

𝑖=1

(𝐶𝑖 + 𝐷𝑖𝐾)
󸀠
𝑥𝑑𝑊𝑖, (21)

to be asymptotically mean square stable, which yields

𝑑𝑥 = (𝐴 + 𝐵𝐾) 𝑥 𝑑𝑡 +

𝑙

∑

𝑖=1

(𝐶𝑖 + 𝐷𝑖𝐾)𝑥𝑑𝑊𝑖, (22)

to be also asymptotically mean square stable from Lemma 5.
Again, by Lemma 4, there exists at least one solution 𝑃1 > 0
satisfying

𝑃1 (𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)
󸀠
𝑃1

+

𝑙

∑

𝑖=1

(𝐶𝑖 + 𝐷𝑖𝐾)
󸀠
𝑃1 (𝐶𝑖 + 𝐷𝑖𝐾) < 0.

(23)

Take the Lyapunov function 𝑉(𝑥) = 𝑥󸀠𝑃1𝑥, 𝑢(𝑡) = 𝐾𝑥(𝑡) =
𝑌𝑃
−1
𝑥(𝑡); then, for system (10),

L𝑉 (𝑥) =
𝑙

∑

𝑖=1

(𝐶𝑖𝑥 + 𝐷𝑖𝐾𝑥 + 𝐻𝑖 (𝑥, 𝐾𝑥))
󸀠

× 𝑃1 (𝐶𝑖𝑥 + 𝐷𝑖𝐾𝑥 + 𝐻𝑖 (𝑥, 𝐾𝑥))

+ 2 ⟨𝐴𝑥 + 𝐵𝐾𝑥 + 𝐻0 (𝑥, 𝐾𝑥) , 𝑃1𝑥⟩

= 𝑥
󸀠
[𝑃1 (𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)

󸀠
𝑃1

+

𝑙

∑

𝑖=1

(𝐶𝑖 + 𝐷𝑖𝐾)
󸀠
𝑃1 (𝐶𝑖 + 𝐷𝑖𝐾)]𝑥

+ 2𝐻
󸀠

0
(𝑥, 𝐾𝑥) 𝑃1𝑥

+ 2

𝑙

∑

𝑖=1

𝐻
󸀠

𝑖
(𝑥, 𝐾𝑥) 𝑃1 (𝐶𝑖 + 𝐷𝑖𝐾)𝑥

+

𝑙

∑

𝑖=1

𝐻
󸀠

𝑖
(𝑥, 𝐾𝑥) 𝑃1𝐻𝑖 (𝑥, 𝐾𝑥) .

(24)

Let

−𝑄 := 𝑃1 (𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)
󸀠
𝑃1

+

𝑙

∑

𝑖=1

(𝐶𝑖 + 𝐷𝑖𝐾)
󸀠
𝑃1 (𝐶𝑖 + 𝐷𝑖𝐾) ;

(25)
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then, by (23), 𝑄 > 0. So

𝑥
󸀠
[𝑃1 (𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)

󸀠
𝑃1

+

𝑙

∑

𝑖=1

(𝐶𝑖 + 𝐷𝑖𝐾)
󸀠
𝑃1 (𝐶𝑖 + 𝐷𝑖𝐾)]𝑥

= −𝑥
󸀠
𝑄𝑥 ≤ −𝜆min (𝑄) ‖𝑥‖

2
.

(26)

By the given condition (11), for any 𝜖 > 0, there exists 𝛿 > 0,
such that when ‖𝑥‖ < 𝛿, ‖𝐻𝑖(𝑥, 𝐾𝑥)‖ ≤ 𝜖‖𝑥‖, 𝑖 = 0, 1, . . . , 𝑙.
So

2𝐻
󸀠

0
(𝑥, 𝐾𝑥) 𝑃1𝑥 + 2

𝑙

∑

𝑖=1

𝐻
󸀠

𝑖
(𝑥, 𝐾𝑥) 𝑃1 (𝐶𝑖 + 𝐷𝑖𝐾)𝑥

+

𝑙

∑

𝑖=1

𝐻
󸀠

𝑖
(𝑥, 𝐾𝑥) 𝑃1𝐻𝑖 (𝑥, 𝐾𝑥)

≤ (2𝜖 + 2𝜖

𝑙

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐶𝑖 + 𝐷𝑖𝐾
󵄩󵄩󵄩󵄩 + 𝑙𝜖
2
)

×
󵄩󵄩󵄩󵄩𝑃1
󵄩󵄩󵄩󵄩 ⋅ ‖𝑥‖

2
≤
1

2
𝜆min (𝑄) ‖𝑥‖

2
.

(27)

If we take 𝜖 sufficiently small, such that

2𝜖 + 2𝜖

𝑙

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐶𝑖 + 𝐷𝑖𝐾
󵄩󵄩󵄩󵄩 + 𝑙𝜖
2
≤
𝜆min (𝑄)

2
󵄩󵄩󵄩󵄩𝑃1
󵄩󵄩󵄩󵄩

, (28)

then (26) together with (27) gives

L𝑉 (𝑥) ≤ −
1

2
𝜆min (𝑄) ‖𝑥‖

2
< 0, (29)

for 𝑥 ̸= 0. Therefore, the system (10) is locally asymptotically
stabilizable in probability with control law

𝑢 (𝑡) = 𝐾𝑥 (𝑡) = 𝑌𝑃
−1
𝑥 (𝑡) . (30)

The proof of Theorem 2 is completed.

Remark 6. If there is a constant matrix 𝐾 of suitable dimen-
sion such that system (22) is asymptotically mean square
stable, then the following control system,

𝑑𝑥 = (𝐴𝑥 + 𝐵𝑢) 𝑑𝑡 +

𝑙

∑

𝑖=1

(𝐶𝑖𝑥 + 𝐷𝑖𝑢) 𝑑𝑊𝑖, (31)

is called stabilizable in mean square sense [9, 12, 13].

Proof of Theorem 3. Note that if we let

𝐾 = −(𝑅 +

𝑙

∑

𝑖=1

𝐷
󸀠

𝑖
𝑃𝐷𝑖)

−1

(𝐵
󸀠
𝑃 +

𝑙

∑

𝑖=1

𝐷
󸀠

𝑖
𝑃𝐶𝑖) , (32)

then GARE (14) can be written as

𝑃 (𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)
󸀠
𝑃

+

𝑙

∑

𝑖=1

(𝐶𝑖 + 𝐷𝑖𝐾)
󸀠
𝑃 (𝐶𝑖 + 𝐷𝑖𝐾)

= −𝑄 − 𝐾
󸀠
𝑅𝐾 < 0.

(33)

By repeating the proof of Theorem 2, Theorem 3 is easy to be
proved.

In fact, Theorems 2 and 3 are equivalent; this can be seen
from the following proposition.

Proposition 7. If, for some 𝑄 > 0, 𝑅 > 0, GARE (14) has a
positive solution 𝑃 > 0, then LMI (12) is feasible with at least
a pair of solutions 𝑃1 > 0, 𝑌 ∈ R𝑚×𝑛; conversely, if LMI (12)
has a pair of solutions 𝑃1 > 0, 𝑌 ∈ R𝑚×𝑛, then, for any 𝑄 > 0,
𝑅 > 0, GARE (14) has a unique positive solution 𝑃 > 0.

Proof. If, for some 𝑄 > 0, 𝑅 > 0, GARE (14) has a
positive solution 𝑃 > 0, then from (33) together with
Lemma 4, system (22) is asymptotically mean square stable.
Accordingly, system (21) is also asymptotically mean square
stable by Lemma 5. Again, by Lemma 4, there exists 𝑃1 > 0,
such that

𝑃1(𝐴 + 𝐵𝐾)
󸀠
+ (𝐴 + 𝐵𝐾)𝑃1

+

𝑙

∑

𝑖=1

(𝐶𝑖 + 𝐷𝑖𝐾)𝑃
−1

1
(𝐶𝑖 + 𝐷𝑖𝐾)

󸀠
< 0.

(34)

Let 𝑌 = 𝐾𝑃1; then (34) follows

𝑃1𝐴
󸀠
+ 𝐴𝑃1 + 𝑌

󸀠
𝐵
󸀠
+ 𝐵𝑌

+

𝑙

∑

𝑖=1

(𝐶𝑖𝑃1 + 𝐷𝑖𝑌)𝑃
−1

1
(𝐶𝑖𝑃1 + 𝐷𝑖𝑌)

󸀠
< 0.

(35)

By Schur’s complement, 𝑃1 > 0 and 𝑌 are also the solutions
of (12). Conversely, if (12) has a pair of solutions 𝑃1 > 0, 𝑌 ∈
R𝑚×𝑛, then, from the same discussion as above, system (22)
is mean square stable. So (31) is stabilizable in mean square
sense. From [9, 13], for any 𝑄 > 0, 𝑅 > 0, GARE (14) has a
unique positive solution 𝑃 > 0.

Remark 8. Although Theorem 2 is equivalent to Theorem 3,
it seems thatTheorem 2 ismore convenient in actual use than
Theorem 3, becausewe can easily test whether or not LMI (12)
is feasible by existing convex optimization tools; see [10, 24].
However, we would like to point out that if GARE (14) has a
positive solution𝑃 > 0, by applyingTheorem 10 of [9],𝑃must
solve the following semidefinite programming problem:

max Tr (𝑃) , (36)
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subject to

[
[
[
[
[

[

𝑃𝐴 + 𝐴
󸀠
𝑃 +

𝑙

∑

𝑖=1

𝐶
󸀠

𝑖
𝑃𝐶𝑖 + 𝑄 𝑃𝐵 +

𝑙

∑

𝑖=1

𝐶
󸀠

𝑖
𝑃𝐷𝑖

𝐵
󸀠
𝑃 +

𝑙

∑

𝑖=1

𝐷
󸀠

𝑖
𝑃𝐶𝑖 𝑅 +

𝑙

∑

𝑖=1

𝐷
󸀠

𝑖
𝑃𝐷𝑖

]
]
]
]
]

]

≤ 0,

𝑅 +

𝑙

∑

𝑖=1

𝐷
󸀠

𝑖
𝑃𝐷𝑖 > 0, 𝑃 > 0.

(37)

The semidefinite programming problem (36)-(37), as LMI
(12), can also be verified via some convex optimization tools
[10, 24].

3.2. Comparison with the Existing Results. In (10), if we let
𝐷𝑖 = 0,𝐻𝑖(𝑥, 𝑢) ≡ 0 for 𝑖 = 1, . . . , 𝑙, then the linearized system
of (1) becomes

𝑑𝑥 = (𝐴𝑥 + 𝐵𝑢 + 𝐻0 (𝑥, 𝑢)) 𝑑𝑡 +

𝑙

∑

𝑖=1

𝐶𝑖𝑥𝑑𝑊𝑖. (38)

By means of GARE-based method, the following result was
obtained in [18].

Theorem 9. If for any real matrix 𝑀 ≥ 0, there exists a
constant 𝜆 > 0, such that

𝑙

∑

𝑖=1

𝐶
󸀠

𝑖
𝑀𝐶𝑖 ≤ 𝜆𝑀. (39)

Moreover, suppose lim‖𝑥‖→0(‖𝐻0(𝑥, 𝐾𝑥)‖/‖𝑥‖) = 0, ∀𝐾 ∈
R𝑚×𝑛; (𝐴, 𝐵) is controllable; (𝑄1/2, 𝐴) is observable with 𝑄 ≥
0; then system (38) is locally asymptotically stabilizable in
probability with the control law

𝑢 (𝑡) = −
1

2
𝑅
−1
𝐵
󸀠
𝑃𝑥 (𝑡) , 𝑅 > 0, (40)

where 𝑃 > 0 is a unique solution of GARE

𝑃𝐴 + 𝐴
󸀠
𝑃 +

𝑙

∑

𝑖=1

𝐶
󸀠

𝑖
𝑃𝐶𝑖 − 𝑃𝐵𝑅

−1
𝐵
󸀠
𝑃 + 𝑄 = 0. (41)

Based onTheorem 9, we give the following remarks.

Remark 10. It is not convenient to useTheorem 9 in practice,
because the condition (39) is difficult to verify for all real
nonnegative symmetric matrices.

Remark 11. Checking the proof of Theorem 9 in [18], we
can find that Theorem 9 of [18] required that the smallest
eigenvalue of 𝑄 should be larger than zero; that is, 𝑄 > 0;
so (𝑄1/2, 𝐴) is certainly observable.

GARE (41) is a special case of (14). We should point out
that (39) and the controllability of (𝐴, 𝐵) are only sufficient
but not necessary conditions for the existence of positive
solutions of GARE (41) with 𝑄 > 0, 𝑅 > 0; see [25] and the
following counterexample.

Example 12. In GARE (41), we set 𝑙 = 1, 𝑅 = 1, 𝑄 = 𝐼, and

𝐴 = [
0 1

0 −1
] ,

𝐵 = [
0

−1
] ,

𝐶1 = [
0 0

𝑛 𝑛
] , 𝑛 > 0.

(42)

In this case, GARE (41) reduces to

𝑃𝐴 + 𝐴
󸀠
𝑃 + 𝐶

󸀠

1
𝑃𝐶1 − 𝑃𝐵𝐵

󸀠
𝑃 + 𝐼 = 0. (43)

It is easy to test that

𝑑𝑥 = (𝐴𝑥 + 𝐵𝑢) 𝑑𝑡 + 𝐶1𝑥𝑑𝑊1 (44)

is stabilizable in mean square sense. By [9, 13], (43) must have
a unique positive definite solution𝑃 > 0. However, (39) is not
satisfied; this can be seen by setting

𝑀 = [
0 0

0 𝑚22
] , 𝑚22 > 0. (45)

Considering Proposition 7, Theorem 2 not only has com-
putational advantage but also generalizes and improves
Theorem 9 given in [18].

Remark 13. In general, feedback stabilizing control laws are
not unique; for example, in Theorem 9, except for 𝑢(𝑡) =
−(1/2)𝑅

−1
𝐵
󸀠
𝑃𝑥(𝑡), 𝑢(𝑡) = −𝑅−1𝐵󸀠𝑃𝑥(𝑡) is another locally

feedback stabilizing control law of system (38).

4. Globally Asymptotic Stabilization

Theorem 14. Suppose there exists a scalar 𝜆 > 0, such that, for
any 𝐾 ∈R𝑚×𝑛 and 𝑥 ∈R𝑛,

𝐻𝑖 (𝑥, 𝐾𝑥)𝐻
󸀠

𝑖
(𝑥, 𝐾𝑥) ≤ 𝜆𝑥𝑥

󸀠
, 𝑖 = 0, 1, . . . , 𝑙, (46)

and the following LMI,
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[
[
[
[
[
[
[
[
[
[
[

[

𝑃(𝐴 +
1

2
𝐼 +
(2𝑙 + 1) 𝜆

2
𝐼)

󸀠

+ (𝐴 +
1

2
𝐼 +
(2𝑙 + 1) 𝜆

2
𝐼)𝑃 + 𝑌

󸀠
𝐵
󸀠
+ 𝐵𝑌 √2 (𝐶1𝑃 + 𝐷1𝑌) √2 (𝐶2𝑃 + 𝐷2𝑌) ⋅ ⋅ ⋅ √2 (𝐶𝑙𝑃 + 𝐷𝑙𝑌)

√2 (𝑃𝐶
󸀠

1
+ 𝑌
󸀠
𝐷
󸀠

1
) −𝑃 0 ⋅ ⋅ ⋅ 0

√2 (𝑃𝐶
󸀠

2
+ 𝑌
󸀠
𝐷
󸀠

2
) 0 −𝑃 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

. ⋅ ⋅ ⋅
.
.
.

√2 (𝑃𝐶
󸀠

𝑙
+ 𝑌
󸀠
𝐷
󸀠

𝑙
) 0 0 ⋅ ⋅ ⋅ −𝑃

]
]
]
]
]
]
]
]
]
]
]

]

< 0, (47)

has solutions 𝑃 > 0, 𝑌 ∈ R𝑚×𝑛; then the equilibrium point
𝑥 ≡ 0 of system (10) is globally asymptotically stabilizable with
the control law

𝑢 (𝑡) = 𝑌𝑃
−1
𝑥 (𝑡) . (48)

Proof. Similar to the proof of Theorem 2, by Schur’s comple-
ment, (47) is equivalent to the fact that there exist 𝑃 > 0, 𝑌 ∈
R𝑚×𝑛, such that

𝑃(𝐴 +
1

2
𝐼 +
(2𝑙 + 1) 𝜆

2
𝐼)

󸀠

+ (𝐴 +
1

2
𝐼 +
(2𝑙 + 1) 𝜆

2
𝐼)𝑃 + 𝑌

󸀠
𝐵
󸀠
+ 𝐵𝑌

+ 2

𝑙

∑

𝑖=1

(𝐶𝑖𝑃 + 𝐷𝑖𝑌)𝑃
−1
(𝐶𝑖𝑃 + 𝐷𝑖𝑌)

󸀠
< 0.

(49)

Let 𝑌 = 𝐾𝑃; then (49) implies that there exists a solution
𝑃1 > 0 to

𝑃1 (𝐴 + 𝐵𝐾 +
1

2
𝐼 +
(2𝑙 + 1) 𝜆

2
𝐼)

+ (𝐴 + 𝐵𝐾 +
1

2
𝐼 +
(2𝑙 + 1) 𝜆

2
𝐼)

󸀠

𝑃1

+ 2

𝑙

∑

𝑖=1

(𝐶𝑖 + 𝐷𝑖𝐾)
󸀠
𝑃1 (𝐶𝑖 + 𝐷𝑖𝐾) < 0.

(50)

Still take the Lyapunov function 𝑉(𝑥) = 𝑥󸀠𝑃1𝑥, 𝑢(𝑡) =
𝐾𝑥(𝑡) = 𝑌𝑃

−1
𝑥(𝑡); then 𝑉(𝑥) satisfies (8) and (24). It is well

known that

2𝐻
󸀠

0
(𝑥, 𝐾𝑥) 𝑃1𝑥 ≤ 𝐻

󸀠

0
(𝑥, 𝐾𝑥) 𝑃1𝐻0 (𝑥, 𝐾𝑥) + 𝑥

󸀠
𝑃1𝑥. (51)

By (46), it concludes

𝐻
󸀠

0
(𝑥, 𝐾𝑥) 𝑃1𝐻0 (𝑥, 𝐾𝑥) ≤ 𝜆𝑥

󸀠
𝑃1𝑥. (52)

So

2𝐻
󸀠

0
(𝑥, 𝐾𝑥) 𝑃1𝑥 ≤ (𝜆 + 1) 𝑥

󸀠
𝑃1𝑥. (53)

Similarly,

2

𝑙

∑

𝑖=1

𝐻
󸀠

𝑖
(𝑥, 𝐾𝑥) 𝑃1 (𝐶𝑖 + 𝐷𝑖𝐾)𝑥

≤

𝑙

∑

𝑖=1

𝐻
󸀠

𝑖
(𝑥, 𝐾𝑥) 𝑃1𝐻𝑖 (𝑥, 𝐾𝑥)

+

𝑙

∑

𝑖=1

𝑥
󸀠
(𝐶𝑖 + 𝐷𝑖𝐾)

󸀠
𝑃1 (𝐶𝑖 + 𝐷𝑖𝐾)𝑥

≤ (𝜆𝑙) 𝑥
󸀠
𝑃1𝑥 +

𝑙

∑

𝑖=1

𝑥
󸀠
(𝐶𝑖 + 𝐷𝑖𝐾)

󸀠
𝑃1 (𝐶𝑖 + 𝐷𝑖𝐾)𝑥,

𝑙

∑

𝑖=1

𝐻
󸀠

𝑖
(𝑥, 𝐾𝑥) 𝑃1𝐻𝑖 (𝑥, 𝐾𝑥) ≤ (𝜆𝑙) 𝑥

󸀠
𝑃1𝑥.

(54)

Repeating the same procedure as inTheorem 2, we can prove
L𝑉(𝑥) < 0 for all 𝑥 ∈R𝑛. The theorem is shown.

Remark 15. Obviously, (11) and (46) do not imply each other,
which motivates us to search for other less conservative
conditions in the future.

5. Numerical Example

In this section, we present the following numerical example
to illustrate the effectiveness of our main results.

Example 1. Consider the following two-dimensional nonlin-
ear stochastic system:

𝑑𝑥 = (𝐴𝑥 + 𝐵𝑢 + 𝐻0 (𝑥, 𝑢)) 𝑑𝑡

+ (𝐶1𝑥 + 𝐷1𝑢 + 𝐻1 (𝑥, 𝑢)) 𝑑𝑊1,

(55)

with

𝐴 = [
−1 2

0.5 1
] , 𝐵 = [

0

1
] ,

𝐶1 = [
2 0.5

0 1
] , 𝐷1 = [

1

0
] ,

𝐻0 (𝑥, 𝑢) = 2𝑥𝑢, 𝐻1 (𝑥, 𝑢) = −𝑥𝑢.

(56)
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Figure 1: The state responses of the unforced system (𝑢 = 0).

Obviously, 𝐻0(𝑥, 𝑢) and 𝐻1(𝑥, 𝑢) satisfy condition (11).
According to Theorem 2, a feasible solution is derived by
solving LMI (12):

𝑃 = [
5.1894 0.4095

0.4095 3.8125
] ,

𝑌 = [−6.7947 −6.5819] .

(57)

Therefore, the control gain matrix is

𝐾 = 𝑌𝑃
−1
= [−1.1831 −1.5993] . (58)

The state responses of the unforced system (𝑢 = 0) and
the controlled system (𝑢 = 𝐾𝑥) are shown in Figures 1
and 2, respectively. From Figure 2, it can be found that the
controlled system can achieve stability by using the proposed
controller.

6. Conclusion

In this paper, we have studied the feedback stabilizability
of nonlinear stochastic systems with state- and control-
dependent noise. Some sufficient conditions on stabilization
have been derived in terms of LMIs and GAREs. A numerical
example is presented to show the validity of the obtained
results.
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Figure 2: The state responses of the controlled system (𝑢 = 𝐾𝑥).

Notations

S𝑛: The set of all 𝑛 × 𝑛 symmetric
matrices

𝐴
󸀠: Transpose of a matrix 𝐴
𝐴 ≥ 0 (𝐴 > 0): Positive semidefinite (positive

definite) symmetric matrix 𝐴
𝐼: Identity matrix
Tr(𝑃): Trace of a square matrix 𝑃
𝐶
0

2
({𝑡 > 0} × 𝑈): Class of functions 𝑉(𝑡, 𝑥) twice

continuously differential with respect
to 𝑥 ∈ 𝑈 and once continuously
differential with respect to 𝑡 > 0
except possibly at the point 𝑥 = 0.
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